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The past few years has witnessed exciting progress in the application of “immune check-

point inhibitors” (ICI) in the treatment of various human cancers1–3. This involves the use 

of antibody blockade with monoclonal antibodies (mAbs) that block receptor binding to 

their natural ligands. Programmed cell death-1 (PD-1) recognises PD ligand (PDL)-1 and 

PDL-2 on presenting cells and this sends signals that inhibit T-cell activation and effector 

cytotoxic responses. Through these mechanisms, PD-1 inhibits the immune system and can 

prevent autoimmune diseases 4. Tumor cells expressing PDL-1/PD-L2 can use this 

mechanism to evade immune surveillance, allowing disease progression. A therapeutic 

approach involves administration of mAbs that block the engagement of checkpoint 

molecules with their ligand. In the case of anti-PD-1, these mAbs block the binding of PD-1 

on the T-cell with PDL-1/PDL-2 on the tumor cell, preventing recognition and allowing 

activation of the T-cell to provide an immune response against the tumor cell. Blockade also 

reverses T-cell exhaustion and restores T-cell functionality 5, 6. Furthermore, PD-1 

expression on tumor-infiltrating CD8+ T-cells correlates with impaired function, while PD-

L1 expression on tumors facilitates escape4.

One of the first established immunotherapeutic approaches involved the use of Ipilimumab 

against CTLA-47, 8. It was the prototypical immunomodulatory antibody first approved by 

the FDA in 2011 for advanced melanoma based on its survival benefit. This was followed by 

the highly successful blockade of PD-1 (i.e. Nivolumab and Pembrolizumab), or its ligand 

(PD-L1) (i.e. Atezolizumab), either alone7, or in combination with anti-CTLA-48. In certain 

cases, the use of PD-1 mAbs superseded CTLA-4 mAbs, due to their increased response 

rates9, 10 and the combination of both therapies gave rise to even superior response rates10, 

11. However, this success correlated with increased toxic side effects. A substantial 

proportion of patients receiving ICI develop immune-related adverse events (irAEs) 

including colitis, endocrinopathies, hepatitis, pneumonitis, cardiotoxicity, nephritis, skin 
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eruptions and vitiligo12–20. These events have been reported at 20-28%, 17-21% and 

45-59% for the use of anti-CTLA-4, anti-PD1 or combination therapy, respectively9–11. 

These drugs are currently being used in the treatment of various cancers including 

Melanoma, renal cell carcinoma, colorectal cancer and Hodgkin lymphoma21–24 as well as 

the viral infection HCV25. Immune-modulating agents, such as corticosteroid, infliximab, 

and mycophenolic acid are being used to manage irAEs26 where possible but in some cases, 

treatment is discontinued.

Although some success has been seen, the majority of patients are still not cured, some 

develop resistance and those with immune-resistant cancers such as colon and ovarian are 

poorly responsive. This poor prognosis highlights a need to improve current or identify 

alternative clinical interventions.

As PD-1 plays a prominent role in immunotherapy, one approach for enhanced anti-tumor 

immunity would be to inhibit pathways that control the expression of inhibitory co-receptors 

such as PD-1. We are the first to show that the serine/threonine kinase glycogen synthase 

kinase 3 (GSK3) is a central regulator of PD-1 expression in CD8+ T cells.

There are two isoforms of GSK-3, GSK-3α and GSK-3β, which are encoded by separate 

genes, with highly homologous kinase domains (98% identity) but divergent N- and C-

terminal regions27, 28. Both forms have been implicated in processes ranging from 

glycogen metabolism to gene transcription, apoptosis and microtubule stability. The notable 

aspect of GSK-3 is that it is constitutively active in resting T-cells and is inhibited by 

receptor induced activation signals29.

In this regard, we have shown that small molecule inhibitors (SMIs) of GSK-3 are effective 

in promoting viral clearance30 and our current work31 shows that GSK-3 SMI inhibition of 

Pdcd1 (PD-1) transcription with a small molecule inhibitor (i.e. SB415286) is as effective as 

anti-PD-1 and PDL-1 blocking antibodies in the control of B16 and EL-4 tumor growth. 

Similar effects were observed using other inhibitors including SB216763 and CHIR99021 as 

well as the peptide inhibitor L803-mts. The exception was the inhibitor TWS119 which has 

been reported to retain cells in a less mature state32,33, by promoting the expression of 

TCF-1, blocking CD8+ T-cell differentiation, and inhibiting IFN-γ production32,34. 

Whereas other SMIs including SB415286 have been seen to promote differentiation and 

IFNγ production30,35–36. This difference between SMIs in their action on T-cell function 

underlines the need for defining the pathways of GSK-3 in T-cell signaling.

Our current work demonstrated that SB415286 significantly reduced B16 pulmonary 

metastasis. This anti-tumor effect of SB415286 was comparable to that using anti-PD-1 

blocking antibody and combination of the two had no additional effect indicating an overlap 

in the two pathways. Further to this GSK-3 deficient T-cells from conditional knockout mice 

significantly reduced tumor progression confirming a direct role for GSK-3 in modulating 

anti-tumor activity in CD8+ T-cells. Our findings showed that GSK-3 inhibition operated 

primarily via a reduction in PD-1 expression on CD8+ T-cells. Inactivation of GSK-3 either 

through SMIs or by using GSK-3α/β siRNA led to a reduction in PD-1 expression and in 

both cases reduced B16 pulmonary metastasis to a similar extent as seen in Pdcd1-/- mice. 
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In each model, GSK-3 SMIs inhibited Pdcd1 transcription and PD-1 expression on tumor 

infiltrating T-cells (TILs), while increasing Tbx21 (T-bet) transcription30 and the presence 

of CD8+ TILs expressing CD107a (LAMP1), granzyme B (GZMB) and IFNγ 131. Other 

transcription factors such as Eomes (Eomesodermin) or the high mobility group (HMG) box 

Transcription factor 7 (Tcf7) were not affected.

Mechanistically, GSK-3 inactivation in T-cells with down-regulated T-bet had no effect on 

PD-1 expression indicating that GSK-3 operates upstream and is dependent on T-bet which 

in turn inhibits PD-1 expression. Further, down-regulation of T-bet increased PD-1 

transcription indicating that T-bet suppresses the transcription of PD-1, in accord with 

results from the Wherry group37. High levels of T-bet expression could sustain exhausted 

CD8+ T-cells and repressed the expression of inhibitory receptors during chronic viral 

infection. Persistent antigenic stimulation caused downregulation of T-bet, which resulted in 

more severe exhaustion of CD8+ T-cells37.

Overall, in our model, active GSK-3 present in resting T-cells acts to supress Tbx21 
transcription. Upon T-cell activation GSK-3 becomes partially inactivated leading to partial 

T-bet expression and PD-1 suppression. The use of GSK-3 SMIs can fully repress GSK-3 

leading to increased T-bet expression and complete inhibition of PD-1 expression.

The development of small molecules that modulate co-receptors or their signaling pathways 

to enhance anti-tumor activity would be a major advance in therapy. There are potential 

advantages and disadvantages to the use of GSK-3 inhibitors versus anti-PD-1 antibody 

therapies. Small molecules have the advantage of lower cost, dosing and potential oral 

administration. Further, anti-PD-1 is associated with a high cost as well as adverse effects 

such as fatigue, rash and possible autoimmune complications such as colitis. Although we 

cannot exclude these effects with GSK-3 SMIs, to date, we have seen no evidence of 

autoimmunity in the GSK-3α/β-/- mice over 2 years. The disadvantage of GSK-3 

inactivation is the potential of an effect on the function of other host cells or the tumor itself. 

However, lithium chloride, another GSK-3 inhibitor, has been used for decades for the 

treatment of bipolar disease. Importantly, we showed that GSK-3 inhibition could affect 

PD-1 expression on both murine and human T-cells. The dose (200ug per 20g mouse) used 

is roughly comparable to the dose of another inhibitor Tideglusib which was used in a phase 

2 oral study (800mg in a 80kg patient) to treat progressive supranuclear palsy38. Further, we 

showed that a single dose of SB415286 down-regulated PD-1 for 10-14 days. Although, we 

failed to see any effect of SB415286 directly on the growth of B16 melanoma cells in the 

absence of an immune response, GSK-3 inhibition has been reported to directly inhibit the 

growth of multiple myeloma, neuroblastoma, hepatoma and prostate tumors38–43. It is 

therefore possible that GSK-3 SMIs might have an added advantage by directly inhibiting 

the growth of some tumors in addition to enhancing the immune response. Despite these 

possibilities, the major effect of GSK-3 SMIs in our studies involved the amplification of the 

immune system as shown by the effects on ex vivo T-cells and adoptive transfer experiments 

as well as by the elimination of tumors in mice where T-cells have conditionally deleted 

GSK-3α/β. Certain tumors can impair proximal TCR signaling events as a form of immune 

avoidance44,45. The inhibition of GSK-3 could potentially circumvent this impairment 

given that GSK-3 operates down-stream of proximal signal mediators such as p56lck. 
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Overall, our findings identify a potential alternate approach using small molecule inhibition 

of PD-1 expression in cancer immunotherapy. Further work is needed to uncover the full 

range of down-stream effects that may be regulated by GSK-3 regulation in anti-tumor 

immunity. 
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