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Abstract 19 

We report the development of a modified method for evaluating different reservoirs of 20 

sedimentary phosphorus (P) in ancient marine sedimentary rocks and in modern Fe-rich sediments. 21 

Utilising the existing SEDEX scheme for P partitioning in modern sediments, we initially 22 

demonstrate limitations in the application of the original scheme to sediments and rocks containing 23 

crystalline hematite and magnetite. We tested additional extractions for these crystalline Fe phases, 24 

using both synthetic minerals, and modern and ancient sediments. The addition of 6 h oxalate and 6 25 

h citrate-dithionate-acetate extractions considerably enhanced the total recovery of synthetic 26 

magnetite and hematite to 88.7 ± 1.1% and 76.9 ± 3.8%, respectively. In addition, application of the 27 

6 h oxalate extraction to synthetic P-containing magnetite recovered 93.9 ± 1.7% of the Fe present 28 

and 88.2 ± 12.8% of the co-precipitated P. Based upon these results we developed a modified 29 

SEDEX extraction scheme. The modified scheme was applied to modern Fe-rich sediments from 30 

Golfo Dulce, Costa Rica, which resulted in 16% higher Fe-bound P recovery. Application of the 31 

scheme to a variety of ancient marine rocks increased the recovery of Fe-bound P by up to 22%. We 32 

also highlight the potential for authigenic carbonate fluorapatite to convert to more crystalline 33 

apatite in ancient rocks during deep burial and metamorphism. We suggest that in such systems 34 

minimum and maximum estimates of the total reactive P pool may be calculated with and without 35 

the inclusion of crystalline P. It is noted that the application of the revised method may have 36 

important implications for understanding the cycling of P in ancient marine environments.  37 

 38 

 39 

Keywords: Phosphorus; Sequential extractions; Magnetite; Hematite; SEDEX 40 

 41 
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Highlights 42 

 We present a revised method for quantifying sedimentary P phases in modern Fe-rich 43 

sediments and ancient sedimentary rocks. 44 

 This modified SEDEX scheme is particularly targeted at sediment and rock samples that 45 

contain crystalline Fe (oxyhydr)oxide minerals such as hematite and magnetite. 46 

 This is the first scheme to determine magnetite-bound P. 47 

 The revised scheme provides a highly specific determination of crystalline Fe oxide-48 

bound P and suggests a way to estimate maximum and minimum reactive P. 49 

  50 
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1. Introduction 51 

Phosphorus (P) is a key element for life on Earth. A structural component of all organisms, P 52 

forms the backbone of DNA and RNA, and is crucial in the transmission of chemical energy through 53 

ATP molecules. Phosphorus supply to the oceans exerts a critical control on primary productivity 54 

in many areas of the global ocean, which in turn affects organic carbon production and burial, and 55 

ultimately the production of oxygen through time (Berner et al., 2003; Berner and Canfield, 1989; 56 

Berner and Maasch, 1996; Garrels and Perry, 1974). On geological timescales, P is generally 57 

considered the ultimate limiting nutrient (Codispoti, 1989; Redfield, 1958; Tyrrell, 1999; Van 58 

Cappellen and Ingall, 1996). As a consequence, the delivery and subsequent behaviour of P in 59 

marine environments has been the focus of considerable attention, both in modern (e.g., Eijsink et 60 

al., 2000, Ingall and Jahnke, 1994, Ingall et al., 1993; Ruttenberg and Berner, 1993, Slomp et al., 61 

1996a, 2004, Van Cappellen and Ingall, 1994) and ancient settings (e.g., Bjerrum and Canfield, 62 

2002, Boyle et al., 2014, Creveling et al., 2014, Lenton et al., 2014, März et al., 2008, Planavsky et 63 

al., 2010, Reinhard et al., 2017). While bulk sediment digestions can give useful information on the 64 

fluxes and behaviour of P in marine environments (e.g., Reinhard et al., 2017), this insight is limited 65 

as it does not identify P phases that may be reactive or potentially bioavailable during diagenesis. 66 

Phosphorus delivery to modern marine sediments mainly occurs in association with organic 67 

matter, Fe (oxyhydr)oxide minerals, and as recalcitrant detrital P of geological origin (Faul et al., 68 

2005; Froelich et al., 1982; Schenau and De Lange, 2000; Slomp et al., 1996b; Stockdale et al., 69 

2016). Under both oxic and anoxic conditions, a major proportion of the labile organically-bound P 70 

(Porg) can be released by microbial respiration as dissolved inorganic P (DIP) (Anderson et al., 2001; 71 

Froelich et al., 1988; Ingall and Jahnke, 1994; 1997; Jahnke, 1996; Krom and Berner, 1981; 72 

Ruttenberg, 2003; Ruttenberg and Berner, 1993; Van Cappellen and Ingall, 1994). In addition, 73 

reductive dissolution of Fe (oxyhydr)oxide minerals, which most commonly occurs either via 74 
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dissimilatory Fe reduction (Thamdrup, 2000) or direct reaction with dissolved sulfide (Canfield, 75 

1989; Poulton et al., 2004b), releases P associated with these phases. Some DIP released from 76 

organic matter or Fe (oxyhydr)oxides during early diagenesis, may be taken up by Fe 77 

(oxyhydr)oxides formed at the sediment-water interface, if the overlying water column is oxic 78 

(Slomp and Van Raaphorst, 1993; Slomp et al., 1996b). By contrast, under anoxic water column 79 

conditions, P may be extensively recycled back to the water column (Ingall and Jahnke, 1994; 1997; 80 

Jensen et al., 1995; Van Cappellen and Ingall, 1994). Generally deeper in the sediment, DIP may be 81 

partially removed from solution by precipitation as either carbonate fluorapatite (CFA; Ruttenberg 82 

and Berner, 1993) or vivianite (e.g., Egger et al., 2015; Hsu et al., 2014; Slomp et al., 2013; Xiong 83 

et al., in review), in a process known as ‘sink switching’. In order to evaluate these diagenetic 84 

processes and to constrain the fate of P in sedimentary environments, it is important to be able to 85 

quantify the phase partitioning of P within the sediment. 86 

Extraction techniques have been widely employed to provide more detailed insight into the 87 

speciation and behaviour of P in the marine realm. The method of Aspila et al. (1976) allows 88 

determination of inorganic P and total P (PT) in sediments, with the difference being attributed to 89 

organic P. However, this technique does not allow quantification of a variety of important phases, 90 

including the detrital fraction that is essentially unreactive in marine environments. A major step 91 

forward was achieved with the development of a sequential extraction procedure for P by Ruttenberg 92 

(1992). This technique (termed SEDEX) quantifies five operationally-defined sedimentary P 93 

reservoirs (Table 1): exchangeable P (Psorb), Fe (oxyhydr)oxide-bound P (PFe), authigenic P (Pauth; 94 

comprising authigenic CFA, CaCO3-bound P and biogenic apatite), detrital P (Pdet), and organic P 95 

(Porg). The general technique, including some minor modifictions (e.g. Schenau and De Lange, 96 

2000), has proven to be a robust and highly useful method for examining the phase partitioning of 97 

P in modern marine settings (e.g., Egger et al., 2015, Eijsink et al., 2000, Kraal et al., 2015, Matijević 98 
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et al., 2008, McParland et al., 2015, Poulton and Canfield, 2006, Ruttenberg and Berner, 1993, 99 

Schenau and De Lange, 2001, Slomp et al., 1996a, 2004).  100 

Due to the enhanced information on P cycling afforded by the SEDEX method, several studies 101 

have attempted to apply the method (or variations of it) to many other environmental particles, 102 

including ancient marine rocks (e.g., Creveling et al., 2014, Huang et al., 2007, Kraal et al., 2010, 103 

März et al., 2008, Mort et al., 2007, 2008, Westermann et al., 2013). However, the original method 104 

was not developed – and is therefore not necessarily appropriate – for application to such ancient 105 

sediments. Ancient sedimentary rocks often contain minerals of increased crystallinity compared 106 

with modern sediments, as well as important P-bearing phases that may not be adequately accounted 107 

for by the original SEDEX method. For example, throughout the majority of early Earth history, 108 

large areas of the global ocean were characterised by anoxic and Fe-containing (‘ferruginous’) water 109 

column conditions (Poulton and Canfield, 2011), which led to the deposition of sediments that are 110 

often enriched in crystalline hematite and magnetite (e.g., Canfield et al., 2008, Poulton et al., 111 

2004a). Magnetite is not specifically targeted by the original SEDEX extraction scheme, while tests 112 

on highly crystalline hematite (Raiswell et al., 1994), suggest that the pH 7.6 citrate-dithionite-113 

bicarbonate (CDB) extraction utilised in the existing SEDEX protocol (Figure 1) is unlikely to fully 114 

dissolve this phase in ancient rocks. Crystalline Fe (oxyhydr)oxide minerals may also be present in 115 

some modern marine sediments, resulting in the potential for incomplete recovery of P from these 116 

phases. Thus, to successfully apply P speciation both to ancient sedimentary rocks and modern 117 

sediments containing appreciable amounts of crystalline Fe (oxyhydr)oxide minerals, a modified 118 

method is required.  119 

In order to quantify a more complete spectrum of the Fe (oxyhydr)oxide minerals commonly 120 

present in sediments and rocks, Poulton and Canfield (2005) developed a sequential extraction 121 

procedure for Fe, which targets both magnetite and highly crystalline hematite (Figure 1). This 122 
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provides a template to modify the SEDEX procedure to include P associated with these additional 123 

mineral phases. Here, we initially test the efficiency of the original SEDEX method to extract 124 

hematite and magnetite. We then report the development of a revised extraction scheme for P, which 125 

we test using both synthetic Fe minerals and modern and ancient marine sediments.  126 

 127 

2. Samples and methods 128 

The details and main characteristics of all minerals and natural samples used in this study are 129 

outlined in Table 2.  130 

2.1. Synthetic minerals 131 

Synthetic ferrihydrite, lepidocrocite and goethite were prepared according to the standard 132 

methods of Cornell and Schwertmann (1996), and we utilised minerals that were previously 133 

synthesized and characterised by X-ray diffraction (XRD) (Poulton et al., 2004b). Hematite was 134 

provided by BDH Laboratory supplies, and its purity was confirmed by XRD (SI Figure 1). We also 135 

analysed a magnetite-hematite composite sample. This sample was prepared via the standard 136 

method for magnetite preparation described in Cornell and Schwertmann (1996) and had previously 137 

been used in the development of a sequential Fe extraction by Poulton and Canfield (2005). Partial 138 

oxidation of magnetite to hematite during subsequent storage was confirmed by XRD (SI Figure 2). 139 

HNO3-HF-HClO4 digests (see below) of this sample gave a total Fe composition of 71.8 ± 2.3 wt%, 140 

while a separate ammonium oxalate extraction aimed at dissolving magnetite (Figure 1; Poulton and 141 

Canfield, 2005) suggests that 79.2 ± 1.2% (56.9 wt% Fe) of the total Fe is present as magnetite. 142 

An additional synthetic magnetite sample with co-precipitated P was prepared following the 143 

protocols of Cornell and Schwertmann (1996). 560 ml of a mixed NaH2PO4∙2H2O/FeSO4 solution 144 



8 

 

(0.39 mM:0.3 M) was heated at a constant 90°C, and 240 ml of a KOH/KNO3 solution (3.33:0.27 145 

M ratio) was added dropwise in an anaerobic chamber, with constant stirring. The reaction was 146 

allowed to continue for 1 h. Once cool, the mineral/solution slurry was centrifuged, and washed 147 

with 18.2 MΩ resistance water before drying at 90°C. After drying, the solid was ground to a powder 148 

and stored frozen to prevent oxidation. XRD analysis confirmed that magnetite was the only mineral 149 

phase present (SI Figure 3). Complete chemical characterisation by XRF and ICP-OES (following 150 

dissolution with 12 N HCl) confirmed a co-precipitated P content of 9.7 ± 0.7 mmol/kg.  151 

2.2. Natural mineral samples 152 

A natural sample of crystalline apatite from Madagascar was analysed. XRD analyses suggest 153 

that the dominant minerals were hydroxyapatite or fluorapatite (SI Figure 4). A natural sample of 154 

magnetite drilled from a sample of banded iron formation (BIF) from the Isua Greenstone Belt was 155 

used to represent crystalline magnetite found in ancient sedimentary rocks. XRD analysis showed 156 

the sample was predominantly formed of magnetite and quartz (SI Figure 5). HNO3-HF-HClO4 157 

digests of this Isua BIF sample gave a total Fe composition of 61.9 ± 1.5 wt%, and an ammonium 158 

oxalate extraction (Figure 1) suggested that magnetite Fe (Femag) contributed 70.1% of total Fe (43.8 159 

wt% Fe). 160 

2.3.  Modern marine sediments and ancient marine sedimentary rocks 161 

Extractions were performed on modern sediments from Golfo Dulce, Costa Rica, from a short 162 

core comprising Fe (oxyhydr)oxide-rich marine mud. Golfo Dulce is a 200 m deep tropical fjord 163 

where the water column is anoxic and nitrate-rich (‘nitrogenous’) beneath a depth of ~100 m 164 

(Thamdrup et al., 1996). Despite the reducing water column and sediment conditions, reactive Fe 165 

(oxyhydr)oxide mineral phases persist in the deposited sediment (Thamdrup et al., 1996). In terms 166 

of ancient sedimentary rocks we focussed on several units from different time periods. Drill core 167 
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samples were analysed from low metamorphic grade black shales of the ~1.88-1.83 billion year old 168 

Animikie group, Superior Province, North America, that were deposited under a range of water 169 

column conditions, including anoxic and sulfidic (euxinic), ferruginous, and oxic (see Poulton et 170 

al., 2004a, 2010). We additionally analysed outcrop samples of low metamorphic grade marine 171 

shales from the ~1.65 billion year old Chuanlinggou Formation, North China Craton (Li et al., 2015; 172 

Meng et al., 2011), that were deposited under ferruginous and oxic conditions (Doyle, 2018). Drill 173 

core samples were analysed from the 715-542 million year old southern Timan Region of North 174 

Russia, that were mostly deposited under oxic conditions, but with two samples where the water 175 

column redox conditions were unclear (termed ‘equivocal’; see Johnston et al., 2012). Finally, we 176 

analysed a sample from the Jurassic bituminous shales section of the Jet Rock Series at Saltwick 177 

Nab, Yorkshire, which were deposited under anoxic conditions (Howarth, 1962).  178 

2.4. Testing the efficiency of Fe extracted during each SEDEX step 179 

We initially tested the extent to which the synthetic Fe minerals were dissolved by each step of 180 

the SEDEX technique (performed as individual extractions, rather than sequentially). We then ran 181 

the synthetic hematite and magnetite/hematite composite samples, in addition to the Golfo Dulce 182 

and Animikie Basin samples, through the original SEDEX extraction scheme sequentially, and 183 

measured the Fe released in each step. Since our focus here is on developing the SEDEX method 184 

for extraction of crystalline Fe oxides, and since adsorbed P is unlikely to be a significant component 185 

of ancient rocks and sediments, we did not include the first step (Psorb) of the original SEDEX 186 

method (Figure 1). We do stress, however, that this step may still be applied in studies of modern 187 

Fe-rich sediments. 188 

For the synthetic Fe minerals, 25-30 mg of sample was reacted at room temperature with each 189 

extractant solution of the SEDEX method (using 10 ml of extractant, except in the case of sodium 190 
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dithionite extractions with hematite, where 40 ml of extractant was used to avoid saturation of the 191 

solution with respect to Fe). All extractions were carried out at least in duplicate. For the Golfo 192 

Dulce and Animikie Basin samples, 150-180 mg of sediment was extracted in 10 ml of solution for 193 

each SEDEX step. To check whether any Fe (oxyhydr)oxide minerals persisted after completing the 194 

SEDEX method, additional extractions were performed on the residual sediment, utilising a 6 h 195 

citrate-dithionite-acetate (CDA) extraction for hematite (note that a 6 h CDA extraction was 196 

performed rather than the more typical 2 h extraction (see also Canfield et al., 2007) since our aim 197 

is to target highly crystalline hematite remaining after initial extraction by CDB), followed by a 6 h 198 

ammonium oxalate extraction for magnetite (Poulton and Canfield, 2005).  199 

2.5. Developing a revised method for the partitioning of P in ancient sediments 200 

A major difference between the Fe (oxyhydr)oxide-targeting steps in the SEDEX and Fe 201 

speciation methods is the pH of the dithionite extraction solution (pH 7.6 for CDB in SEDEX; pH 202 

4.8 for CDA in Fe speciation; Figure 1). As outlined above, however, dithionite extractions at pH 203 

7.6 may not effectively extract crystalline hematite, either from ancient rocks or modern sediments 204 

(Raiswell et al., 1994). In addition, neither the CDB or CDA extractions target magnetite, which is 205 

instead extracted via ammonium oxalate (Poulton and Canfield, 2005; Figure 1). Therefore, we also 206 

performed a range of extractions on our synthetic Fe minerals to determine the optimum position 207 

for the insertion of these steps into our revised P speciation scheme. Alongside these extractions, 208 

we also tested whether ammonium oxalate and CDA extracted significant P from our natural apatite 209 

sample.  210 

The original SEDEX scheme places wash steps with either 1 M MgCl2 or 18.2 MΩ resistance 211 

water after most of the principle extraction steps, in order to reverse any secondary re-adsorption of 212 

extracted phosphate onto other remaining sedimentary phases. We also carried out this step for the 213 



11 

 

measurement of any re-adsorbed P during the CDA and ammonium oxalate extractions. After all 214 

principal extraction steps, a maximum of three washes (5 ml of solution for 2 h) were performed: 215 

(i) MgCl2, ii) MgCl2, iii) 18.2 MΩ resistance water. It has been suggested that secondary adsorption 216 

of P onto residual sediment is not an important process during the CDB and HCl steps of the SEDEX 217 

procedure (Figure 1), and only a single MgCl2 extraction is required following the Na acetate 218 

extraction (Ruttenberg, 1992; Slomp et al., 1996a). However, we suggest that the number of washes 219 

should be based on the amount of P detected in the previous wash, and we performed additional 220 

washes until the concentration of P in solution was <0.2 mg/kg, up to a maximum of 3 washes. As 221 

a result of the above tests, an optimal extraction scheme was developed and tested, firstly in relation 222 

to the dissolution of Fe from our synthetic hematite and magnetite/hematite composite samples, and 223 

subsequently in terms of the phase partitioning of both Fe and P in the Golfo Dulce and ancient 224 

Animikie Basin samples. Finally, our revised phosphorus speciation scheme was applied to the 225 

North China Craton, Timan Region and Saltwick Nab sedimentary rocks.  226 

2.6. Chemical analyses 227 

At the end of each extraction or wash step, samples were centrifuged and then aliquots of the 228 

supernatant were taken for the analysis of P, with the remaining supernatant decanted from the 229 

centrifuge tube. All Na acetate and HCl solutions, as well as MgCl2 and 18.2 MΩ resistance water 230 

washes, were then analysed for P on a spectrophotometer via the phosphomolybdate blue method 231 

(Koroleff, 1976; Strickland and Parsons, 1972), with the solutions adjusted to a pH of 1-2 where 232 

necessary. This pH adjustment was performed by determining the volume of acid or base required 233 

to achieve the required pH using matrix matched standards. All other P measurements (CDB, 234 

ammonium oxalate and CDA) were analysed on a Thermo Fisher iCAP 7400 Radial ICP-OES, due 235 

to interference between the solution matrix and the phosphomolybdate complex (see Supplementary 236 
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Information for the ICP-OES method parameters). All Fe analyses were performed by flame atomic 237 

absorption spectroscopy (AAS). The reproducibility of Fe and P extractions were determined by 238 

replicate analyses, and are reported in terms of the relative standard deviation (RSD) at appropriate 239 

points in the text below. 240 

Digests were also performed for the determination of total P and Fe via a HNO3–HF–HClO4 241 

extraction on ashed samples. After evaporating to dryness, samples were redissolved in hot 50% 242 

(v/v) HCl, and P was analysed via the molybdate blue method outlined above, while Fe was analysed 243 

by AAS. The precision and accuracy of the method were determined by replicate analyses of the 244 

SBC-1 USGS international sediment standard, with RSD’s of 5.5% and 4.0% for Fe and P, 245 

respectively, and with near-complete recovery for both elements (96% and 97%, respectively). 246 

3. Results and Discussion 247 

3.1. Testing the original SEDEX method for the extraction of Fe (oxyhydr)oxides 248 

The extraction of synthetic ferrihydrite, goethite and lepidocrocite via a single 8 h CDB 249 

solution, as performed in the first step of the original SEDEX procedure, led to a recovery of 90-250 

100% for all three minerals (Figure 2), in agreement with Ruttenberg (1992). However, when 251 

applied to our synthetic hematite and magnetite/hematite composite samples, the CDB extraction 252 

dissolved only 18.4 ± 0.7% of the total Fe in hematite, and only 5.6 ± 0.1% of the Fe in the 253 

magnetite/hematite sample. In the latter case, the majority of the dissolved Fe was likely from the 254 

dissolution of hematite. Recovery of Fe from the magnetite with co-precipitated P was higher, at 255 

17.9 ± 2.2%, most likely due to the freshly precipitated nature of the mineral. However, despite this 256 

higher Fe recovery, only ~0.1% of the P contained in the co-precipitate was extracted by the CDB. 257 

No previous data for the efficiency of magnetite dissolution by CDB has been published for 258 
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comparison. The extraction efficiency for crystalline hematite was substantially lower than that 259 

found by Ruttenberg (1992), and the poor recovery for both minerals confirmed that the original  260 

SEDEX method does not efficiently extract the more crystalline Fe oxides that are often key 261 

components of ancient sedimentary rocks and Fe-rich sediments. By contrast, a 2 h CDA extraction 262 

dissolved 59.7 ± 3.5% of our synthetic hematite mineral, which increased to 86.0 ± 0.7% with a 6 h 263 

CDA extraction (Figure 2), consistent with data highlighting the resistant nature of crystalline 264 

hematite (Canfield et al., 2007; Raiswell et al., 1994). Thus, the 6 h CDA extraction was considered 265 

the most appropriate extraction for this phase. This 6 h CDA extraction did, however, dissolve 16.1 266 

± 0.5% of the magnetite present in our composite magnetite/hematite sample, suggesting that the 267 

CDA extraction should be performed after the 6 h oxalate extraction, which dissolved 100.0 ± 1.6% 268 

of the magnetite Fe (Figure 2).  269 

To assess the extraction efficiency of the original SEDEX method in terms of the dissolution 270 

of crystalline Fe (oxyhydr)oxide minerals, we compared the amount of Fe extracted by CDB 271 

(Ruttenberg, 1992) and CDA (Poulton and Canfield, 2005) for Golfo Dulce sediments and Animikie 272 

Basin sedimentary rocks (Figure 3). In both cases, the CDB extraction dissolved a lower 273 

concentration of crystalline Fe (oxyhydr)oxide phases relative to the CDA extraction (Figure 3). In 274 

addition, when the Femag pool was added to Fe extracted by CDA (Figure 3), it is clear that the 275 

original SEDEX method failed to extract a large proportion of the crystalline Fe (oxyhydr)oxide 276 

minerals, and this was the case for both modern sediments and ancient sedimentary rocks. 277 

3.2. A revised method for P speciation in ancient sedimentary rocks 278 

Having demonstrated the limitations of the existing SEDEX technique for extracting more 279 

crystalline Fe (oxyhydr)oxide phases, the next step was to consider the optimal position for the 280 

additional extractions in the sequential P method. The CDA and ammonium oxalate extractions 281 
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were performed at low pH (4.8 and ~2, respectively), and hence it was not appropriate to perform 282 

these extractions prior to the pH 4.0 Na acetate extraction (which targets Pauth) in the SEDEX scheme 283 

(Figure 1). It was essential to retain the CDB extraction for the first step of the revised scheme in 284 

order to dissolve the most reactive Fe (oxyhydr)oxide minerals (hereafter termed PFe1) prior to 285 

extraction by Na acetate (Pauth; Figure 4). This leaves the more crystalline Fe (oxyhydr)oxide 286 

minerals, since the Na acetate extraction only dissolved a minor amount of hematite and magnetite 287 

(Figure 5; see also Poulton and Canfield, 2005). Sequential extraction of our synthetic hematite and 288 

magnetite/hematite composite samples using the original SEDEX method revealed that these 289 

minerals were not appreciably dissolved by the 1 M HCl extraction used to target Pdet (Figure 5).  290 

By contrast, we found that ammonium oxalate dissolved ~17% of P in the natural apatite sample 291 

from Madagascar. Thus, the ammonium oxalate and CDA extractions to determine magnetite-bound 292 

P (hereafter termed Pmag) and crystalline Fe (oxyhydr)oxide-bound P (hereafter termed PFe2) were 293 

placed after the 1 M HCl of the original SEDEX procedure. Furthermore, given that a 6 h CDA 294 

extraction dissolved appreciable magnetite (Figure 2), the 6 h CDA extraction was placed following 295 

the Pmag extraction.  296 

This results in the revised extraction scheme detailed in Figure 4. To test our revised scheme 297 

we first compared recoveries for our synthetic hematite and magnetite/hematite composite samples 298 

relative to recoveries from the original SEDEX scheme (Figure 5). Replicate analyses (n = 3) for 299 

synthetic hematite via the revised scheme gave RSD’s of 3.4% (8 h CDB), 6.4% (Na acetate), 1.0% 300 

(1 M HCl), 1.4% (ammonium oxalate), and 10.4% (CDA). The addition of the oxalate and CDA 301 

extraction in the revised scheme considerably enhanced the total recovery of magnetite and hematite 302 

(88.7 ± 1.1% and 76.9 ± 3.8%, respectively), relative to the original scheme (Figure 5). The natural 303 

Isua BIF sample also showed a good recovery via the revised method (data not shown), with the 304 

Pmag step extracting 45.8 ± 3.0 wt% Fe, which was in good agreement with our separate 305 
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determination (see earlier) of 43.8 wt% Femag in this sample. We took this evaluation a step further 306 

by testing the ability of the ammonium oxalate extraction to recover P from magnetite, as this was 307 

one P phase that was not tested during development of the original SEDEX technique (Ruttenberg, 308 

1992). Replicate extractions recovered 93.9 ± 1.7% of the Fe present as magnetite and 88.2 ± 12.8% 309 

of co-precipitated P, confirming the utility of this extraction for the determination of Pmag. 310 

We note here that it has been suggested that the solubility of authigenic carbonate fluorapatite 311 

(i.e., Pauth) may decrease during burial diagenesis, due to recrystallization (Shemesh, 1990; Slomp, 312 

2011). This would make the primary authigenic CFA phase less prone to dissolution by its target 313 

extractant (Na acetate; Figure 4). In this case, recrystallized Paut that was not extracted by Na acetate 314 

would likely be extracted as part of the detrital apatite pool (i.e., Pdet) (Creveling et al., 2014). This 315 

is a difficult problem to address with sequential extraction schemes, which are clearly operationally-316 

defined, but as discussed below this issue should be considered, particularly when applying the 317 

revised scheme to ancient rocks. As such, in Figure 4 we reflect this possibility by redefining the 318 

original Pdet pool as Pcryst. 319 

3.3. Application to modern and ancient sediments 320 

After confirming that our revised method resulted in an enhanced recovery of crystalline Fe 321 

(oxyhydr)oxide minerals, we then applied the technique to determine P partitioning in Golfo Dulce 322 

(Figure 6) sediments and in our suite of ancient sediments (Figure 7) (all data are reported in the 323 

Supplementary Information). The RSD’s for P extracted by each stage of the revised method are 324 

presented in Table 3. In addition, the sum of the P extracted by the revised method had a RSD of 325 

1.8%.   326 

Figure 6A shows that for the modern Golfo Dulce sediments, a major proportion of total P was 327 

associated with the less crystalline Fe (oxyhydr)oxide pool (PFe1; average = 41.0 ± 2.6%), which 328 



16 

 

was consistent with the high Fe (oxyhydr)oxide content (Feox = 2.45 ± 0.24 wt%; Femag = 0.72 ± 329 

0.07 wt%) of these sediments (Figure 3). Importantly, however, the addition of the new Fe extraction 330 

steps increased the total recovery of Fe-bound P by up to 16%. Pcryst was low throughout these 331 

samples, and thus the overall speciation of P as a function of ‘reactive’ P (which is here calculated 332 

as the sum of PFe1 + Pauth + Pmag + PFe2 + Porg), is similar to that for total P (Figure 6). 333 

The ancient sediments showed considerable variability in the partitioning of P (Figure 7A). Porg was 334 

particularly high in the North China Craton and Saltwick Nab samples, highlighting that Porg can be 335 

retained in ancient rocks that have experienced deep burial diagenesis and minor metamorphic 336 

alteration. The total proportion of Fe-bound P was relatively low in the Animikie Basin, Timan 337 

Region and Saltwick Nab sedimentary rocks, consistent with the generally low Fe (oxyhydr)oxide 338 

contents of these rocks (Animikie Basin: Feox = 0.17 ± 0.07 wt%, Femag = 0.24 ± 0.24 wt%; Timan 339 

Region: Feox = 0.46 ± 0.28 wt%, Femag = 0.48 ± 0.06 wt%; Saltwick Nab: Feox = 0.06 wt%, Femag = 340 

0.10). However, the North China Craton samples showed that Fe-bound P can be a major constituent 341 

of the total P pool in ancient rocks, with up to 76% of total P occurring as Fe-bound P, of which an 342 

average of 22% would not have been extracted using the original SEDEX scheme. As with the other 343 

ancient samples, Fe (oxyhydr)oxide contents are relatively low for the North China Craton samples 344 

(Feox = 0.37 ± 0.23 wt%, Femag = 0.06 ± 0.02 wt%). However, these samples are distinct from the 345 

other ancient samples in that their Fe (oxyhydr)oxide contents, while low in absolute concentration, 346 

are high relative to the total pool of highly reactive Fe (FeHR). Highly reactive Fe includes Fe 347 

(oxyhydr)oxides (i.e., Feox and Femag), in addition to reduced Fe phases such as siderite (Fecarb) and 348 

pyrite (Fepy) which, at least partially, formed via the reductive dissolution of Fe (oxyhydr)oxides 349 

during diagenesis (Raiswell and Canfield, 1998; Poulton et al., 2004a). Thus, generally higher (Feox 350 

+ Femag)/FeHR ratios for the North China Craton (0.92 ± 0.03), compared to the Animikie Basin (0.23 351 

± 0.12), Timan Region (0.79 ± 0.09) and Saltwick Nab (0.06) samples, suggests significant 352 



17 

 

preservation during diagenesis of the Fe (oxyhydr)oxide minerals that were originally delivered to 353 

the sediment. In consequence, it appears that a significant proportion of primary PFe was preserved 354 

in the North China Craton sediments, which is also supported by the low Pauth content of these 355 

samples relative to the other ancient samples (Figure 7). This further highlights the utility of the 356 

revised phosphorus extraction scheme for evaluating the diagenetic cycling of P in ancient marine 357 

sediments. 358 

In contrast to the North China Craton sediments, the Pauth fraction comprised a major proportion 359 

of the total P content of the Timan Region (54 ± 7%) and Saltwick Nab (56%) sediments (Figure 360 

7), which is consistent with the ‘sink switching’ of reactive P observed in modern continental margin 361 

sediments (Ruttenberg and Berner, 1993). While the North China Craton samples have clearly not 362 

experienced significant transfer of reactive P to detrital P during burial diagenesis and 363 

metamorphism (Figure 7), we also note that the concentrations of Pcryst in the Timan Region (174 ± 364 

28 mg/kg) and Saltwick Nab (149 mg/kg) sediments are consistent with concentrations of detrital P 365 

commonly found in modern continental margin sediments (e.g., 186 ± 21 mg/kg; Ruttenberg and 366 

Berner, 1993). Thus, while we cannot discount the possibility of some transfer of Pauth to Pcryst in 367 

these ancient settings, this appears to have been mininal.  However, the Animikie Basin sediments 368 

are characterised by proportionately less, and highly variable, Pauth (23 ± 20%; range = 5-61%), 369 

combined with much higher proportions (73 ± 21%) and concentrations (433 ± 189 mg/kg) of Pcryst 370 

(this average excludes sample GF3-33 due to its anomalously high Pcryst concentration; see SI Table 371 

3). Thus, while we cannot rule out the possibility that the delivery of detrital P may have been 372 

elevated during deposition of these particular sediments, these P speciation characteristics do 373 

suggest probable transformation of an important fraction of Pauth to Pcryst. This possibility will be of 374 

particular significance in studies where quantification of the initial Preac pool is required, although 375 

we stress that the Porg and PFe fractions should remain largely unaffected after the ‘sink switching’ 376 
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that occurs during early diagenesis is complete. We therefore suggest a general protocol whereby 377 

Preac in ancient sediments is considered to fall within a minimum and maximum range. Here, a 378 

minimum value for Preac may be calculated as the sum of PFe1 + Pauth + Pmag + PFe2 + Porg, whereas a 379 

maximum value is calculated by additionally including the Pcryst pool. 380 

The ability to quantify magnetite-bound P is a novel strength of the revised speciation scheme. 381 

Over the last few years there has been increasing recognition of the major prevalence of anoxic 382 

ferruginous oceanic conditions across large periods of Earth history (e.g., Canfield et al., 2008; 383 

Guilbaud et al., 2015; Johnston et al., 2010; Planavsky et al., 2011; Poulton and Canfield, 2011; 384 

Poulton et al., 2010). Whilst nutrient reconstructions under such conditions have tended to focus on 385 

P uptake by Fe (oxyhydr)oxide minerals (e.g., Bjerrum and Canfield, 2002; Konhauser et al., 2007; 386 

Planavsky et al., 2010), magnetite often appears to be a prominent mineral in the deposited 387 

sediments (e.g., Poulton et al., 2010), and likely commonly occurs via transformation from green 388 

rust precursors (e.g. Halevy et al., 2017; Li et al., 2017). Green rust has a particularly large 389 

adsorptive capacity for nutrient uptake (e.g., Zegeye et al., 2012),  and transformation to magnetite 390 

may result in significant retention of P, which raises the possibility of using magnetite-bound P in 391 

ancient shales as a tracer of past variability in oceanic P concentrations (c.f., Bjerrum and Canfield, 392 

2002; Konhauser et al., 2007; Planavsky et al., 2010).  393 

4. Conclusions 394 

The SEDEX sequential P extraction scheme of Ruttenberg (1992) is the commonly used 395 

technique for quantifying different P pools in modern marine sediments, and has provided a wealth 396 

of information of P cycling in modern environments. However, the original SEDEX scheme was 397 

not designed for use with ancient sediments. Here, we provide a modification of this method to more 398 
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specifically target important Fe phases, such as crystalline hematite and magnetite, which are 399 

common components of many ancient sediments and some Fe-rich modern sediments. We 400 

demonstrate that crystalline hematite was only partially extracted by the existing SEDEX scheme, 401 

while magnetite was not specifically targeted. Following robust calibration testing, we introduce 402 

two additional steps to the SEDEX scheme to specifically target these additional Fe-bound P phases. 403 

Testing of the revised method on modern and ancient sediments showed the reproducible nature of 404 

the extractions and the enhanced recovery of Fe-bound P. We provide details of a modified P 405 

SEDEX scheme specifically developed for application to ancient marine rocks, as well as modern 406 

Fe-rich sediments. We demonstrate that the Porg, PFe1, PFe2, Pmag and Pauth fractions may provide 407 

insightful information in relation to P cycling in ancient marine settings and in Fe-rich modern 408 

sediments, but care needs to be taken with ancient rocks when considering possible transfer of 409 

authigenic P (Pauth) to more crystalline phases (Pcryst) during deep burial and metamorphism. 410 
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