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Abstract

Bone finite element (FE) studies based on infant post-mortem computed tomography (CT)

examinations are being developed to provide quantitative information to assist the differenti-

ation between accidental and inflicted injury, and unsuspected underlying disease. As the

growing skeleton contains non-ossified cartilaginous regions at the epiphyses, which are

not well characterised on CT examinations, it is difficult to evaluate the mechanical behav-

iour of the developing whole bone. This study made use of paired paediatric post mortem

femoral CT and magnetic resonance imaging (MRI) examinations at two different stages of

development (4 and 7 months) to provide anatomical and constitutive information for both

hard and soft tissues. The work aimed to evaluate the effect of epiphyseal ossification on

the propensity to shaft fractures in infants. The outcomes suggest that the failure load of the

femoral diaphysis in the models incorporating the non-ossified epiphysis is within the range

of bone-only FE models. There may however be an effect on the metaphysis. Confirmation

of these findings is required in a larger cohort of children.

Introduction

Bone fractures in the United Kingdom account for 10–25% of accidental injuries in children

[1]. Of these, long bones (e.g., femur, tibia or radius) have the highest fracture rates [2–4]. A

survey conducted of 382 children aged 2–14 years old found that 41.6% of fractures occurred

at home [5]. It has also been reported that 25% of injuries in children aged 12 months or youn-

ger are inflicted [6,7]. Most fractures seen in child abuse occur in children younger than 3

years old, with 80% occurring before 18 months [2,4]. The determination of whether the inju-

ries are accidental or not depends largely on clinician’s experience, as no reliable quantitative

diagnostic tools are available [3,8,9]. Diagnosing child abuse continues to be a challenging task

for experienced clinicians with potential negative consequences. Reports have shown that a

significant number of infant child abuse cases are at first misdiagnosed (or missed) [2,10],

which may lead to further harm [9,11,12]. Given this scenario, there is a need to clarify the
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mechanisms of childhood injury, particularly in children yet to develop appropriate communi-

cation skills [4,6].

The growing skeleton contains non-ossified cartilaginous regions at the epiphyses (up to

35% non-ossified in infants [13]) and the femoral head only completely ossifies around 14

years of age [14,15]. Therefore the femoral head is not well characterised by computed tomog-

raphy (CT) scans. In contrast, magnetic resonance imaging (MRI) shows cartilage more

clearly, providing anatomical information for soft tissues, while avoiding exposure to radiation

[15–18]. Although finite element (FE) models available in the literature are not fully represen-

tative of the complete age range of younger children, they already provide preliminary quanti-

tative information to differentiate accidental from inflicted injury [19–22]. However, none of

these models include geometric detail of the ossifying regions of the long bone. A combination

of CT and MRI would therefore lead to the development of improved FE models of immature

long bones (with more precise geometries).

Previous work on paired CT/MRI examinations include evaluation of the human temporal

bone [23] and the porcine femur [24]. In the specific area of FE models generated from CT

and MRI, the range of applications include the human adult tibiofemoral joint [25] and the

intervertebral disc [26]. However, to the authors’ best knowledge, co-registration of the two

imaging modalities towards modelling of human infant bone has not been previously

reported.

This work proposes a methodology to combine femoral CT and MRI examinations of the

same child, exploiting the advances in commercially available imaging and modelling software.

This new framework is intended to contribute to the development of more complete FE mod-

els of growing infant bones, incorporating the contribution of tissues at different levels of

mineralisation [8,14,27,28]. An immediate application of this work is to elucidate the mecha-

nisms of metaphyseal fractures [20], which is not well studied due to the lack of information or

method to capture the ossifying region of the epiphysis. In the long term, such an approach is

expected to enhance our understanding of the biomechanics of the developing femoral head

[3,19,29,30] and differentiating accidental from inflicted injury.

Methods

We used paired post-mortem CT and MRI scans of two infants (age 4 and 7 months), selected

from the post mortem paediatric and perinatal imaging database of the Radiology Department,

Great Ormond Street Hospital, London [31,32]. Cause of death was not disclosed. However,

images were reviewed by experienced radiologists to ensure that the skeleton appeared normal

on the scans. Ethical approval and parental consent were obtained for the use of these images

for research purposes (LREC 13/LO/1494). At the time of the study, there were only two cases

from this database having at least the proximal part of the femur clearly visible on both imag-

ing modalities and aged under 18 months (4 and 7 months), and therefore still having a sub-

stantial portion of ossifying cartilage in the epiphysis.

The bony geometry of the femoral diaphysis was obtained from CT examinations and

the cartilaginous tissues of the ossifying proximal femoral head region were obtained from

MRI. The protocol consisted of independent segmentation of the CT and MRI data, using

Amira 6.3 (FEI Visualization Sciences Group, France). CT segmentation was performed

semi-automatically (through adjustable threshold), while MRI segmentation was manual.

Using the multiplanar views tool available in Amira, the segmented regions of interest were

matched and aligned. This alignment (and repositioning) was based on the manual align-

ment of the ossifying region with respect to the femoral diaphysis, using the epiphyseal area

as the reference. Independent 3D surface models were then generated and imported into

Infant femur modelling through paired CT and MRI scans
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ScanIP 7.0 (Simpleware Ltd, UK). This software allows for the combination of the indepen-

dent surface models into a single surface model, resulting in the generation of a FE model

that contains both the bony diaphysis and the cartilaginous proximal femoral head (Fig 1).

This protocol ensures a continuous subject-specific geometry of the femur and can be read-

ily applied to other developing long bones.

The 4-month-old model had 137493 nodes and 94922 elements, while the 7-month-old

model had 161969 nodes and 111261 elements. Both models used 10-node tetrahedral ele-

ments. The material properties of each FE model were subject-specific (estimated from CT

attenuation) and estimated using Bonemat V3 (Rizzoli Institute, Italy) [33]. This is in contrast

to common material properties used in infant studies, which are usually scaled-down from

adult data [14,34]. This software calculates an averaged Young’s modulus for each element,

integrated from surrounding pixels in the original CT scans [19,33,35]. The calibration meth-

ods and mathematical relationships applied were taken from Li et al. (2015), from which fur-

ther information on image calibration and material property extraction from Bonemat is

Fig 1. FE models of infant femur (left– 4 months; right– 7 months). Femoral dimensions are given in Table 1. Please note that only the proximal ossifying region
was present in the MRI scans, i.e., the distal ossifying region was not extracted from the MRI scans.

https://doi.org/10.1371/journal.pone.0218268.g001
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available. The distribution of Young’s modulus along each model is shown in Fig 2, where a

smooth transition between diaphyseal and ossifying regions can be seen. It must be highlighted

that the properties of the ossifying region (i.e., the cartilaginous epiphysis) were also estimated

from the CT scans (since this region could be considered transitional between cartilage and

bone), in order to provide subject-specific material estimation for the porohyperelastic mate-

rial (as described in the following paragraph).

Despite the significant difference in the size of each femur, the Young’s modulus range is

similar (0.60–17.82 GPa for the 4 month old infant and 0.46–16.95 GPa for 7 the month old)

and aligned with the known literature [36–38]. The cross-sectional epiphyseal area between

the diaphysis and the ossifying region was calculated, as well as the volume of the proximal

epiphyses: the 7 months epiphysis is about 6.4 times that of the 4-month old (see Table 1). The

areas corresponding to the diaphysis were modelled as isotropic linear elastic (as per Bone-

mat’s attribution); a detailed description of the material model can be found in Li et al. (2015).

The ossifying region was modelled as porohyperelastic (linear permeability and Neo Hookean

solid model), following a widely used approach to model cartilaginous soft tissue. The Neo

Hookean parameters (C10 and D1, in Eq 1, which are associated with the stiffness of the mate-

rial) were calculated [39] from the Young’s modulus value (E) extracted from Bonemat, using

Eqs 2 and 3, where ν is the Poisson’s ratio, with a value of 0.20, taken from the literature

Fig 2. Subject-specific material properties and distribution. a) 4 months; b) 7 months. The maximum stiffness in the cortical bone is
approximately 16–18 GPa for both models. The average Young’s modulus for the ossifying region is estimated to be between 0.46 and 0.60
GPa. The transition between ossifying and mineralised bone can be clearly seen towards the proximal and distal ends.

https://doi.org/10.1371/journal.pone.0218268.g002

Table 1. Dimensions of the infant femur FE models.

4 months 7 months

Proximal-distal length (cm) 10.55 13.28

Epiphyseal cross-sectional area (cm2) 2.14 3.37

Proximal epiphysis volume (cm3) 1.24 7.91

Total volume (cm3) 13.13 30.79

https://doi.org/10.1371/journal.pone.0218268.t001
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[20,40]. Poroelastic properties were also extracted from the literature [41]. A summary of the

material properties is shown in Table 2.
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In order to obtain more accurate boundary conditions, previous work proposed a coordi-

nate system for the femur where two cross-sections of the diaphysis were identified at 25% and

75% of its total length [22]. The same coordinate system was used in this study in order to

compare current results with those of the previous publication. The centroids of these two

cross-sections were estimated, and the X-axis was defined as a line passing through both cen-

troids, running from proximal to distal. A positive Y-axis points medially and a positive Z-axis

points to the anterior perpendicular to the X-Y plane. This coordinate system (Fig 3) ensures

the minimisation of the implicit bending effect due to anatomical asymmetry of the femur

[19,22]. The anatomical reference points (1 and 2) were also selected to be consistent with the

bone only study by Li et al., 2015 [19], in which inter- and intra-observer reliability tests

revealed these points to be the most reliable landmarks.

Two sets of experiments were carried out, namely torsion and uniaxial loading. Both loads

were applied at Point 1, keeping the femur fixed for all degrees of freedom at Point 2. Torsion

around the longitudinal axis was applied to mimic a twist to the femur, and the three uniaxial

loads were chosen to represent direct impact load applied to the bone (at Point 1) in each of

the X, Y, and Z directions. Point 1 was selected for application of the load because it is the ossi-

fication centre for the proximal femur, which will become the femoral head once fully mineral-

ised. This is in line with the approach taken in studies of adult femurs.

For torsion, external moment of 2kN.mm was applied, in order to compare the moment to

fail of these models (femur with bone plus ossifying region) with the analogous simulations

performed by Altai et al. (2018) [22] in their model (femoral diaphysis only). The moment to

fail corresponds to the maximum strains or the threshold of elastic strain limit, which were

reported to be 0.73% in tension and 1.04% in compression, following the works of Bayraktar

et al. (2004) [42] and Schileo et al. (2007) [43] on adult bone. It must be highlighted that only

the diaphysis was considered for this calculation. For the uniaxial loads of 200N, different

directions were selected to reveal which efforts would be more relevant to induce highly local-

ised stress-strain levels on the infant femur and potentially lead to metaphyseal or shaft frac-

tures. The FE simulations were performed with Abaqus 6.13 (Dassault Systèmes Simulia

Corp., USA).

Table 2. Material properties of the ossifying region (proximal epiphyses) for the two models.

4 months 7 months

Permeability (m4/Ns) [41] 0.00455

Void ratio [41] 4.50

Poisson’s ratio [20,40] 0.20

C10 (MPa) 125.34 96.09

D1 0.0060 0.0078

https://doi.org/10.1371/journal.pone.0218268.t002

Infant femur modelling through paired CT and MRI scans
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Results

The maximum principal strain distributions in the two femur models under torsion are shown

in Fig 4. The maximum principal strain range on the 4 months model was 4.1x10-06 to

2.9x10-01, compared to 9.0x10-07 to 5.3x10-02 on the 7 months model. The area of high strain

was located on the femoral diaphysis. The developing greater trochanter appeared to be almost

strain-free, while some strain concentration appeared to build up around the epiphyses,

Fig 3. Coordinates system for the infant femur, with the reference points for applying the loading conditions.

https://doi.org/10.1371/journal.pone.0218268.g003
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particularly in the 4 months model. The moment to failure evaluated in these two models were

compared against the values obtained from previous simulations performed exclusively on the

femoral diaphysis [22], which yielded very similar results. The comparison of moment to fail

calculations is shown in Fig 5.

The maximum principal strains under uniaxial loads predicted for the 4 months model are

visibly higher than those of the 7 months model, as shown in Fig 6 (4-month-old) and Fig 7

(7-month-old), respectively. Maximum principal strains is plotted since the bone first failed in

tension.

These uniaxial loads seem to be promoting strain accumulation on the diaphyseal regions,

which means the epiphyses were less deformed. Femoral head deformation was most evident

following the bending effect of the load applied on the Z-axis (anterior-posterior direction),

regardless of developmental stage of the femur.

Fig 4. Maximum principal strain distributions for a 2kN.mm external moment applied on infant femur (left– 4 months; right– 7
months).

https://doi.org/10.1371/journal.pone.0218268.g004
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Discussion

This study suggests that the proximal epiphysis is not as significant for the biomechanics of the

whole infant femur as has previously been speculated [20,44,45]. The comparison with FE

models of bone only infant femora models [22] showed an agreement with the moment to fail,

for both the 4 and the 7 months old subjects.

Regarding the characterization of the proximal ossifying region, it was observed that the

material transition from the diaphysis to the cartilage-based soft tissues is smooth, reflecting

the mineralisation process. Although the method for calibration applied through Bonemat was

originally developed for bony material on CT scans, the authors believe this is the best possible

approach to obtain representative mechanical properties of that individual given the scarce

data available to describe children’s cartilage material properties. An alternative approach

would be to assume adult articular or hyaline cartilage property for this region, which is likely

to differ from infants. The thickness of the ossifying region is very different from regular carti-

lage layers, and the current knowledge of the mineralisation process of developing bone sug-

gests that this region is formed of an intermediate material between bone and cartilage

[8,18,27,29]. Plus, the material properties extracted from Bonemat (Young Modulus in the

range of 460–600 MPa) indicate towards a transitional material between what is known for

adult cartilage (Young Modulus in the range of 1-10MPa [46,47]) and bone. Another limita-

tion of this study is that the bone was modelled as isotropic linear elastic. Although this is a

Fig 5. Moment to fail of infant femurs, comparing bone only calculations from Altai et al. (2018) with current results for bone plus ossifying cartilaginous region.
Note that a different CT-only dataset was used in Altai et al. (2018).

https://doi.org/10.1371/journal.pone.0218268.g005
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common simplification, the effect of anisotropy on the whole bone (including ossifying

region) needs to be addressed in the future.

Pure uniaxial compression through the proximal-distal length of the femur could not be

achieved due to asymmetry of the femur. These loading conditions resulted in a combination

of lateral compression and bending. As such, the effect of the direct load (200N) was reduced,

particularly when compared with the bending caused by the other two uniaxial loading condi-

tions (Y- and Z-axes in this coordinate system). These conditions help to extrapolate how the

infant femur responds to potentially harmful pushing or pulling movements in different direc-

tions. Given that the major deformation occurred with frontal bending loads (Z-axis) and that

this movement is likely to be clinically associated with inflicted injury, one can speculate that

frontal plane infant femoral injuries/fractures have greater probability of being associated with

physical abuse through excessive loading than torsion or other uniaxial loads [7,29,45]. It

should be also noted that although the loading conditions applied here were simplified, as in

other work on developing bones (e.g., Tsai et al. 2017), they were related to the magnitude and

direction of abuse-inflicted injuries. Typically, a combination of these loads would occur in a

real-world infant injury scenario, such as those causing the classic metaphyseal lesion [48]. To

the authors’ best knowledge, there has been only one previous modelling paper on the classic

metaphyseal lesion [20], in which the authors excluded the epiphysis, making the assumption

that “any influence of the physis or ligaments on the relative strain patterns would be negligi-

ble”. However, the current study does indicate that the strain distribution changes within the

Fig 6. Maximum principal strain distributions when a uniaxial load is applied in the X-, Y- or Z-axis for the 4 months model.

https://doi.org/10.1371/journal.pone.0218268.g006
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transition region and this is worth further investigation. The biggest impacts of including the

epiphysis seems to be twofold: (a) there is now an area of concentrated strain at the transition

region; and (b) the epiphysis itself suffers from highly localised strain, even though the overall

mechanical behaviour of the shaft is largely unaffected. Our results indicate that injuries close

to the epiphysis should be modelled with caution, since the mineralising cartilaginous epiphy-

sis does seem to have an effect on local strain distribution.

There is very limited paired CT/MRI imaging data available containing both the femoral

diaphysis and proximal femoral head, contributing to the lack of previous studies on the non-

ossified regions of the long bones, but the two subjects in this current study show proof of

principle in the target population. This would provide a new and non-invasive image-based

approach to investigate young children’s bone properties, complementing previous mechani-

cal studies of cadaveric bone samples, which are also scarce [10,36–38]. The developed

approach could also be useful to validate failure predictions on paired CT-MRI FE models of

young animal bones, by comparing with destructive results. Future work should include more

infant cases considering a wider range of developmental stages, up to 3 years old [4]. The

establishment of well-defined landmarks or accurate measurement and marking of the epiphy-

seal area may improve the accuracy of the process, although manual adjustments might still be

needed to ensure consistent representation of the femoral anatomy.

Fig 7. Maximum principal strain distributions when a uniaxial load is applied in the X-, Y- or Z-axis for the 7 months model.

https://doi.org/10.1371/journal.pone.0218268.g007
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In conclusion, this work introduces a new approach to incorporate both bone and ossifying

cartilage in FE models of the infant femur, on both geometrical and constitutive aspects of

modelling. The results suggest that the proximal ossifying region has no significant effect on

the moment to fail of the infant femoral shaft under torsion, although axial loading in the

proximal femur produced variable results around the metaphyseal region that require further

investigation.

Acknowledgments

Funding from EPSRC (“Multisim”, grant no. EP/K03877X/1) is acknowledged.

A. P. G. Castro acknowledges funding from Portuguese Science and Technology Founda-

tion through LAETA project UID/EMS/50022/2019 and PTDC/BBB-BMC/5655/2014.

O. J. Arthurs is funded by an NIHR Clinician Scientist Fellowship. This article presents

independent research funded by the National Institute for Health Research (NIHR) and sup-

ported by the Great Ormond Street Hospital Biomedical Research Centre. The views expressed

are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department

of Health.

Author Contributions

Conceptualization: A. P. G. Castro.

Data curation: A. P. G. Castro, X. Li.

Funding acquisition: D. Lacroix.

Investigation: A. P. G. Castro, Z. Altai, S. C. Shelmerdine.

Methodology: A. P. G. Castro, Z. Altai, S. C. Shelmerdine, O. J. Arthurs.

Project administration: D. Lacroix.

Supervision: A. C. Offiah, O. J. Arthurs, X. Li, D. Lacroix.

Validation: X. Li.

Writing – original draft: A. P. G. Castro.

Writing – review & editing: A. P. G. Castro, Z. Altai, A. C. Offiah, S. C. Shelmerdine, O. J.

Arthurs, X. Li, D. Lacroix.

References
1. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of Childhood Fractures

in Britain: A Study Using the General Practice Research Database. J Bone Miner Res. 2004; 19: 1976–
1981. https://doi.org/10.1359/JBMR.040902 PMID: 15537440

2. Ravichandiran N, Schuh S, Bejuk M, Al-Harthy N, Shouldice M, Au H, et al. Delayed Identification of
Pediatric Abuse-Related Fractures. Pediatrics. 2010; 125: 60–66. https://doi.org/10.1542/peds.2008-
3794 PMID: 19948569

3. Lonergan GJ, Baker AM, Morey MK, Boos SC. From the Archives of the AFIP. RadioGraphics. 2003;
23: 811–845. https://doi.org/10.1148/rg.234035030 PMID: 12853657

4. Brown D, Fisher E. Femur Fractures in Infants and Young Children. Am J Public Health. 2004; 94: 558–
560. https://doi.org/10.2105/ajph.94.4.558 PMID: 15054003

5. Valerio G, Gallè F, Mancusi C, Di Onofrio V, Colapietro M, Guida P, et al. Pattern of fractures across
pediatric age groups: analysis of individual and lifestyle factors. BMC Public Health. BioMed Central
Ltd; 2010; 10: 656. https://doi.org/10.1186/1471-2458-10-656 PMID: 21034509

6. Baker R, Orton E, Tata LJ, Kendrick D. Risk factors for long-bone fractures in children up to 5 years of
age: a nested case-control study. Arch Dis Child. 2015; 100: 432–7. https://doi.org/10.1136/
archdischild-2013-305715 PMID: 25398446

Infant femur modelling through paired CT and MRI scans

PLOSONE | https://doi.org/10.1371/journal.pone.0218268 June 18, 2019 11 / 13

https://doi.org/10.1359/JBMR.040902
http://www.ncbi.nlm.nih.gov/pubmed/15537440
https://doi.org/10.1542/peds.2008-3794
https://doi.org/10.1542/peds.2008-3794
http://www.ncbi.nlm.nih.gov/pubmed/19948569
https://doi.org/10.1148/rg.234035030
http://www.ncbi.nlm.nih.gov/pubmed/12853657
https://doi.org/10.2105/ajph.94.4.558
http://www.ncbi.nlm.nih.gov/pubmed/15054003
https://doi.org/10.1186/1471-2458-10-656
http://www.ncbi.nlm.nih.gov/pubmed/21034509
https://doi.org/10.1136/archdischild-2013-305715
https://doi.org/10.1136/archdischild-2013-305715
http://www.ncbi.nlm.nih.gov/pubmed/25398446
https://doi.org/10.1371/journal.pone.0218268


7. Barber MA, Sibert JR. Diagnosing physical child abuse: the way forward. Postgrad Med J. 2000; 76:
743–9. https://doi.org/10.1136/pmj.76.902.743 PMID: 11085763

8. Gallo S, Vanstone CA,Weiler HA. Normative data for bonemass in healthy term infants from birth to 1
year of age. J Osteoporos. 2012; 2012: 672403. https://doi.org/10.1155/2012/672403 PMID: 23091773

9. Jenny C. Evaluating Infants and Young ChildrenWith Multiple Fractures. Pediatrics. 2006; 118: 1299–
1303. https://doi.org/10.1542/peds.2006-1795 PMID: 16951031

10. Prosser I, Lawson Z, Evans A, Harrison S, Morris S, Maguire S, et al. A timetable for the radiologic fea-
tures of fracture healing in young children. Am J Roentgenol. 2012; 198: 1014–1020. https://doi.org/10.
2214/AJR.11.6734 PMID: 22528890

11. Hindley N. Risk factors for recurrence of maltreatment: a systematic review. Arch Dis Child. 2006; 91:
744–752. https://doi.org/10.1136/adc.2005.085639 PMID: 16840503

12. Pandya NK, Baldwin K, Kamath AF,Wenger DR, Hosalkar HS. Unexplained fractures: Child abuse or
bone disease. A systematic review. Clin Orthop Relat Res. 2011; 469: 805–812. https://doi.org/10.
1007/s11999-010-1578-z PMID: 20878560

13. Scheuer L, Black S, Christie A. Developmental Juvenile Osteology. Elsevier Inc; 2000.

14. Forestier-Zhang L, Bishop N. Bone strength in children: understanding basic bone biomechanics. Arch
Dis Child Educ Pract Ed. 2016; 101: 2–7. https://doi.org/10.1136/archdischild-2015-308597 PMID:
26269494

15. Pinheiro M, Dobson CA, Perry DC, FaganMJ. New insights into the biomechanics of Legg-Calvé-
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