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Neuroimmune interactions are important in the pathophysiology of many chronic

inflammatory diseases, particularly those associated with alterations in sensory

processing and pain. Mast cells and sensory neuron nerve endings are found in areas of

the body exposed to the external environment, both are specialized to sense potential

damage by injury or pathogens and signal to the immune system and nervous system,

respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also

known as SynCAM1, has previously been identified as an adhesion molecule which may

couple mast cells to sensory neurons however, whether this molecule exerts a functional

as well as structural role in neuroimmune cross-talk is unknown. Here we show, using

a newly developed in vitro co-culture system consisting of murine bone marrow derived

mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG),

that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong

adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not

express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with

sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to

enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of

TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-

cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading

to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of

a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown

of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites

and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1

is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the

development of a microenvironment in which neurons enhance mast cell responsiveness

to antigen, this interaction could explain why the incidence of painful neuroinflammatory

disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
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INTRODUCTION

Mast cells are best known for their role in allergic diseases.
The symptoms of allergic reactions are instigated by the
secretion of a plethora of pro-inflammatory mediators from
mast cells following antigen-dependent crosslinking of IgE
receptors (FcεRI) (Galli and Tsai, 2012). These mediators include
preformed molecules stored in granules such as histamine,
serotonin, adenosine 5′-triphosphate (ATP), proteases, tumor
necrosis factor-α (TNFα), chemokines, and peptides, as well as de
novo synthesized cytokines, growth factors and lipid mediators
(Sismanopoulos et al., 2012). Since mast cells are tissue resident
cells, the mediators they secrete influence the function of nearby
cells expressing cognate receptors. Conversely, mast cells also
express a wide variety of other types of receptors whose activation
by local mediators may intern amplify antigen-induced responses
(Gilfillan et al., 2009), while much is known about mast cell
cross-talk with other innate and adaptive immune cells, more
recently, their contribution to neuroimmune signaling is also
increasingly being recognized (Undem and Taylor-Clark, 2014;
Voisin et al., 2017).

Evidence is accumulating that mast cells may contribute
to pain experienced in conditions whose pathology involves
tissues lying at the interface of the external environment such
as intestines, bladder, uterus, airways, skin and meninges (Aich
et al., 2015; Gupta and Harvima, 2018). Indeed, mast cells
have shown preference to attach to substance P (subP)and
calcitonin gene related peptide (CGRP)-positive sensory neurons
in human and rat intestine (Stead et al., 1987), respiratory
tract (Alving et al., 1991) dura matter (Rozniecki et al., 1999),
and other tissues (Spanos et al., 1997; Pavlovic et al., 2008).
The number of contacts between mast cells and neurons is
increased during infection (Stead et al., 1987), allergic conditions
(El-Nour et al., 2005), and inflammatory conditions such as
irritable bowel syndrome (Barbara et al., 2004; Theoharides
and Conti, 2004) and this correlates to pain (Barbara et al.,
2007; Ohman and Simrén, 2010; Di Nardo et al., 2014). Mast
cell granule-derived mediators and cytokines, including IL-6
and TNF-α, in turn have been shown to sensitize nociceptors
(von Banchet et al., 2005; Barbara et al., 2007; Hensellek et al.,
2007) and contribute directly to neurogenic inflammation and
pain signaling (Aich et al., 2015; Wouters et al., 2016; Gupta
and Harvima, 2018). Knowledge of the adhesion molecules
regulating mast-cell sensory neuron contacts may therefore
provide new insight into disease mechanisms and strategies
for intervention.

Cell adhesion molecule 1 (CADM1, also known as SynCAM
1, Necl-2, SgIgSF, TSLC-1) is reported to contribute to mast
cell interactions with neurons (Furuno et al., 2005; Hagiyama
et al., 2011), fibroblasts and smooth muscle cells (Moiseeva
et al., 2013b). CADM1 is one of four related glycoproteins
with a common structure consisting of three extracellular Ig-
like domains, a transmembrane region and short conserved
cytoplasmic domain that binds adaptor proteins linking it to the
cytoskeleton and other intracellular partners (Biederer, 2006).
CADM1, 2, 3 can each form weak trans homophilic interactions,
while CADM1/2 and CADM3/4 interactions produce strong

heterophilic adhesions in neurons (Fogel et al., 2007). Mutations
in CADM1 have been implicated in autism spectrum disorder,
and its expression is increased in Rett syndrome (Nectoux
et al., 2010) which is associated with altered peripheral
mechanosensory transduction (Orefice et al., 2016). One study
performed to date examining mast cell – sensory neuron
adhesions, failed to detect CADM protein expression but did find
evidence for nectin-3 mRNA expression in dorsal root ganglia.
Neutralizing antibodies aimed at disrupting CADM1/nectin-3
heterophilic interactions reduced mast cell adhesion (Furuno
et al., 2012; Moiseeva et al., 2013b). However, since neuronal
expression of CADM1 is developmentally regulated (Fogel
et al., 2007; Hagiyama et al., 2011; Moiseeva et al., 2013a,b),
and the only study performed to date used neurons isolated
from newborn mice, whether CADM1 contributes to functional
interactions between mature sensory neurons and mast cells
remains an open question. It is also unknown how adhesion
between sensory neurons and mast cells modulates their
responses to allergic activation. To address these questions, we
established a co-culture system between adult sensory neurons
isolated from dorsal root ganglia (DRG) and functionally
mature mast cells generated from haematopoetic stem cells
found in bone marrow derived mast cells (BMMCs). Protein
expression analysis, showed that distinct variants of CADM1
are expressed in sensory neurons and mast cells. Knockdown
of CADM1 in mast cells abolished their adhesion to sensory
neurons, conversely blocking CADM1 on sensory neurons with
a neutralizing antibody inhibited mast cell adhesion. Functional
analysis of mast cells in co-culture furthermore revealed that
CADM1-dependent interactions with sensory neurons induced
degranulation and IL-6 synthesis, and significantly enhanced
FcεRI-activated secretory responses. Separation of the sensory
neurons from the mast cells by a porous membrane prevented
the effects of co-culture, as did knockdown of CADM1, showing
that the functional interaction was adhesion dependent. While
the effects of mast cell derived mediators on sensory neurons are
well documented, to our knowledge this is the first demonstration
of a reciprocal adhesion-dependent effect of sensory neurons
on mast cells and their responsiveness to antigen, emphasizing
the important role that neuro-immune interactions contribute to
allergic diseases.

MATERIALS AND METHODS

All animals were maintained on a 12-h light/dark cycle
in a temperature-controlled environment and given food
ad libitum. All animal procedures were conducted under the
Animal (Scientific Procedures) Act 1986, and approved by the
UK Home Office.

Bone Marrow-Derived Mast Cells
(BMMC) Cell Culture
Bone marrow-derived mast cells were isolated from 8 to 12 week-
old C57BL6 wild type mice as described previously (Furuno
and Nakanishi, 2011) with modifications. After the mice were
sacrificed, bone marrow was collected from the tibia and
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the femur by repeated flushing using a 27-G needle syringe
filled with calcium- and magnesium- free phosphate buffer
solution (PBS, PAN Biotech, Germany). Cells were collected
and centrifuged at 340 × g for 10 min at 4◦C. The pellets
obtained were re-suspended with 2-ml lysis buffer [0.83%
ammonium chloride, 0.168% Na-carbonate, 1 mM EDTA (pH
7.3)], in which they were incubated for 10 min at room
temperature to induce lysis of red blood cells. The lysed
cells were centrifuged and resuspended with Iscove’s Modified
Dulbecco’s Media (IMDM, Lonza, United Kingdom). For cell
culture, complete medium was supplemented with 10% heat-
inactivated fetal calf serum (FCS, Gibco, United Kingdom),
1% MEM Vitamin (Gibco, United Kingdom), 1% of sodium
pyruvate (Gibco, United Kingdom), 100 IU/ml Penicillin,
100 µg/ml streptomycin (PAA Laboratories, United Kingdom),
and 0.1 mM non-essential amino acid (Gibco, United Kingdom).
In the final step, 10 ng/ml of recombinant mouse stem cell
factor SCF (R&D systems, MN, United States) and 5 ng/ml
recombinant murine IL-3 (R&D Systems, MN, United States)
were added. The cells were cultured in 7.5% CO2 at 37◦C
for 4 weeks until they differentiated into BMMCs. Prior to
use in experiments, cells from each preparation were analyzed
for surface expression of FcεRI and SCF receptor (c-kit), the
classic mast cell markers, by flow cytometry. Only cultures in
which >95% viable cells stained positive for both c-kit and
FcεRI were used.

Dorsal Root Ganglion (DRG) Culture
Dorsal Root Ganglion were isolated and cultured according
to previously described procedure (Sleigh et al., 2016).
DRGs isolated from adult (8–12 week old) C57BL male
mice, were dissociated with 0.06 µg/ml collagenase XI
(Sigma) and 0.1 µg/ml Dispase for 1 h at 37◦C, followed
by gentle trituration. For selective isolation of neurons,
gradient centrifuge technique with 15% bovine serum
albumin (BSA) in medium was used. Cells were cultured in
complete Neurobasal-A medium (NBA, Gibco) containing
2% B-27 supplement (Gibco), 2 mM Glutamax (Gibco), 1%
penicillin/streptomycin (Gibco), 10 ng/ml NGF (Sigma) and
1 µM Cytosineβ-D-arabinofuranoside (Ara-C, Sigma) and
seeded on 16 mm matrigel (BD) – coated glass coverslips or
96 well flat bottom plates and incubated for 1 day before using
in co-culture.

BMMC-DRG Co-culture
After culturing BMMC for 4 weeks, the purity of mast cells
was assessed for surface expression of FcεRI and c-Kit by
flow cytometry. Only BMMC cultures with >95% FcεRI+

and c-Kit+ were used for co-culture. 1–3 × 105 BMMCs
suspended in co-culture medium (50% IMDM and 50%
NBA) were added to DRG cultures prepared 24 h previously.
Co-cultures were incubated in 37◦C with presence of IL-3
(5 ng/ml) for different time points. For some experiments,
DRG were preincubated for 30 min prior to co-culture with
1–30 µg/ml of CADM1 blocking peptide (9D2, Medical &
Biological Laboratories). For separation experiments, transwells
(Costar, Corning) with a 0.4-µm insert were used. DRG

were cultured in the lower chamber, while BMMCs were
added in the insert.

BMMC Sensitization, Degranulation and
Cytokine Secretion Assay
For antigen stimulation experiments, BMMCs (3.5 × 105 cells)
were sensitized overnight with 0.5 µg/ml anti-dinitrophenyl
IgE (anti-DNP IgE, Sigma-Aldrich, United Kingdom). On the
following day, IgE-presensitized BMMCs were co-cultured with
DRG for various time points and then stimulated by 10–
100 ng/ml of dinitrophenyl antigen (DNP) (Sigma-Aldrich,
United Kingdom) for 30min at 37◦C. The co-culture supernatant
was collected and analyzed for degranulation, IL-6, and
TNFα secretion.

Degranulation of mast cells was evaluated by measuring
the activity of granule-stored enzyme β-hexosaminidase
(β-hex) release (Gilfillan and Tkaczyk, 2006). After BMMC
were activated by IgE/Ag cross-linking, supernatants were
collected and incubated with the same volume of substrate
solution [2 mM p-nitrophenyl N-acetyl β-D-glucosamine
(Sigma-Aldrich, United Kingdom) in 100 mM citrate buffer
(pH 4.5)] at 37◦C for 2 h. The reaction was stopped by
addition 90 µl of Tris–HCL (pH 9). Enzyme activity was
evaluated by measuring optical density at 405 nm with a
microplate reader (OPTIMA). The total amount of β-hex
released was determined by cell lysis with 0.5% Triton X-100.
Background absorbance readings (b) were determined from wells
containing all buffers except supernatant. The β-Hex activity
was calculated using the following formula: degranulation
(%) = ((supernatant−b)/(Total−b)) × 100. Fold change of
enhancement in degranulation was calculated by dividing the
percentage of degranulation in tested condition to the percentage
of degranulation in the control condition.

For cytokines production, the experiment was performed as
above, but BMMCs were stimulated with DNP for 6 h at 37◦C. IL-
6 and TNFα were analyzed in supernatants by mouse IL-6 ELISA
kit (R&D Systems) and mouse TNFα ELISA kit (R&D Systems),
respectively, as per manufacturer’s instructions.

Fluorometric Calcein-Adhesion Assay
Adhesion of BMMC was assessed using Calcein Cell Adhesion
Assay Kit (Invitrogen, Life Technologies) as previously described
(Moiseeva et al., 2013a). Following manufacturer’ protocol,
1 × 106 BMMCs/ml of serum-free medium were labeled with
5 µM Calcein-AM for 30 min at 37◦C. Then, calcein-labeled
BMMCs were resuspended with co-culture medium at a density
of 1 × 105 BMMCs/100 µl/well and co-cultured with DRG for
2 h. Un-attached BMMCs were washed out by spinning the
plate upside down at 20 × g for 2 min and wells were re-filled
with co-culture medium. The fluorescent signal was measured
by fluorescence plate reader before and after washing step
for total and attached readings, respectively. Calcein excitation
wavelength used was 485 nm and emission wavelength was
520 nm. Adhesion was measured as percentages of adherent
BMMCs to the total. For comparison control, calcein-labeled
BMMCs were seeded on 1-day old Matrigel-coated wells in
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same co-culture medium and for the same time like the ones
with DRG co-culture.

Flow Cytometry
For BMMC surface protein expression, 1 × 106 BMMCs/sample
were used. After washing BMMCs with cold PBS, cells were re-
suspended in cold FACS buffer (2 mM EDTA in PBS with 2%
FBS). BMMCs were blocked with 1:100 of Fc Block (CD16/32)
(eBioscience) for 15 min on ice to prevent non-specific binding
of antibodies. After washing with FACS buffer twice, BMMCs
were incubated with APC-anti-mouse c-Kit (eBioscience, 1:100)
and PE-anti-mouse FcεRI (eBioscience, 1:100), when checking
for mast cell differentiation, or rabbit anti-CADM1 (Santa Cruz
sc-33198, 1:100) antibodies for 20 min on ice. Alexa Flour R©488
anti-rabbit (Invitrogen, 1:1000) was used as secondary antibody.
Fluorescence was detected with FACSCalibur (BD Biosciences)
at emission wavelengths of 488 nm for Alexa Fluor R©488 labeled
samples, 660 nm for APC labeled samples or 585 nm for PE
labeled samples. For analysis, the viability was first gated based on
side scatter and electronic volume from unstained sample. Only
viable cells from gated population were included in fluorescence
measurements. For CADM1 intracellular expression, BMMCs
were fixed in 4% paraformaldehyde in PBS (pH 7.4) for 20 min
at 4◦C. Then, permeablized with 0.1% Triton X-100 for 10 min.

Immunocytochemistry
Cultured cells were washed with ice-cold PBS and fixed with
4% PFA for 10 min, and permeabilized with 0.1% Triton X-
100 in PBS for 10 min. Following 1 h incubation with blocking
buffer (2% normal donkey serum (Sigma), 0.2% Fish serum
gelatine (FSG) Sigma, G7765) and 0.01% Triton X-100) in PBS)
at room temperature, cells were stained with primary antibodies
and incubated overnight at 4◦C. Cells were then washed three
times with PBS and stained with Alexa Fluor R©anti-mouse or anti-
rabbit secondary antibodies (1:1000 Invitrogen) for 2 h in the
dark at room temperature. Glass coverslips were mounted onto
microscope slides using mounting medium (Vectashield Hard set
H1500, Vector) with 4′,6-diamidino-2-phenylindole (DAPI) to
stain the nucleus. For negative control, some wells were stained
with only secondary antibodies. Images were viewed using a
40× and 60× oil objective (N.A. 1.42) on Nikon A1 confocal
microscope. Samples were illuminated at the required wavelength
using 405, 488, and 561 nm lasers.

Primary antibodies used for immunocytochemistry were as
follows: Rabbit anti-peripherin (Sigma P5117, at 1:1000), Guinea
pig anti-Substance P (Abcam ab10353, 1:100), Mouse anti-CGRP
(Abcam Ab81887, 1:100), mouse anti-β III Tubulin monoclonal
IgG (R&D MAB1195 clone TuJ-1 lot HGQ0113121, 1:1000),
Rabbit Anti-CADM1 Polyclonal IgG (H-300) (Santa Cruz sc-
33198 lot F0407, 1:300), Alexa Fluor R©488 anti-mouse c-Kit
(Biolegend (6861), 1:100), Mouse anti-Tryptase (Abcam ab2378,
1:300). For further details please see Supplementary Table 1.

Western Blot
A total of 1 × 106 of 4-week old BMMCs or one-day old DRG
cultures were lysed in ice-cold lysis buffer (50 mM Tris–HCl,
150 mM NaCl, 0.3% Triton X-100, pH 8) with 1% of protease

inhibitor cocktail III (Fisher Scientific). The insoluble debris was
removed by spinning at 14,000 g for 20 min at 4◦C. The protein
concentration of each lysate was determined using Bradford
protein assay (Sigma). For separation of CADM1 protein, 10%
SDS resolving gel was used. After running the gel, the protein
transfer was performed at 85 V for 90 min at 4◦C (protein of
interest 110 kDa). Then, the membrane was probed using rabbit
anti-mouse CADM1 antibody (1:300, Santa Cruz) and mouse
anti-GAPDH (1:5000, Thermo Fisher Scientific) and visualized
using Li-cor system, Goat IRDye 800 anti-Rabbit 1:5000 and Goat
IRDye 700 anti-Mouse 1:5000.

Amaxa Nucleofection of BMMC
Nucleofector II (Amaxa, Lonza) was used to knockdown
CADM1 in BMMC. Basic fibroblasts nucleofector kit (VPI-
1002, 90279050) and recommended programs (X-001) was
optimized for BMMC transfection. 4-5 × 106 BMMCs/reaction
were transfected with 2 µg of psi-U6 plasmid (Genecopoeia)
expressing CADM1 ShRNA and eGFP or scrambled ShRNA and
eGFP. Transfected cells were incubated with complete IMDM for
48 h at 37◦C and 7.5% CO2 before sorted using fluorescence-
activated cell sorting (FACS). Only the GFP expressing
cells were used for subsequent experiments. Three unique
constructs of CADM1 ShRNA plasmids and non-targeting
scramble control (Genecopoeia) were tested separately to identify
the most efficient construct. CADM1 -ShRNA1 MSH031688-
31 (ggacagaatctgtttactaaa), CADM1- ShRNA2 MSH031688-
32 (cctccacgtaacttgatgatc), CADM1- ShRNA3 MSH031688-
33 (ggagattgaagtcaactgtac), Scramble- ShRNA CSHCTR001.

Statistical Analysis
The results are expressed in the figures as the means ± standard
error of the mean (SEM) of at least three independent
experiments based on different mouse cultures. Statistical
comparisons with the appropriate control data from adhesion
assay experiment with blocking peptide and all knockdown
experiments were performed using one-way repeated measures
(ANOVA) followed by Turkey’s post-test. Data from other
experiments were analyzed using paired t-test. Probability
values (p) < 0.05 were considered statistically significant. All
data handling, statistical analysis, and graphs were prepared
using GraphPad Prism (GraphPad Software, La Jolla, CA,
United States)1.

RESULTS

CADM1 Is Expressed in Mast Cells and
Sensory Neurons
As a prelude to understanding the role that cell adhesion plays in
regulating mast cell-sensory neuron interactions, we established
a co-culture system of C57BL6mouse BMMCs and primary DRG
neurons isolated from adult mice (8–12 weeks). The purity of
neurons used in the co-cultures was estimated to be 30%, as
quantified by immunohistochemistry of anti-β tubulin positively

1www.graphpad.com
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FIGURE 1 | CADM1 is expressed in BMMCs and sensory neurons. (A) Immunoblot of lysates prepared from DRG and BMMC mono-cultures probed with

anti-CADM1 and anti-α-Tubulin, as a loading control. The m.w. scale is shown to the right of the blot. (B) Flow cytometric analysis of surface (left) and total CADM1

expression in Triton X-100-permeablized BMMCs (right). BMMCs were double labeled with conjugated c-Kit and CADM1 Abs. BMMCs were gated as c-kit+

CADM1high cell subset and c-kit+ CADM1medium cell subset. Numbers in plots are the percentages of cells in the indicated gate. (C) Confocal

immunofluorescence images of c-Kit (red), CADM1 (green), and DAPI (blue) and merged image of mono-cultured BMMCs. Scale bar represents 10 µm. (D,E)

Confocal immunofluorescence images of β-Tubulin (red), CADM1 (green) and DAPI (blue) in mono-cultured DRGs. White arrows indicate CADM1 immunoreactive

neurites. Note that non-neuronal cells, observed as DAPI positive, β-Tubulin negative are also negative for CADM1 (arrowheads). Scale bar represents 20 µm.
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FIGURE 2 | CADM1 is enriched at mast cell-sensory neurite contact sites.

Representative immunofluorescent images of BMMCs co-cultured with DRG

neurons for 24 h. In panel (A) individual and overlaid images are shown from a

neurite with two adherent cells. β-Tubulin (red) is used as the neuronal marker,

DAPI (blue) nuclear marker labels all cells in the culture, while FcεRI (yellow)

specifically labels BMMCs. CADM1 (green) stained positive in the sensory

neuron neurite and BMMC, but is absent from the attached non-neuronal,

non-mast cell. (B,C) Representative individual and overlaid immunofluorescent

images of CADM1 (green), β-Tubulin (red) and DAPI (blue) staining of different

co-cultures. Increased CADM1 fluorescent intensity at contact sites (white

arrows) between BMMCs and neurites (red).

stained cells relative to the total number of DAPI positively
stained cells. Prior to co-culture, BMMCs were differentiated
for 4 weeks with IL-3 and rm-SCF and assessed for purity and
maturity by flow cytometry and their ability to undergo antigen-
induced degranulation. Only BMMC cultures in which >99%
of cells stained positive for expression of c-Kit and FcεRI, well
established markers of mature mast cell, were used in co-culture
experiments. The expression and distribution of CADM1 in each
cell type before and after 48 h co-culture was then examined.
Western blot analysis of lysates prepared from pure BMMCs
exhibited a single band for CADM1 with a molecular weight
of ∼100 kDa (Figure 1A), consistent with previous reports for
human and mouse mast cells (Furuno et al., 2005; Moiseeva
et al., 2013a). Immunocytochemistry and flow cytometry showed
moreover that CADM1 was predominantly located in the plasma
membrane of BMMCs (Figures 1B,C). CADM1 expression was
also observed in lysates prepared from adult DRG cultures,
although it had a lower molecular weight (∼70 kDa, Figure 1A),
consistent with the expression of a distinct splice variant lacking
O-glycans (Hagiyama et al., 2011). Immunocytochemistry of
DRGs maintained in mono-culture for 48 h with the neuronal
marker β-tubulin confirmed the expression of CADM1 was
specific to neurons and notably absent from non-neuronal glia-
like cells which surrounding the neurons, whose presence can be
detected fromDAPI staining of their nuclei (Figures 1D,E). Close
inspection of CADM1 staining in the co-cultures showed that it
was most intense at the sites of contact between mast cells and
neurites (Figure 2 arrows).

CADM1 Is Necessary for BMMC
Adhesion to DRG Neurons
To assess the role of CADM1 in mediating BMMC adhesion
to sensory neurons, we developed a fluorimetric adhesion assay
based on labeling of BMMCs with calcein, prior to their
addition to DRG cultures. Optimization experiments showed that
after loading BMMCs with calcein-AM for 30 min, fluorescent
labeling is stable for 3 h and subsequently declines over the
next 24 h. Isolated adult DRG neurons were cultured for
24 h in a flat-bottomed 96 well tissue culture plate during
which time they developed an extensive network of neurites
(Figure 3A). Calcein-labeled BMMCs were then added to
the wells and allowed to adhere for 2 h after which non-
adherent cells were removed vigorously by centrifugal spinning
the culture plate upside-down at 20 × g for 2 min. To
control for non-specific adhesion of BMMCs to the matrigel
matrix used for supporting the DRG cultures, experiments were
done in parallel on wells coated with matrigel but devoid of
DRG (Figure 3B). Microscopic examination of the wells after
spinning, clearly shows the enhancement in BMMC adhesion
induced by co-culture with neurons, and moreover that the
majority of mast cells attach to neurites rather than cell bodies
(Figure 3A), consistent with observations made during the
immunohistochemistry experiments shown in Figure 2. To
quantify BMMC adhesion to the neurons, we measured the total
fluorescence per well from calcein-labeled BMMCs before (total)
and after centrifugation (for adherent). As shown in Figure 3C,

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 June 2019 | Volume 13 | Article 262

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Magadmi et al. Neuronal Adhesion Activates Mast Cells

FIGURE 3 | Adhesion of mast cells to sensory neurons is attenuated by a CADM1 blocking peptide. (A) Superimposed bright-field and fluorescent image of live

calcein-labeled, adherent BMMCs (green) co-cultured with DRG neurons (unlabeled cells) for 2 h. Non-adherent cells have been removed by washing and

centrifugation of the plate. (B) Image of calcein-labeled BMMCs plated in parallel into matrigel-coated wells devoid of neurons and subjected to the same washing

and centrifugation procedure. (C) BMMC adhesion quantified from calcein-fluorescence remaining in wells after washing and centrifugation expressed as a

percentage of total well fluorescence measured prior to washing procedure. Data shown as mean ± SEM from N = 3. Each done in duplicate. Data were analyzed

using a two-tailed paired t-test ∗∗p < 0.01. (D) Concentration-dependent inhibition of mast cell adhesion to DRG measured with a CADM1 blocking peptide.

Percentage of adherent BMMC was calculated using the calcein adhesion assay. Each condition was done in duplicate, on N = 3 cultures. Each point represents the

mean ± SEM. One-way ANOVA followed by Turkey’s multiple comparison post-test was performed. ∗∗ denotes p < 0.01 and ∗∗∗ p < 0.001 compared to the

percentage of BMMC adhesion in the absence of CADM1 blocking peptide.

co-culture with DRG neurons significantly increased the number
of adherent BMMCs four-fold. Addition of CADM1 blocking
peptide inhibited adhesion of BMMCs to sensory neurons in a
concentration-dependent manner (Figure 3D) and was almost
abolished at the maximum concentration tested (30 µg ml−1),
consistent with the hypothesis that CADM1 mediates adhesion
between mast cells and sensory neurons.

To validate the results from the CADM1 blocking peptide,
we also performed CADM1 knockdown experiments in BMMCs.
Three vectors expressing unique CADM1 targeted shRNA or a
non-targeting scramble control together with an eGFP reporter
gene were transfected into BMMCs. After 48 h, cells were
sorted using fluorescence activated sorting and eGFP expressing
cells used in subsequent experiments. The efficacy of CADM1
knockdown in sorted eGFP expressing BMMCs as assessed by
western blot (Figure 4A) showed that all three ShRNA constructs
tested were highly effective, with ShRNA2 and ShRNA3 achieving
almost complete knockdown. Consistent with the results from

the CADM1 blocking peptide experiments, knockdown of
CADM1 expression in BMMCs significantly attenuated their
adhesion to sensory neurons (Figure 4B).

CADM1-Dependent Adhesion to Sensory
Neurons Potentiates Antigen-Induced
Mast Cell Degranulation and Cytokine
Secretion
Having established that BMMCs adhere to sensory neurons via
a CADM1-dependent interaction, we next examined potential
functional consequences of this interaction. It has been reported
that the length of substance P immuno-reactive nerve fibers
are increased in airway of allergic conditions such as asthma
(Ollerenshaw et al., 1991) and that NGF and TNFα secreted by
activated mast cells could enhance neuronal outgrowth (Leon
et al., 1994; Kakurai et al., 2006). Immunocytochemical analysis
of DRG cultures used for our co-cultures showed they consisted
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FIGURE 4 | Knockdown of CADM1 in mast cells inhibits their adhesion to

sensory neurons. (A) Western blot analysis of CADM1 expression in BMMCs

transfected with the indicated ShRNA 48 h previously. Expression from

un-transfected control cells examined in parallel are also shown (lane labeled

BMMC). GAPDH was used as loading control. Data are representative of three

independent experiments. (B) Adherence of BMMCs transfected with CADM1

ShRNA or scrambled control to neurons tested using the calcein assay.

BMMC adhesion in the absence of DRG neurons is shown as a control.

CADM1 knockdown significantly reduced BMMC adhesion to sensory

neurons (N = 3). Each bar represents the mean ± SEM. One-way ANOVA

followed by Turkey’s multiple comparison post-test was performed. ∗∗∗

denotes p < 0.001.

of at least 60% nociceptors, of which ∼50% were peptidergic
(Supplementary Figure 1). We therefore investigated the effect
of co-culturing BMMC on sensory neuron morphology in our
in vitro system. Two parameters examined were total neurite
length and complexity (number of neurite crossing points of a
concentric circle set with radii increasing by 20 µm, (Stanko
et al., 2015) and comparisons made between DRG monocultures
and BMMC-DRG co-cultures. The neurites and BMMCs were
detected by immunocytochemistry staining for βIII-tubulin and
c-kit, respectively (Figures 5A–D). After 48 h of co-culture,
no significant change in neurite length nor complexity was
detected (Figures 5E,F), indicating that at least in the short term
(48 h post-axotomy), mast cell adhesion does not alter sensory
neurite morphology.

To investigate whether adhesion of mast cells to sensory
neurons alters mast cell function and more specifically,
antigenic activation of mast cells through FcεRI receptors,
we established co-cultures of DRG neurons with anti-DNP
IgE-sensitized BMMCs and compared their responses to
antigen stimulation with mono-cultures of BMMCs prepared
in parallel. Degranulation of mast cells was measured using
β-hexosaminidase (β-hex) assays (Kuehn et al., 2010).
Remarkably, BMMC basal degranulation and antigen-stimulated
degranulation were both significantly potentiated in BMMCs
following 6 h co-culture with sensory neurons and continued to
increase for up to 24 h, the latest time point tested (Figure 6).
Indeed after 24 h of co-culture with sensory neurons, mast
cell degranulation was approximately double that measured
in mono-cultures set up in parallel. In contrast, no such
potentiation of antigen-induced degranulation was observed
when BMMCs in co-culture were stimulated with compound
48/80 (Supplementary Figure 2), indicating that the effect of co-
culture was not simply making the mast cells hyper-responsive in
a non-specific manner but involved a specific signaling pathway
which enhanced their responsiveness to antigen-stimulation in a
time-dependent manner.

To examine the possibility that mediators released by
DRG neurons in co-culture mediated the enhancement
of mast cell degranulation, we performed three different
types of experiments. Firstly we examined the impact of
stimulating sensory neurons directly with capsaicin on mast cell
degranulation. As shown in Figure 7A, BMMC degranulation in
co-cultures was significantly potentiated by capsaicin showing
that chemical communication between sensory neurons and
mast cells was functional under co-culture conditions. Next we
examined the impact of disrupting contact between the two
cell types by (a) incubating BMMCs for 24 h with supernatant
from BMMC-DRG co-cultures, and (b) preparing co-cultures of
BMMCs and DRGs in which contact between the two cell types
was blocked by means of a transwell insert. In either scenario,
where direct contact between sensory neurons and mast cells was
disrupted, the potentiation of mast cell degranulation by sensory
neuron signaling was blocked (Figures 7B,C) emphasizing the
need for adhesion between the two cell types.

To explore further the specificity of the functional interaction
between mast cells and sensory neurons and its dependence
on CADM1-mediated adhesion, we also examined the effects
of co-culturing BMMCs with HEK cells. Like sensory neurons,
HEK cells also express CADM1 and BMMCs adhere to these
cells (Supplementary Figure 3). However, co-culture of BMMCs
with HEK cells did not result in potentiation of mast cell
degranulation (Supplementary Figure 3), the percentage of basal
degranulation measured being 5.8 ± 1.6% in BMMC-HEK co-
cultures maintained for 24 h, compared with 6.5 ± 0.7% for
BMMC mono-cultures set up in parallel (N = 3). Antigen-
induced degranulation was similarly unaffected by co-culture
with HEK cells (co-culture degranulation 17.9 ± 1.8%, compared
with 18.2 ± 1.6% for BMMC mono-cultures set up in parallel,
N = 3, Supplementary Figure 3).

Having established that potentiation of BMMC degranulation
was specific to co-culture with DRG and reliant on contact, we
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FIGURE 5 | Co-culture of BMMCs with DRG does not impact neuronal morphology. Representative schematic tracings of the neurites from DRG cultured alone (A)

or in BMMC-DRG co-culture (B). Soma and neurites were visualized with anti-β-III tubulin (red) and BMMCs with anti-c-kit (green, white arrows) in DRG

mono-cultures (C) and co-cultures (D). DAPI staining of nuclei (blue) show presence of non-neuronal cells in the DRG cultures. (E) Quantitative analysis of total

neurites length in DRG mono-cultures and co-cultures, compared using unpaired t-test. (F) Sholl analysis of the neurite complexity. Each bar represents the

mean ± SEM of number of crossing neurites found in each given distance from the soma. Statistical analysis using multiple t-test. N = 3.

next examined the role of CADM1-dependent adhesion in mast
cell-sensory neuron crosstalk. Addition of CADM1 blocking
peptide to the co-cultures was found to significantly inhibit
the potentiation of mast cell degranulation (Figures 8A,B),
indicating that CADM1-mediated adhesion between the
cell types was necessary and sufficient to potentiate mast
cell secretion. Consistent with this conclusion, knockdown
of CADM1 in BMMCs also significantly attenuated the
enhancement of degranulation induced by co-culture with
sensory neurons (Figures 8C,D).

Finally, we examined whether CADM1-dependent mast-cell
sensory neuron cross talk extended to the regulation of pro-
inflammatory cytokine secretion. IL-6 and TNFα secretion in
mono- and co-cultures were compared in the absence and
presence of antigen activation of mast cells. As shown in
Figure 9A, IL-6 secretion was induced by co-culture with DRG
and moreover, antigen-activated secretion significantly increased
by 2.5-fold. In contrast, TNFα was not increased, indicating that
the signaling pathway enhanced by CADM1 adhesion of mast
cells to sensory neurons was specific and selective to the synthesis
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FIGURE 6 | Mast cell degranulation is potentiated following co-culture with sensory neurons. BMMCs pre-sensitized with anti-DNP IGE were cultured alone or with

DRG for various times as indicated (A–F). Degranulation measured as secreted β-hexosaminidase (β-hex) in media recovered from the cultures was measured at the

times indicated above each graph in the absence (A–C) or after 30 min exposure to the antigen (Ag) DNP (10◦ng/ml, D–F) and expressed as a percentage of total

β-hex measured from BMMC lysed with 0.5% Triton X-100. Data shown are mean ± SEM of N = 3, each performed in duplicate. ∗ p < 0.05, ∗∗ p < 0.01 and
∗∗∗ p < 0.001 compared to BMMC alone. Data were analyzed using two-tailed paired t-test.

and secretion of specific pro-inflammatory cytokines. Control
experiments confirmed that neither cytokine was produced to
any significant level in DRG monocultures (Figures 9A,B).
Knockdown of CADM1 expression in BMMCs significantly
attenuated the neuronal induced IL-6 secretion as well as
the neuronal enhancement of antigen-activated IL-6 secretion,
confirming the critical role played by this adhesion molecule in
regulating the signaling pathway controlling cytokine expression
and secretion in mast cell-sensory neuron cross talk (Figure 9C).

DISCUSSION

Because mast cells mature within tissues when they are in
proximity to other cell types (Galli, 2000), one can speculate
that mast cell specific interactions with other cells will be
regulated by the expression of cognate adhesion receptors
on other cells in the tissue and that contact between the
cells will promote receptor mediated communication between
the cells. Furthermore, anchoring of adhesion molecules at
sites of cell contact and consequent stabilization of protein-
protein interactions mediated through their cytosolic domains
may also influence the effector functions of mast cells in a
tissue and cell specific manner. Here we show, that CADM1
mediates adhesion between mast cells and adult sensory
neurons, and that this interaction alone is sufficient to induces

degranulation and IL-6 secretion from mast cells and also
to enhance significantly FcεRI-activated secretion of pro-
inflammatory mediators.

At least four isoforms of CADM1 are generated through
alternative splicing, with resulting changes in glycosylation
impacting on cell specific functions and adhesion strength
(Fogel et al., 2007; Hagiyama et al., 2011; Moiseeva et al.,
2013a). Our protein expression analysis in BMMCs is consistent
with other studies on human (Yang et al., 2006; Moiseeva
et al., 2012) and rodent mast cells (Ito et al., 2003) showing
expression of a single isoform of CADM1 with a m.w. of
∼100 kDa. This is significantly higher than the predicted
molecular weight of any of the fourCADM gene encoded proteins
(m.w. 40–45 kDa), but in agreement with the apparent m.w. of
fully glycosylated CADM1c isoform. The specific expression of
CADM1c in mast cells may be of significance when it comes
to controlling adhesion to sensory neurons. It is known that
dimer formation is essential for CADM-mediated adhesion,
CADM1c is unique among the four common isoforms in forming
heterodimers with CADM1d, thereby significantly increasing the
strength of adhesion compared to that formed by homodimers
(Hagiyama et al., 2011). BMMCs grown in monocultures notably
show very little adhesion to each other. This observation
suggests that CADM1c does not mediate significant homotypic
adhesion and that trans CADM1 binding is isoform dependent
(Hagiyama et al., 2011).
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FIGURE 7 | Potentiation of mast cell degranulation by sensory neurons is contact-dependent. (A) BMMC degranulation measured as secreted β-hex from the

mono-cultures and co-cultures of the indicated cells. Sensory neurons co-cultured with BMMCs for 24 h, were activated with 1 µm capsaicin for 20 min. β-Hex

secreted from mono-cultures of DRGs is minimal and shows that the potentiated BMMC degranulation observed in the co-cultures is not simply additive but due to

a significant interaction between the two cell types. (B) BMMCs pre-sensitized with anti-DNP IGE were cultured alone or with supernatant collected from

BMMC-DRG co-cultured for 24 h. Degranulation as measured by secreted β-hex was measured in resting condition (labeled Ag independent) or after 30 min

stimulation with the antigen, DNP (10 ng/ml, labeled Ag-mediated), and expressed as a percentage of total β-hex measured from lysed BMMCs. (C) Pre-sensitized

BMMCs were cultured alone or on the top of DRG cultured using a transwell system for 24 h prior to measuring degranulation. Data shown are mean ± SEM of

N = 3, each performed in duplicate. Data were analyzed using two-tailed paired t-test. ∗ p < 0.05, ∗∗ p < 0.01, n.s is non-significant.

CADM1 expression analysis on isolated adult DRGs showed
a thick band of protein with an estimated m.w. of ∼75 kDa,
the expected molecular weight of isoform d. In other neurons,
CADM1d expression is developmentally regulated, concentrated
in neurites and linked to formation of synapses (Fogel et al., 2007;
Hagiyama et al., 2011). Our immunocytochemistry analysis of
DRG indicated that CADM1 was expressed in the soma of all
subtypes of sensory neurons and some neurites. When BMMCs
were co-cultured with DRG, BMMCs were observed to have
attach to neurites where CADM1 was concentrated. In contrast
to our results, a previous study investigating mast cell-sensory
neuron interactions failed to identify CADM1 expression in DRG
and concluded that nectin3 mediated adhesion with mast cells
(Hagiyama et al., 2011; Furuno et al., 2012). Differences between
the two studies may arise from the age of mice used to isolate

DRG and developmental regulation of CADM1 expression. In
agreement with our protein expression analysis in adult DRG,
single cell RNA sequence analysis of DRG neurons also indicates
expression of CADM1 in all subtypes of sensory neurons
and interestingly, also expression of CADM2 in nociceptors
(Usoskin et al., 2015). CADM1 and CADM2 protein expression
throughout development has been reported in chick DRG and
interestingly, in the same report confirmed in mouse (Frei et al.,
2014). CADM2 also has a mw ∼76 kDa, and forms strong and
specific cis-heterophilic interactions with CADM1 (Frei et al.,
2014), and could therefore also be contributing to, or regulating,
the formation of trans-heterophilic interactions mediating the
adhesion of mast cells to sensory neurites observed in our study.

Blocking CADM1 before co-culture reduced the percentage
of BMMCs adhered to sensory neurons. Knockdown CADM1
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FIGURE 8 | CADM1 is necessary for mast-cell sensor neuron cross-talk. BMMCs pre-sensitized with anti-DNP IGE were co-cultured with DRG for 24 h in the

presence or absence of 10 µg/ml CADM1 blocking peptide before degranulation was quantified using the β-Hex assay. Data were normalized to degranulation

measurements made from BMMC mono-cultures set up in parallel, and the fold-change in basal Ag-Indep degranulation (A) or DNP (10 ng/ml), Ag-activated

degranulation (B) calculated and compared by two-tailed paired t-test, ∗ denotes p < 0.05, ∗∗p < 0.01. Each bar represents the mean ± SEM (N = 3).

(C) Untransfected (WT BMMC), CADM1-ShRNA or scramble-transfected BMMCs pre-sensitized with anti-DNP IGE were co-cultured with DRG for 24 h before

degranulation was quantified using the β-Hex assay. Fold change of Ag-Independent degranulation (C) and DNP (10 ng/ml) Ag-activated degranulation (D) were

calculated and compared by one-way ANOVA followed by Turkey’s multiple comparison post-test, ∗∗∗denotes p < 0.001 compared to wt BMMC-DRG co-culture.

Each bar represents the mean ± SEM (N = 3).
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FIGURE 9 | Sensory neuron potentiation of antigen-stimulated cytokine

secretion by mast cells is dependent on CADM1. BMMCs pre-sensitized with

anti-DNP IGE were cultured alone or with DRG for 24 h. (A) Secreted IL-6 and

(B) TNFα were quantified by ELISA for cells stimulated in parallel with the

antigen DNP (10 ng/ml) for 6 h or vehicle control. Data shown are

mean ± SEM of N = 3, each performed in duplicate. ∗ p < 0.05 compared to

stimulated BMMC alone. Data were analyzed using two-tailed paired t-test.

(C) BMMC mono-culture and untransfected WT, CADM1-knockdown or

scramble-transfected BMMCs were co-cultured with DRG for 24 h, prior to

being activated with DNP (10 ng/ml) for 6 h. IL-6 was measured from

supernatants and compared by one-way ANOVA followed by Turkey’s multiple

comparison post-test, ∗denotes p < 0.05 compared to wt BMMC-DRG

co-culture. Each bar represents the mean ± SEM (N = 3).

expression from BMMCs also significantly reduced their
adhesion to neurons. Despite the effectiveness of the ShRNA
in ablating expression of CADM1 in BMMCs, the reduction
in adhesion achieved was less than that obtained with the
blocking peptide. This difference could arise from non-
specific inhibition of other structurally-related immunoglobulin
superfamily adhesion receptors by the peptide, such as ICAM-
1 (Inamura et al., 1998). Another possibility is that CADM1
knockdown leads to compensatory up-regulation of other
adhesion molecules such as integrins which are also widely
expressed in mast cells and can regulate their signaling
(Sperr et al., 1992; Lorentz et al., 2002; Moiseeva et al.,
2014). Nonetheless, taken together the results of both types
of interference experiments provide strong evidence that
CADM1 is primarily responsible for mast cell adhesion to
sensory neurons.

Addition of BMMCs to DRG culture for 1 day did
not affect either total neurite length or neurite complexity.
Although it is reported that activated mast cells produce
NGF and TNFα, which enhance neuronal outgrowth and
plasticity (Leon et al., 1994; Kakurai et al., 2006), in our
co-culture system, the former, at least was not apparent.
Key methodological differences that could account for the
lack of morphological changes could be the use of adult
versus embryonic DRG (Leon et al., 1994; Frei et al.,
2014). Embryonic DRG cultures are dependent on NGF for
their survival (Melli and Höke, 2009), while adult DRG
cultures are not, despite its receptor expression. Indeed,
the role of NGF in adult sensory neurons shifts away
from the neurotrophic effect to a pro-inflammatory effect
that regulates neuronal function and plasticity (Sofroniew
et al., 2001). Our functional studies, as discussed below,
support the notion that in adult sensory neurons, the role
of CADM1 adhesion is shifted from one supporting axonal
pathfinding and formation of neural circuits to one regulating
neuroimmune crosstalk.

Functional experiments performed on mono-cultures and
co-cultures showed for the first time that CADM1-mediated
adhesion between mast cells and sensory neurons specifically
and selectively induced degranulation and IL-6 secretion
from mast cells and moreover significantly enhanced antigen-
activated mast cell responses. While adhesion between the
two cell types was very rapid and established within 2 h of
contact, the enhancement of mast cell secretory functions
was relatively delayed, becoming significant after 6 h of co-
culture and continuing to increase over the ensuing 24 h,
indicating that activation of CADM1-dependent intracellular
signaling pathways are necessary. The observation that mast
cell degranulation may be modulated by adhesion to other
cells, even in the absence of external stimulation, has been
reported previously. Co-culture human lung mast cells
with airway smooth muscle show increased constitutive
histamine release (Hollins et al., 2008) which starts after
16 h of co-culture (Lewis et al., 2016). Activated T cells
enhance constitutive histamine release from BMMC also
when co-cultured for 16 h (Inamura et al., 1998). Co-culture
of LAD2 mast cells with tumor cells, like pancreatic ductal
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adenocarcinoma for 24 h also show enhanced constitutive
tryptase release (Ma et al., 2013). Here we found that
co-culture with HEK cells, which also express CADM1,
like sensory neurons, while promoting efficient adhesion,
did not however, result in enhanced mast cell secretion
implying that additional cell specific interactions facilitated
by CADM1-adhesion contribute to the activation and
sensitization of mast cells.

Sensory neurons are a potential source of potent mast cell
activators, including substance P (Karimi et al., 2000; Okabe
et al., 2006), CGRP (Forsythe et al., 2000; Rychter et al.,
2011) and ATP (Wareham and Seward, 2016) which may
exist as co-transmitters. Exposure to inflammatory mediators
drives increased CGRP synthesis and dense core granule
biogenesis in peptidergic sensory neurons (Russell et al.,
2014). In our co-culture experiments, activation of sensory
neurons with capsaicin notably markedly enhanced mast cell
degranulation, consistent with the establishment of chemical
communication between the cells. Our preliminary experiments
with cultures of sensory neurons from trigeminal ganglia,
which are enriched in peptidergic neurons, revealed further
that co-culture with mast cells was sufficient to significantly
increase CGRP secretion (Supplementary Figure 4). It would
therefore seem likely that the gradual increase in mast cell
degranulation we observed over time in our co-cultures
reflect the development of an increasing number of functional
neuro-immune synapse like structures between mast cells and
sensory neurites, potentiating chemical communication between
the two cell types which in vivo would translate into pain
hypersensitivity (Gupta and Harvima, 2018). The ability of
CADM1 to promote pre- and post-synaptic specializations
and synaptogenesis in the CNS is well established (Frei and
Stoeckli, 2017). Crucial to these synapse promoting functions of
CADM proteins, are their highly conserved cytosolic domains
which recruit scaffold proteins and effector molecules and
increased actin polymerization (Cheadle and Biederer, 2012),
which is needed for the capture of dense core vesicles (Porat-
Shliom et al., 2013; Bharat et al., 2017). Interestingly, CADM1
driven formation of synapses may be activity driven, and
the distribution of CADM1 into membrane nanodomains
may physically define the contact edges of synapses (Robbins
et al., 2010; Perez de Arce et al., 2015; Ribic et al.,
2019). We would therefore propose a model in which the
formation of trans-heterotypic CADM1 adhesions between
mast cells and sensory neurites leads to the formation and
stabilization of neuro-immune synapses enriched in peptidergic
vesicles, increasing cross-talk between the two cell types
and inducing mast cell activation and secretion. Further
studies with super-resolution microscopy will be needed to
test this model.

In addition to inducing mast cell degranulation and IL-
6 secretion, co-culture with sensory neurons and CADM1-
dependent adhesion was also found to enhance antigen-induced
responses. Activation of mast cells by antigen is mediated by
the crosslinking of FcεRI-receptors which triggers a series of
tyrosine kinase regulated phosphorylation events, orchestrated
through the engagement of multiple adaptor and scaffold

proteins, culminating in the activation of signaling that triggers
degranulation, lipid mediator synthesis, and transcription of
cytokines and chemokines. In the context of the enhanced
FcεRI responses observed in our co-cultures, we found that
secretion of TNFα was not potentiated. Transcription of TNFα
is driven by NFAT and sustained calcium signaling (Klein
et al., 2006; Falvo et al., 2010) whereas IL-6 transcription
is driven by NF kappaB signaling, therefore the observed
enhancement of only one of the two tested cytokines indicates
that CADM1-mediated adhesion of mast cells to sensory
neurites augments a selective part of the FcεRI signaling.
Precedence for selective potentiation of selective cytokines,
and excluding TNFα, has been reported previously and shown
to be mediated through synergistic activation of specific
kinases regulating the activity of transcription factors. Receptor-
mediated inhibition of signaling could also be involved in fine
tuning the impact of sensory neuron adhesion on mast cell
allergen responses. Activation of GPCRs coupled to pertussis
toxin sensitive Gi proteins, lead to synergistic enhancement
of degranulation, IL-6 and TNFα secretion, (Kuehn et al.,
2008), which is distinct to what we have observed in co-
culture. We observed that activation of mast cells with
compound 48/80 was not enhanced by co-culture with sensory
neurons. Since compound 48/80 function in mast cells is
mediated through activation of MrgprB2 and Gi proteins, a
receptor also targeted by substance P (Subramanian et al.,
2016), this suggests however, that the enhancement in antigen-
evoked responses observed upon adhesion to sensory neurites
does not represent a Gi PCR-mediated amplification system
(Gilfillan et al., 2009). CADM1-mediated interactions with the
actin cytoskeleton through its cytosolic domains may also
prime FcεRIs in a manner similar to that recently described
for integrins in mast cells (Shelby et al., 2016; Wakefield
et al., 2017; Halova et al., 2018). While further in-depth
molecular studies of FcεRI distribution and signaling cascades
are needed to understand how CADM1 adhesion potentiates
responses to allergens, our data shows unequivocally that
CADM1-mediated adhesion to sensory neurons enhances mast
cell derived IL-6 secretion and degranulation and would
therefore potentiate mast cell regulated inflammatory responses
in atopic individuals. In vivo, mast cells of IBS patients
secrete greater amounts of the IL-6 (Liebregts et al., 2007)
in response to neuronal hyperexcitability (O’Malley et al.,
2011). Moreover, IL-6 has been found to induce mechanical
nociceptive plasticity (Melemedjian et al., 2010; Hughes et al.,
2013) that evokes allodynia (Oka et al., 1995; Dina et al.,
2008). Blocking IL-6 receptors in neurons reduces inflammation
in an antigen-induced arthritis model (Ebbinghaus et al.,
2015) and anti-IL-6 receptor antibodies show promising
therapeutic potential in controlling pain in rheumatoid arthritis
(Nishimoto et al., 2009). Therefore, there is good evidence
already that pain-related disorders may involve an increase
in IL-6 levels, such as that reproduced in our co-culture
system. In conclusion, we show that CADM1 is necessary to
drive mast cells-sensory neuron adhesion and contribute to
the development of a microenvironment in which neurons
enhance mast cell responsiveness to antigen. This interaction
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could explain why the incidence of painful neuroinflammatory
disorders such as IBS are increased in atopic patients.
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