
This is a repository copy of Cloud-based Integrated Process Planning and Scheduling 
Optimisation via Asynchronous Islands.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/148283/

Version: Accepted Version

Book Section:

Zhao, Shuai, Mei, Haitao, Dziurzanski, Piotr orcid.org/0000-0001-9542-652X et al. (2 more
authors) (Accepted: 2019) Cloud-based Integrated Process Planning and Scheduling 
Optimisation via Asynchronous Islands. In: 16th International Conference on the 
Economics of Grids, Clouds, Systems, and Services. . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Cloud-based Integrated Process Planning and

Scheduling Optimisation via Asynchronous

Islands

Shuai Zhao†, Haitao Mei‡, Piotr Dziurzanski†, Michal Przewozniczek†, and
Leandro Soares Indrusiak†

†Department of Computer Science, Univ. of York, Deramore Lane, Heslington, York,
YO10 5GH, UK

‡ IBM York, The Catalyst, Baird Ln, York, YO10 5GA, UK

Abstract. In this paper, we present Optimisation as a Service (OaaS)
for an integrated process planning and scheduling in smart factories
based on a distributed multi-criteria genetic algorithm (GA). In con-
trast to the traditional distributed GA following the island model, the
proposed islands are executed asynchronously and exchange solutions at
time points depending solely on the optimisation progress at each is-
land. Several solutions’ exchange strategies are proposed, implemented
in Amazon Elastic Container Service for Kubernetes (Amazon EKS) and
evaluated using a real-world manufacturing problem.

Keywords: Optimisation as a Service · Multi-objective Genetic Algorithm ·

Island Model · Amazon EKS · Integrated process planning and scheduling

1 Introduction

In numerous real-world manufacturing scenarios, optimisation of the manufac-
turing plan and its scheduling seem to be ideally suited to be conducted in
a cloud. Firstly, they are notorious to require substantial computation and
secondly, as the optimisation process is triggered when a smart factory state
changes, the needs for huge computational resources are interleaved with idle in-
tervals. Yet the problem of cloud-based optimisation of realistic industrial prob-
lems is relatively unpopular in academia [1]. One of the reasons is the innate
heterogeneity of the manufacturing process, as discussed, e.g., in [2], and hence
the difficulties in proposing an optimisation framework generic enough to be
applicable to a wide range of manufacturing optimisation problems.

The main ambition of the project summarised in this paper is to propose
a cloud-based service capable of optimising real-world manufacturing problems
ranging from discrete manufacturing (i.e., production of distinct items) to pro-
cess manufacturing (i.e., production using formulations or recipes). The knowl-
edge description regarding the smart factory and the manufacturing order to be
processed can be specified using a dedicated ontology, for example, based on a
common ancestor ontology for generic manufacturing domain proposed in [3].



2 Shuai Zhao et al.

Such ontology can be then used to build an analytic description of a smart fac-
tory (aka digital twin), as proposed in [4], which then can evaluate alternative
manufacturing configurations as a part of a search-based optimisation process.
As this process is executed in the cloud on-demand only, the applied comput-
ing resources can be relatively powerful and large in quantity as long as the
computation time is not long-lasting. It is then suitable to perform distributed
computation in a cluster with several computing nodes. Among search-based
optimisation meta-heuristics, the island model of genetic algorithms (GAs) is
applicable to distributed execution. In this model, each node evolves a separate
subpopulation to preserve the genetic diversity of the entire population. The
islands exchange some individuals periodically. Typically, the number of islands
is fixed [5]. Although a cloud-based realisation of a traditional island-model is
quite effective [6], the underlying synchronous execution of each generation may
be treated as a source of potential performance loss due to the risk of island fail-
ures, different processing time or communication latency. Removing these draw-
backs was our main motivation behind proposing a new, asynchronous version of
the island model, where the islands exchange their migrants only through a fast
NoSQL database at time points decided by the islands based on the progress
of their local optimisation process. A general algorithm is proposed and several
migration strategies are implemented, deployed to a Kubernetes cluster (using
Amazon EKS) and evaluated based on a real-world scenario, formulated by EU
H2020 SAFIRE project partner who was in charge of the evaluation based on a
real discrete-manufacturing use case.

The main contribution of this paper can be summarised as follows: (i) propos-
ing a generic algorithm for asynchronous island model with multiple objectives,
(ii) suggesting several migration strategies for the proposed asynchronous is-
land model, (iii) proposing a cluster-based architecture following the proposed
asynchronous island model in Amazon EKS, (iv) presenting experimental evalu-
ations of the suggested migration strategies based on a real-world manufacturing
scenario.

2 Related work

Genetic Algorithms (GAs) have been arguably one of the most widely-used op-
timisation meta-heuristics since the seminal work of John Holland in 1960s. In
GAs, a population of solutions to a particular problem is improved generation
after generation, mimicking the breeding of living organisms. The solutions rep-
resented by chromosomes are selected with a probability proportional to their
’fitness’, crossed over and mutated. Despite the initial population is randomly
generated, the subsequent generations are increasingly closer to the optimal solu-
tion. The original GAs were executed sequentially and hence they were notorious
for low speed [7]. Several techniques have been proposed to alleviate this prob-
lem, including parallel execution of GAs [5, 8, 9].

The typical parallelisation of GAs can be performed either at the fitness-
evaluation or the population level (the island model), performed synchronously
following the master-slave architecture [5]. In clouds, these approaches are ben-
eficial only under certain conditions, since the nodes are heterogeneous and con-



Cloud-based Manufacturing Planning and Scheduling Optimisation 3

nected with links characterised with different latencies. The fitness-evaluation
level parallelism is beneficial only for expensive fitness functions [8], whereas
the barrier applied in the island model is detrimental when the slave nodes are
unreliable or have assorted response times [9]. In order to find approaches more
suitable for contemporary cloud clusters, it is beneficial to undust the research
related to evolutionary Peer-to-Peer (P2P) computing, as they assume varied
response time and nodes’ unreliability. For example, in [10], a number of evo-
lutionary strategies for multi-objective P2P optimisation has been evaluated,
such as distributed migration decision criterion, exchange topology, number of
emigrants, emigrants selection policy and replacement/integration policy. In this
paper, we investigate similar criteria but for a different distributed algorithm,
cloud architecture and when applied to a real-world manufacturing problem.

In the proposed solution, a custom multi-objective GA has been container-
ised using Docker [11], similarly as recommended in positional paper [12]. In
contrast to that paper, we deployed the containers in a Kubernetes cluster [13].
The islands communicate each other using a NoSQL database rather than an
open-source message broker named RabbitMQ. However, the performance of
both the solutions is difficult to compare as the authors of that paper provided
no implementation details nor the experimental results. In contrast, this paper
describes a series of experiments based on real-world industrial scenarios.

Ma et al. employed the population-level parallelisation in [9]. Their solution
followed the master-server architecture. The number of slaves was decided stat-
ically. Each slave obtained a subpopulation of the size inversely proportional to
its CPU utilisation. Then the corresponding fitness values were computed and
returned to the master. In the proposed solution, the number of Kubernetes
worker nodes is decided dynamically using the auto-scaling facility provided by
Amazon EKS, triggered with an alarm monitoring the memory usage of the
nodes.

A simple yet interesting proof-of-concept GA implementation described in
[14] applied the island model of GA. The islands have been executed in the
serverless manner which leverages the scaling capabilities of that solution. How-
ever, no implementation details nor experimental results were provided to back
the claims regarding the performance of that proposal. The serverless Function-
as-a-Service facilities offered nowadays by popular cloud vendors impose strict
limitations on a function execution both in timeout and consumed memory. For
example, Amazon Lambda in May 2019 was limiting the maximal invocation
payload, consumed memory and deployment package size to 256 KB, 3008 MB,
zipped 50 MB, respectively. Hence, it is unclear whether the architecture from
[14] can be applied in practice with real-world scenarios as analysed in this pa-
per. One of the possibilities of omitting these limits in serverless execution is
to use Fission, a popular framework for serverless functions on Kubernetes, as
proposed in [6]. However, that paper still followed a traditional master-slave
architecture with an innate barrier at the end of each optimisation stage. In
contrast, the solution proposed in this paper is fully distributed and the nodes
are executed asynchronously. The number of nodes is decided by the Kubernetes
horizontal auto-scaler based on the node utilisation rather than the master node
as proposed in that paper.



4 Shuai Zhao et al.

3 Asynchronous Island-based GA with Migrations

In the island model of GA, the evolution is performed independently on a number
of subpopulations by GA instances named ”islands”. Aperiodically, the islands
exchange the migrants. The traditional island model follows a fully synchronous
master-slave architecture: the iterations on all islands begin at the same time,
triggered by the master node, and the iteration completion is synchronised with
a barrier. However, this approach can be modified to be fully distributed. In
this section, the asynchronous island-mode GA is depicted in Algorithm 1 with
several migration strategies suggested.

Each island in the island mode of GA maintains its own subpopulation. It
searches towards the optimal solution within a given number of execution stages,
where each execution stage contains a fixed number of iterations. The optimisa-
tion engines run in each island are executed asynchronously and do not commu-
nicate directly with each other. Instead, they communicate using a light-weight
database (see GA Data Service in Section 4), pushing their selected solutions at
certain time points. At other time points, the solutions pushed by other islands
are popped and applied by an island to modify its current Pareto Front ap-
proximation. Similarly to [15], a complete migration is performed by a selection
and a replacement operator. The former selects the migrants to be pushed to
a database and possibly later imported (popped) by other islands, whereas the
latter operator selects the individuals in the Pareto Front approximation in an
island that will be replaced by the migrants popped from a database so that the
same population size is maintained during the entire execution. In each island,
the optimisation process stops after evolving a predefined number of generations.

In this paper, four strategies for implementing the selection operator are
considered, as enumerated below:

– Generic selection does not perform the actual selection from the current
Pareto Front approximation but, instead, it randomly generates a new so-
lution. This strategy serves as the performance baseline for the remaining
selection operators.

– Random selection randomly selects a solution from the current Pareto Front
approximation.

– Best selection selects the best solution from the current Pareto Front approx-
imation. The solution quality is evaluated with the Generational Distance
(GD) performance indicator from [16], which quantifies the proximity of a
given solution to the ideal point.

– Diversity selection selects the solution with the highest diversity based on
the Crowding Distance (CD) value [17], which measures the average distance
between the solution and its two closest neighbours in the current Pareto
Front approximation.

To maintain a fixed size of each island’s population, a certain replacement
operator is required to be applied during the migration. This paper considers
two replacement strategies:

– Random replacement removes a randomly selected solution in the population
of the target island.



Cloud-based Manufacturing Planning and Scheduling Optimisation 5

Algorithm 1: Asynchronous island-based GA

inputs : I: number of iterations; P : number of individuals per island;
S: number of stages; R: number of maximum stuck iterations in a row;
M : number of solutions to migrate; CI: quality indicator;

outputs : PF : a Pareto Front (PF ) approximation;

1 PF = ∅, s = 0, c = 0;
2 create a GA island with P randomly generated solutions;
3 for s=1,...,S do

4 execute the GA island for I iterations;
5 add non-dominated solutions returned into PF ;
6 if CI value of PF obtained after stage (s) is not higher than that of stage

(s-1) then

7 increment c;
if c == R then

8 c=0;
9 push the PF approximation to database;

end

10 for m=1,...,M do

11 pull a PF approximation from a database;
12 migrate one solution from the remote set to the current population;

end

end

end

13 push the final PF approximation to database;

– Worst replacement removes the worst solution in terms of the solution qual-
ity based on a certain quality indicator.

With the above selection and replacement operators combined, we provide,
in total, eight migration strategies that can be pre-configured before the optimi-
sation process.

Algorithm 1 starts with P randomly generated solutions and then executes
for S stages, where each stage contains I iterations. After the GA island is
executed in each stage, an approximation of Pareto Front, PF is updated with
new non-dominated solutions (if there exist any). Then, a quality indicator1 is
applied to check the quality of the current Pareto Front approximation and is
compared to that of the approximation in the previous execution stage. If the
quality is not improved continuously over the prior R iterations (i.e., stuck in a
local optimum), the Pareto Front approximation is pushed to the database by
overriding the previous approximation set of this island (if it exists). In addition,
after each execution stage that does not improve the Pareto Front approximation,
a pull operation is performed to get solutions from a Pareto Front approximation
from other islands, randomly selected, in the database (if there exits any). Then
migrations are performed to migrate M solutions from the selected front to
the current population based on a certain selection and replacement operators

1 We do not enforce the choice of quality indicator applied in the algorithm, but assume
that a higher quality value indicates a higher quality of the optimisation result.



6 Shuai Zhao et al.

Fig. 1. The architecture of the distributed island-based GA optimisation algorithm.

described previously. Lastly, the PF approximation is pushed to the database
as the final optimisation result obtained by this GA island.

4 Cloud Deployment

Section 3 described the GA with asynchronous islands. To deploy this algorithm
in a cloud environment, the architecture depicted in Figure 1 is applied. It con-
tains the following components:

– GA Data Service (data tier) is responsible for the data communication
between islands and storing the data in a persistent data storage.

– Data Cache is used to reduce the response time when the data service
reads/writes data from/to the persistent storage.

– GA Island executes the proposed GA; it can run either on a managed cluster
or on-premise.

GA Data Service is highly available and automatically scale out/in accord-
ing to the load of the requests from GA islands. Additionally, the data cache
is designed to use a distributed key/value storage, such as a Redis cluster or
Cassandra, to support both high availability and fast data exchange. The micro-
service architecture employed by the proposed solution decouples the compo-
nents so that the whole solution can be easily deployed to any distributed system.
This enables this solution to be provided as a cloud service by cloud providers
and requires the minimum possible maintains.

The deployment of the proposed architecture is based on the following as-
sumptions:

– The number of islands that are running at the same time is up to hundreds.
– These islands issue requests to data-tier servers in a sporadic fashion, i.e.,

the requests (both sending data to or requesting data from the data-tier)
arrive with a minimum interval, longer that the data-tier servers’ response
time.

– The amount of data exchange between the islands and the data-tier is re-
lateively low, up to a few MBs in a single push/pop operation.

In the past several years, Docker [11] and Kubernetes [13] are two popular
techniques for containerisation and container orchestration, respectively. Docker
allows applications to be shipped to any popular operating systems by creating



Cloud-based Manufacturing Planning and Scheduling Optimisation 7

Fig. 2. The architecture of the cloud-base manufacturing Planning and scheduling
optimisation system.

a Docker image that is similar to a virtual file system so that the application
and its dependencies are encapsulated together. A Docker image is instantiated
as a running container by the underlying execution-engine, such as Docker En-
gine or containterd. Kubernetes is a platform running on a computer cluster,
and provide container orchestration functionalities, such as component abstrac-
tion (e.g., Pod, Service), DNS service, software-defined network, resource allo-
cation, load balancing etc. Additionally, Kubernetes also provides Horizontal
Pod Autoscaler (HPA) to dynamically auto-scale out/in the replicas of a service
component based on several metrics, for example, the CPU or memory utilisa-
tion. The Cluster Autoscaler (CA) is used to dynamically adjust the number
of computing nodes in a Kubernetes cluster. Lastly, Kubernetes allows differ-
ent plugins to be installed. In this paper, we employ an ingress controller to
allow users/applications to communicate with the data-tier service outside of
the cluster.

Docker and Kubernetes have been adopted by many providers such as Ama-
zon AWS, Microsoft Azure, Google Cloud, and IBM Cloud. This enables us to
leverage the managed Kubernetes services from these cloud providers, rather
than installed locally on premises. The Kubernetes HPA and CA enable auto-
scaling the components (such as the data-tier service) in our system based on the
load. By creating multiple instances of service components, Kubernetes automat-
ically handles the load balancing and re-starts a faulty container once detected.
This approach enables the proposed system to be highly available during the
operation.

Figure 2 depicts the deployment of the system presented in this paper. The
core component is GA Data Service, which is responsible for data exchange
between islands and also generating reports to users. It has a minimum number
of instances by default to provide service high availability and scaling out/in
according to the load of the requests. The islands can be implemented using any
programming language, and communicate with the GA Data Service via REST
API from within the cluster or outside of the cluster through the ingress. The
GA Data Service stores all the data into an external NoSQL cluster and uses a
Redis cluster as a cache layer.



8 Shuai Zhao et al.

Table 1. Cost of push operation with a scaled number of islands (in ms)

No. islands 2 4 8 16 32 64 128

push
avg. 2013.78 2012.92 2013.52 2013.79 2016.33 2014.24 2017.78
std. 7.61 1.62 1.66 2.20 70.89 31.80 77.69

pull
avg. 1000.56 1000.52 1000.54 1000.64 1002.53 1001.49 1002.56
std. 0.52 0.51 0.56 0.59 44.79 31.67 44.77

5 Experimental Results

This section investigates the efficacy of the proposed cloud-based deployment of
the GA algorithm based on the asynchronous island management model when
applied to the real-world use case described in [4], in which a set of 14 metal
parts is ordered to be manufactured in a plant equipped with 12 Wire Electri-
cal Discharge Machining (WEDM) machines of 3 different sizes, operating in
3 various modes each. The considered optimisation problem is an example of
a typical manufacturing planning and scheduling problem that can be found in
any discrete manufacturing company. However, the used optimisation engine can
be also applied to process manufacturing as described in [1].

We first evaluate the communication overhead of the proposed cloud ar-
chitecture by measuring the response time of push and pull operations. The
evaluation is conducted on Amazon Elastic Container Service for Kubernetes
(Amazon EKS) run on dual-cores t2.medium instances in the AWS US-West-2
Zone spans over its all availability zones. Table 1 reports the average response
time (in milliseconds) and the standard deviation for 10,000 push and pull op-
erations. The size of data for each push and pull operations equals 590KB (i.e.,
a Pareto Front approximation with 50 elements). According to the results, the
overhead incurred due to communication is relatively even despite increasing the
number of asynchronous islands, which repeatably issue asynchronous push and
pull requests to the data service. As observed, a push operation takes about 2
seconds and a pull operation needs about 1 second to complete regardless the
number of islands.

The following experiment investigates the efficiency of the proposed optimi-
sation algorithm (recall Algorithm 1) with eight migration strategies described
in Section 3. The optimisation algorithm is configured with S = 40, P = 50,
I = 20, R = 3, M = 1. The Diversity Comparator Indicator (DCI) [18] has
been used as the quality indicator CI for measuring the quality of Pareto Front
approximations obtained in the subsequent execution stages. DCI quantifies the
diversity of the given approximation similarly as in [1]. Five asynchronous is-
lands have been created in the Kubernetes cluster. In total, 100 test cases have
been performed for each migration strategy. A ranking has been constructed for
Pareto Front approximations obtained by the evaluated migration strategies in
a way that each strategy has received the number of points equal to the number
of strategies with lower or equal DCI value.

As shown in Figure 3, the strategy without any migrations (i.e., box None)
has yielded the result with the worst quality among all the tested strategies.
This result was expected as in this strategy there is no communication with
other islands and hence it cannot obtain the performance boost via import-



Cloud-based Manufacturing Planning and Scheduling Optimisation 9

Fig. 3. Optimisation result quality ranking with different migration strategies.

Table 2. Average and median ranking for the considered migration strategies.

Migration
strategy

no
migration

random random random random worst worst worst worst
+ + + + + + + +

new random best diversity new random best diversity

avg. 1.596 3.38 5.73 3.75 6.69 5.44 7.82 5.74 8.22
med. 1 3 6 3 7 5 8 6 9

ing non-dominated solutions from other subpopulations (islands). The strategies
with the random replacement operator have outperformed the ones applying the
worst replacement operator (i.e., replace worst) regardless of the selection oper-
ator. The diversity selection and best selection operators have outperformed the
remaining selection operators. In accordance with the results presented in [15],
migration of the best solution has not been profitable mainly due to the risk of
the premature convergence of the entire subpopulation. Instead, migration of the
solutions likely to improve the Pareto Front approximation diversity (i.e., diver-
sity selection and random selection operators) is more beneficial in the studied
problem.

Table 2 summarises the average and median ranking values of all the com-
peting strategies. As given in the table, both random selection and diversity

selection operators provide higher quality ranks in average and median values.
As expected, the strategy without migration has ranked the lowest. In addition,
the worst replacement operator has yielded a better average and median quality
ranking values than the random replacement strategy for each selection strategy.
These results are in line with the results presented in Figure 3. In addition, all
the above observations have yielded a statistically significant difference accord-
ing to the Sign Test with p-value threshold for statistical significance equal to
0.02.

Figure 4 reports the numbers of push and pull operations issued by each
strategy. The importance of these metrics stems from the cloud communication
overhead as shown earlier in Table 1. As shown on the left hand side of the figure,
the no migration, new selection and best selection operators have led to a larger
number of push operations than the random selection and diversity selection

operators. This observation indicates that the algorithm applying the former



10 Shuai Zhao et al.

Fig. 4. Push (9 leftmost boxes) and pull (8 rightmost boxes) requests made by each
migration method.

Table 3. DCI comparison of the considered migration strategies.

M None
random random random random worst worst worst worst

+ + + + + + + +

new random best diversity new random best diversity

1 0.294 0.294 0.294 0.294 0.412 0.294 0.529 0.353 0.706
2 0 0 0.048 0 0.19 0.238 0.381 0.143 0.333
3 0 0 0.143 0 0.238 0.095 0.095 0.048 0.619
4 0 0.042 0.125 0.125 0.25 0.125 0.042 0.042 0.292
5 0 0.08 0.12 0 0.28 0.12 0.12 0.04 0.24

three operators is less likely to escape from local optima since both the push
and pull operations are issued when an island has not improved its Pareto Front
approximation for a given number of execution stages. In addition, although the
diversity selection operator has yielded more communication requests than the
random selection operator, it has usually led to better optimisation results (recall
Figure 3). This observation indicates that its relatively heavy communication is
beneficial.

Table 3 gives the DCI quality indicator for the strategies with different num-
bers of solutions transferred during one migration (as specified by parameter
M in Algorithm 1). Again, the diversity selection operator has led to the best
results for all the considered M values and both the replacement operators. In
Table 4, DCI values comparing the Pareto Front approximations for different
numbers of migrants, M , are presented. From this table, it can be concluded
that an increased number of solutions migrated improves the final solution qual-
ity. However, having more migrants impose higher communication overheads in
the cloud, as discussed earlier in this section.

Standard Amazon EC2 instances have been used as Amazon EKS worker
nodes. Their ECUs2 ranged from 13 to 68. On average, execution of a single
stage has taken about 900s and hence the total EC2 cost (including the data
transfer cost) has not exceeded 10 USD in any case. Additionally, AWS charged
0.20 USD per hour for using an Amazon EKS cluster in May 20193. These costs

2 1 ECU is defined as the compute power of a 1.0-1.2GHz server CPU from 2007.
3 The current costs can be found at https://aws.amazon.com/eks/pricing/



Cloud-based Manufacturing Planning and Scheduling Optimisation 11

Table 4. DCI quality changes with an increased number of migrations in one pull.

replace random replace worst

M 1 2 3 4 5 1 2 3 4 5

random 0 0.292 0.208 0.292 0.333 0.13 0.174 0.304 0.304 0.348

best 0.043 0.217 0.13 0.478 0.304 0.316 0.158 0.316 0.316 0.526

diversity 0.115 0.154 0.308 0.308 0.192 0.083 0.208 0.292 0.25 0.375

are just 0.02 per cent of the total production cost of the considered parts and
hence it is negligible for our business partner.

6 Conclusion

In this paper, a GA for multi-objective optimisation using asynchronous islands
have been proposed. The software implementation of these algorithms has been
deployed to a Kubernetes cluster (in Amazon EKS) and applied to an integrated
process planning and scheduling for a real-world smart factory representing the
discrete manufacturing branch. Several migration strategies have been evaluated
and the most favourable selection and replacement operators have been identi-
fied. Similarly, various numbers of migrants have been analysed.

In our future work, we plan to investigate migration topologies different from
the fully connected graph used in this paper, e.g. a ring. A custom scaling of
the number of island based on the optimisation state is also planned. Finally, a
larger set of real-world manufacturing problems is planned to be evaluated.

Acknowledgement

The authors acknowledge the support of the EU H2020 SAFIRE project (Ref.
723634).

Bibliography

1. Dziurzanski, P., Zhao, S., Swan, J., Indrusiak, L.S., Scholze, S., Krone, K.:
Solving the multi-objective flexible job-shop scheduling problem with alter-
native recipes for a chemical production process. In: Applications of Evolu-
tionary Computation. pp. 33–48. Springer International Publishing (2019)

2. Méndez, C.A., et al.: State-of-the-art review of optimization methods for
short-term scheduling of batch processes. Computers & Chemical Engineer-
ing 30(6-7), 913–946 (2006)

3. Lemaignan, S., Siadat, A., Dantan, J.., Semenenko, A.: Mason: A proposal
for an ontology of manufacturing domain. In: IEEEWorkshop on Distributed
Intelligent Systems: Collective Intelligence and Its Applications (DIS’06). pp.
195–200 (June 2006)

4. Dziurzanski, P., Swan, J., Indrusiak, L.S., Ramos, J.: Implementing digi-
tal twins of smart factories with interval algebra. In: IEEE International
Conference on Industrial Technology. ICIT 2019 2019 (2019)



12 Shuai Zhao et al.

5. Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F.: Towards migrating ge-
netic algorithms for test data generation to the cloud (2012)

6. Zhao, S., Dziurzanski, P., Przewozniczek, M., Komarnicki, M., Indrusiak,
L.S.: Cloud-based dynamic distributed optimisation of integrated process
planning and scheduling in smart factories. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO ’19, ACM, New York,
NY, USA (2019)

7. Thierens, D.: Scalability problems of simple genetic algorithms. Evol. Com-
put. 7(4), 331–352 (Dec 1999), http://dx.doi.org/10.1162/evco.1999.
7.4.331

8. Leclerc, G., Auerbach, J.E., Iacca, G., Floreano, D.: The seamless peer and
cloud evolution framework. In: Proceedings of the 2016 on Genetic and Evo-
lutionary Computation Conference. pp. 821–828. ACM (2016)

9. Ma, N., Liu, X.F., Zhan, Z.H., Zhong, J.H., Zhang, J.: Load balance aware
distributed differential evolution for computationally expensive optimization
problems. In: GECCO Proceedings Companion, 2017. pp. 209–210. ACM
(2017)

10. Melab, N., Mezmaz, M., Talbi, E..: Parallel hybrid multi-objective island
model in peer-to-peer environment. In: 19th IEEE International Parallel
and Distributed Processing Symposium. pp. 9 pp.– (April 2005)

11. Enterprise Application Container Platform. https://www.docker.com/, ac-
cessed: 2019-04-19

12. Salza, P., Ferrucci, F., Sarro, F.: Develop, deploy and execute parallel genetic
algorithms in the cloud. In: GECCO Proceedings Companion, 2016. pp. 121–
122. ACM (2016)

13. Kubernetes: Production-Grade Container Orchestration. https:
//kubernetes.io/, accessed: 2019-04-19

14. Garćıa-Valdez, J.M., Merelo-Guervós, J.J.: A modern, event-based archi-
tecture for distributed evolutionary algorithms. In: Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion. pp. 233–234.
GECCO ’18, ACM, New York, NY, USA (2018)

15. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based
multimemetic algorithms. In: International Conference on Parallel Problem
Solving from Nature. pp. 731–740. Springer (2014)

16. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance cal-
culation in generational distance and inverted generational distance. In:
Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) Evolutionary
Multi-Criterion Optimization. pp. 110–125. Springer International Publish-
ing, Cham (2015)

17. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Inter-
national conference on parallel problem solving from nature. pp. 849–858.
Springer (2000)

18. Li, M., Yang, S., Liu, X.: Diversity comparison of pareto front approxima-
tions in many-objective optimization. IEEE Trans. on Cybernetics 44(12),
2568–2584 (Dec 2014)


