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Abstract. Reconstructing 3D ventricular surfaces from 2D cardiac MR
data is challenging due to the sparsity of the input data and the presence
of interslice misalignment. It is usually formulated as a 3D mesh adap-
tion problem often incorporating shape priors and smoothness regular-
ization, which might affect accuracy when handling pathological cases.
We propose to formulate the 3D reconstruction as a volumetric mapping
problem followed by isosurfacing from dense volumetric data. Taking ad-
vantage of deep learning algorithms, which learns to predict each voxel
lable without explicitly defining the shapes, our method is capable of
generating anatomically meaningful surfaces with great flexibility. The
sparse 3D volumetric input can process contours with any orientations
and thus can utilize information from multiple short- and long-axis views.
In addition, our method can provide correction of motion artefacts. We
have validated our method using a statistical shape model on both re-
constructing 3D shapes from spatially consistent and misaligned input
data.

Keywords: Mesh reconstruction · Cardiac MRI · Deep learning.

1 Introduction

Generating anatomically accurate 3D surface meshes has shown promising uses
in a wide range of applications including cardiac function analysis, interventional
guidance and diagnosis [1, 2, 3]. Personalization of cardiac surfaces in 3D is also
the first step required for computational simulations of cardiac electromechanics
using the finite element method [4, 5, 6]. Cardiac MR (CMR) imaging provides
accurate shape information of the heart non-invasively [2]. A standard clinical
CMR study includes a stack of short-axis (SAX) slices, covering at least from
the left/right ventricular (LV/RV) apex to the base, plus at least two long-axis
(LAX) views: horizontal long-axis (HLA, also known as 4 chamber view or 4CH)
and vertical long-axis (VLA, also known as 2 chamber view or 2CH) [7]. Classical
isosurfacing algorithms cannot be directly used due to the sparsity of the input
data and because of the presence of motion artefacts (misalignment between
slices caused by multiple breath holding and possible body movement during
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acquisition) [8], which make the task of reconstructing 3D structure from CMR
data particularly challenging.

Reconstruction of 3D surfaces from CMR data is normally formulated as
a 3D mesh adaptation problem to sparse contours or points [9, 10, 11, 12],
and solutions often incorporate shape priors during that process. The form of
such prior could be a regular shape [10, 11, 13] or a statistical template with
plausible variations [14], and deviations from regular and smooth geometries
are penalized in a fitting process. These methods usually include an explicit
smoothing term during fitting to further regularize the shape in addition to
the use of shape priors, and both types of bias may compromise the accuracy
of the reconstructed surfaces when handling pathological hearts. [15, 16]. In
order to generate anatomically meaningful surfaces while also preserving the
wide variability of the shape, reconstruction methods should incorporate a wide
collection of plausible shape priors to refer to when fitting the input data. Deep
learning algorithms have shown their capacity for storing a large number of
accurate mappings between pair-wised data [17], and no explicit smoothing term
is required by these methods, allowing the appearance of sharp edges and corners
during reconstruction if necessary. However, for Convolutional Neural Networks
(CNNs), input data are required to be highly structured (usually on a regular
grid in 2D or 3D), and therefore most state-of-the-art deep learning methods
for generating LV and RV 3D meshes using CMR data only take the SAX stack
as input with the assumption that all SAX images are in parallel.[18, 19] This
implementation limits the possibility of utilizing the LAX slices, which has been
shown to improve the reconstruction of the ventricular meshes [12], as well as
the possibility of incorporating out-of-plane geometric transformations for better
correction of motion artefacts due to respiration [20, 21].

In this paper, we propose to consider the sparse 3D information from con-
tours in a volumetric form, and therefore tackle the problem similarly to vol-
umetric image inpainting [22]. We then transform the problem of mesh fitting
from sparse input into a 3D volumetric mapping problem followed by isosurfac-
ing from dense volumetric data. The sparse volumetric input can take contours
in any positions within the volume, and therefore our method incorporates both
SAX slices and LAX slices, and allows explicit out-of-plane motion artefact cor-
rection. Our method also has the capacity of reconstructing 3D meshes from
misaligned input contours by itself.

1.1 Main Contributions

We have developed a novel bi-ventricular mesh reconstruction method through
3D volumetric mapping with deep learning algorithm combining both SAX and
LAX slices. To our best knowledge, this is the first deep learning method pro-
cessing multiple views simultaneously without any assumption of image plane
orientations.

We propose the method that can be used to reconstruct 3D meshes from
both spatially consistent and misaligned input data, and our method is capable
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of processing intersecting slices with discrepancies among them, while most of
the state-of-the-art methods still focusing on parallel contours.

2 Materials and Methods

Our 3D reconstruction method consisted of three steps: 1. generating sparse vol-
umetric input data from contours; 2. generating dense 3D volumetric predictions
of LV myocardium and LV/RV cavities from input data using a variation of the
3D U-Net [23]; 3. generating 3D meshes from the predictions with an isosurfac-
ing algorithm. The method is developed and evaluated by using synthetic data
generated from a statistical shape model [14, 24].

2.1 Data

We used the statistical shape model published by Bai et al [14], in which the
authors registered 1093 segmented hearts to a template space using rigid reg-
istration followed by the application of principal component analysis (PCA) to
the surface meshes. The model is formed by labeled images with labels for back-
ground, LV myocardium and LV/RV cavities. We downloaded from the publicly
available dataset (http://wp.doc.ic.ac.uk/wbai/data/), the mean shape model,
the first 100 PCs and the corresponding eigenvalues or variances. We then used
these to generate 120 different shapes. limiting the variations to six standard
deviations for any of the PCs.

To generate output references, we placed these shapes into a 3D volume with
the size of 128×128×128 and voxel size of 2×2×2 mm

3, by aligning the centre
of the smallest sphere enclosing the corresponding contours and the centre of
the 3D volume, and labled voxels enclosed by surfaces accordingly. To simulate
input sparse volumes in conditions similar to real clinical acquisition, we used
real image planes from clinical datasets (consisting of both SAX stack and two
LAX slices). To generate spatially consistent input datasets, we first aligned one
set of image planes to each of the shapes, and the voxels located within 0.5 mm

away from the planes were then given their original labels. Voxels located more
than 0.5 mm away from the plane is asigned to label of Unknow. To mimic the
misalignment caused by motion artefacts, we first fixed image planes and before
assigning labels for each plane we applied random rotations with no larger than
10 degrees and random translations with no more than 4 mm to the reference
shape. An example of input and output volumetric data is shown in Figure 2.

2.2 Volumetric Mapping

We adapted a variation of 3D U-Net for volumetric mapping, and the schematic
diagram of the network architecture is shown in Figure 1. The network consists
of an encoder and a decoder, with skip connections between feature maps with
the same resolution. The encoder starts from the input layer with the size of
128× 128× 128× 1 and has three max-pooling stages where each pooling layer
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has a window size of (2, 2, 2) and a stride of (2, 2, 2), giving feature maps
with four different resolutions. The decoder then up-samples the feature maps
back to the original resolution also in three stages using upsampling layers with
factors of (2, 2, 2). The heavy duty of the computation within the network is
carried out by convolutional blocks shown in Figure 1, with each of them having
two convolutional layers with kernel size of (3, 3, 3) and two batch normalisation
(BN) layers. Other than the output layer, which has sigmoid activation functions,
rectified linear units (ReLU) are used throughout the network. The output layer
has 3 convolutional kernels with the size of (1, 1, 1) giving the prediction in the
form of 128× 128× 128× 3 volume representing LV myocardium, LV cavity and
RV cavity. The Dice coefficient loss was used during the training of the network
to deal with imbalance between forground and background voxels. [25]

Fig. 1. A schematic diagram of our volumetric mapping network. For each convolu-
tional layer, the number of filters is specified respectively.

2.3 Isosurfacing

The prediction of the network was split into three of 128 × 128 × 128 volumes,
and used to form the isosurfaces at 0.5 using marching cubes [26]. For each 3D
volume, the largest object was then selected as the expected structure.

3 Experiments and Results

We performed two 4-fold cross-validation experiments with spatially consistent
data and misaligned data respectively. For both experiments, the same number
of bi-ventricular shapes were generated as described in section 2.1, and they
were randomly grouped into 4 sets of training data (80 shapes), validating data
(10 shapes) and testing data (30 shapes) also in the same way, having 4 testing

4 FIMH2019, 010, v6: ’Ventricle surface reconstruction from CMR slices using deep learning’



Ventricle surface reconstruction from CMR slices using deep learning 5

datasets cover all generated shapes. During the training phase of each cross-
validation experiment, one neural network was randomly initiated and the net-
work parameters were updated through back-propagation using the spatially
consistent training data. The optimization was early stopped by evaluating the
loss function of the validating data to prevent over-fitting. Once the training of
the neural network for the spatially consistent cases was terminated, the learned
parameters were used to initiate the network for reconstructing misaligned cases
and fine-tuned using the misaligned training data. An overview of the training
progress is shown in Figure 2. The testing data was only used for the evaluation
of the method, and the predictions from the network for the testing data were
then used to generate 3D meshes as described in section 2.3. In both experiments
Dice coefficient and Hausdroff Distance (HD) were the metrics used for quanti-
tative analysis of the method. For the experiment with misaligned contours we
registered the reconstructed shape to the reference shape with a rigid transfor-
mation before calculating the metrics. We also calculated Euler characteristic
for the generated meshes to evaluate the topology of them, and for all cases the
value was expected to be equal to 2.

Fig. 2. Training progress overview. The blue, green, red objects correspond to LV
myocardium, LV cavity and RV cavity.

3.1 Statistical Shape Model

The Dice coefficient and HD results for experiments on spatially consistent and
misaligned contours are shown in Table 1. For spatially consistent input data, the
reconstructed LV/RV cavities shape and the reference shape has Dice coefficient
with mean values of 0.98. The LV myocardium has a more complicated shape
with larger surface area, and therefore the Dice score is more sensitive with small
changes, while the mean value is still 0.94. The voxel size is 2× 2× 2 mm

3, and
the mean values of HD are around 2 voxels. As the input data has only around
5.5% of voxels with known labels, the results suggest that our 3D U-Net stored
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a collection of plausible mappings between sparse input data and corresponding
ventricular shapes during training and is able to utilize that information during
the reconstruction of the testing cases.

Table 1. Dice coefficient and Hausdorff Distance between reconstructed ventricular
shape and reference ventricular shape for both spatially consistent and misaligned slices
experiments. The Dice coefficient has values between 0 and 1 and Hausdorff Distance
is in mm. The metrics are presented in the form of mean ± standard deviation.

Consistent Misaligned

LVM LVC RVC LVM LVC RVC

Dice 0.94± 0.01 0.98± 0.01 0.98± 0.01 0.83± 0.04 0.95± 0.01 0.93± 0.02
HD (mm) 4.56± 1.66 3.17± 1.07 3.87± 2.28 6.30± 5.21 4.94± 3.61 5.91± 2.55

The experiments on misaligned input data also achieved good accuracy, with
above 0.93 mean Dice coefficient for LV/RV cavities and 0.83 for LV myocardium.
As expected, comparing to the experiment on spatially consistent input data, the
accuracy of these experiment is lower. This is unavoidable given the additional
challenges involved in reconstructing the 3D shapes from misaligned input data,
including discrepancies between slices, which results in the same set of input
data maps to a much wider range of plausible output shapes.

It is important to highlight the limitations of the validation method itself. The
misalignment of all slices, combined, will result in an overall rigid transformation
of the underlying three-dimensional shape. This rigidly transformed shape if the
most likely to be reconstructed by our network. If we compare this reconstruction
with the original shape, the accuracy will be significantly affected, even if the
shapes are exactly equal. We attempted at compensating for this unwanted effect
by performing a rigid registration, but this still leaves residual errors that are
partly responsible for the decrease of accuracy shown in Table 1.

For more than 85% of the 3D meshes directly generated from network pre-
dictions, the Euler characteristic is 2, suggesting a robust network output with
no isolated false predictions, holes within the object or handles attached to it.
However, post-processing described in section 2.3 is still needed and increases
the rate by 8%.

3.2 Real Contours

We also applied our method on real contours, and one example of reconstructed
meshes aligned with input contours were shown in Figure 3. Our method recon-
structed one set of plausible 3D meshes for LV myocardium and LV/RV cavities.
The structure has no obvious distortions caused by misalignment, and the re-
constructed meshes align well with the input contours.
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Fig. 3. Real contours aligned with reconstructed meshes. The colours indicate the clos-
est distance from the contours to meshes. For distance smaller than 0.5 mm the colour
is gray, and for distance larger than 4 mm the colour is purple. Colours corresponding
to distance between 0.5 mm and 4 mm are shown in the colour bar.

4 Conclusions

In this paper, we propose a bi-ventricular 3D mesh reconstruction method from
CMR slices by transforming the mesh fitting problem into a volumetric mapping
problem followed by isosurfacing. Our method takes the advantage of deep learn-
ing algorithm and is able to reconstruct anatomically meaningful surfaces with a
wide range of variety for both spatially consistent and misaligned contours. The
method has no constrains on the slice orientations and utilizes information from
multiple SAX and LAX views simultaneously. It tolerates discrepancies between
intersecting slices, and produces accurate 3D meshes from misaligned cases. We
developed and evaluated our method using cases generated from a statistical
shape model. We also applied our method to real contours and achieved good
quality reconstructed meshes.
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