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Abstract To investigate the response of the meteoric metal layers in the mesosphere and lower
thermosphere regions to the 27-day solar rotational cycle, a long-term simulation of the Whole
Atmosphere Community Climate Model with the chemistry of three metals (Na, K, and Fe) was analyzed.
The correlation between variability in the metal layers and solar 27-day forcing during different phases of
the solar 11-year cycle reveals that the response in the metal layers is much stronger during solar
maximum. The altitude-dependent correlation and sensitivity of the metal layers to the solar spectral
irradiance demonstrates that there is a significant increase in sensitivity to solar rotational cycle with
increasing altitude. Above 100 km, the sensitivity of the metals to changes of 10% in the solar spectral
irradiance at Lyman-alpha is estimated to be −5%. A similar response is seen in Na layer measurements
made by the Optical Spectrograph and InfraRed Imaging System instrument on the Odin satellite.

1. Introduction
Compared to the lower atmosphere, the upper mesosphere and lower thermosphere (MLT) region is a chal-
lenging region of the atmosphere to study because of the relative paucity of observations. Nevertheless, the
MLT is a key region of the near-Earth space environment, with electrodynamical and radiative processes
from above and dynamical processes arising from a variety of upward propagating atmospheric waves from
below (e.g., see Dawkins et al., 2016; Plane et al., 2015; Yigit et al., 2016).

There has been a long-term interest in the influence of the solar cycle in the upper atmosphere and possi-
ble ways in which it could couple downward to influence climate. However, due to the paucity of long-term
(multidecade) observations in the MLT, it is actually quite difficult to determine how the atmosphere
responds to the solar cycle. In response to this, researchers have studied how composition and dynamics
vary on shorter solar timescales, in particular the solar rotation variation, that is, the 27-day cycle. However,
extracting a clean 27-day response in MLT composition has proved difficult due to the small amplitude of
the signal. For example, Keating et al. (1987) determined ozone increased by only 0.1% for a 1% increase in
Lyman-𝛼 at 80 km. This motivates looking for the 27-day signal in other MLT parameters. Over the past few
decades, a number of satellite observations and models have been used to look at the 27-day variations in
composition in the MLT. For example, the response of mesopause temperatures (von Savigny et al., 2012),
the hydroxyl radical and water vapor (Shapiro et al., 2012), atomic oxygen (Lednyts'kyy et al., 2017), stan-
dard phase heights (von Savigny et al., 2019), and noctilucent clouds (Robert et al., 2010; Thurairajah et al.,
2017) to the solar 27-day cycle have been studied.

One area that has not been explored before is the 27-day response of the meteoric metal layers (e.g., Na,
K, and Fe). Metal layers are produced in the MLT by meteoric ablation and, because they can be observed
by ground-based lidar and spaceborne spectroscopy, are widely used as tracers for chemical and dynamical
processes that occur within this region of the atmosphere (Plane et al., 2015). The metal composition in the
MLT is dependent on the interaction of photochemical reactions, chemical reactions, dynamics, and elec-
trodynamics. Among these processes, solar radiation affects not only the photo-ionization and photolysis
rates but also the chemical reactions with other chemical components (e.g., O, O2, O3, and OH). There-
fore, understanding the influence of solar activity on the metal layers is one of the keys to understanding
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solar-terrestrial coupling, and the accurate models and continuous observations of such metal layers enable
us to investigate such processes (Dawkins et al., 2016, 2014; Feng et al., 2013; Marsh et al., 2013; Plane et al.,
2014). Dawkins et al. (2016) studied the response of the Na, K, and Fe layers to the 11-year solar cycle by
comparing observations from the Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin
satellite, with simulations from the Whole Atmosphere Community Climate Model (WACCM) containing
interactive Na, K, and Fe chemistry. In contrast, examining the response to short-term solar variations is
more challenging because of the need for continuous spatiotemporal sampling with a small observational
uncertainty. Thus, simulations with a whole atmosphere model are a feasible first step for investigating the
response of metal layers within the MLT region to the 27-day solar cycle.

The scope of this paper is to examine the response of the Na, K, and Fe layers in the MLT to the 27-day solar
cycle, using WACCM simulations. The paper is organized as follows: A brief description of the model data
is given in section 2; the results of the cross-correlation analysis and superposed epoch analysis (SEA) for
the metal layers are discussed in section 3, along with a parallel analysis of OSIRIS Na observations; and
section 4 contains the conclusions.

2. Data Description and Analysis
In this study, output from a free-running version of WACCM is analyzed for solar-driven 27-day variations
of the Na, K, and Fe metal layers. WACCM is a climate chemistry model framed by the Community Earth
System Model (Hurrell et al., 2013) developed by the National Center for Atmospheric Research, and the key
chemistry and dynamical features are described in detail in Marsh et al. (2013). Validated metal chemistry
modules for Na (Marsh et al., 2013), K (Plane et al., 2014), and Fe (Feng et al., 2013) are added. The vertical
resolution in the MLT is∼3.5 km, and model output frequency is 30 min for selected stations. The prescribed
daily solar spectral irradiance (SSI;Lean et al., 2005) and energetic particle precipitation are also included
(Marsh et al., 2013).

Data analysis is focused on the daytime (0800 to 1600 LT) average of the metal layers over the Arecibo site
(18.3◦ N, 293.2◦ E). The low-latitude Arecibo site was chosen in order to avoid the influence of energetic
particle precipitation which might interfere with the underlying 27-day cycle, and this region is also the most
directly affected by the solar irradiance. The data sets of a few stations located in middle and high latitudes
were also analyzed. However, the correlation with 27-day solar cycle weakened with increasing latitude, and
the analysis of latitude response is beyond the scope of this article.

In this study we use the SSI at Lyman-alpha (121.5-nm wavelength) as a proxy indicator for the ultraviolet
(UV) solar irradiance. The long-term simulation lasts for 50 years (1955–2005), and we then analyzed the SSI
during this period using wavelet analysis (Torrence & Compo, 1998). The power spectrum reveals a highly
pronounced 27-day solar cycle during the solar maximum phase of solar cycle 22 (1989–1994). To directly
examine the metal layer response to the 27-day cycle during solar minimum and solar maximum periods,
we calculated the data anomaly between 1984 and 1988 for solar minimum and the anomaly from 1989 to
1994 for solar maximum (see section 3). The time evolution of the wavelet power at a period of 27 days of
the SSI anomaly for the years from 1984 to 1994 is presented in supporting information Figure S1.

In order to test the response to the 27-day solar cycle predicted by the model, we use the Na atomic density
retrieved from the OSIRIS instrument on the Odin satellite (Gumbel et al., 2007; Fan et al., 2007). Here
OSIRIS Na data are daily averaged over the tropics (27◦ S–27◦ N) from 2004 to mid-2013, spanning portions of
solar cycles 23 and 24. Although the solar cycle 24 is unusually quiet (e.g., Singh & Tonk, 2014), observations
can still be used to test the model result.

3. Results and Discussion
In order to remove the influence of long-term trends and very short-term fluctuations and to focus on the
response to the 27-day solar cycle, we subtracted the 60-day running mean from the daily irradiance and
model output and then performed a 3-day running mean smoothing to obtain the anomaly. Figure 1 presents
an example of the running mean method applied to the WACCM K partial column density above 110 km
and SSI. There is a clearly visible and statistically significant anticorrelation between the K and SSI index
anomaly time series (Figure 1b), with a maximum negative cross-correlation coefficient of−0.53 (significant
at the 99.9% confidence level) at a time lag of 0 days.
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Figure 1. (a) Time series of daily averaged Whole Atmosphere Community Climate Model-K partial column density
above 110 km above Arecibo from 1989 (black line) and 60-day running mean (red line) for the time period analyzed.
(b) K and SSI index anomalies obtained by subtracting a 60-day running mean from the time series (smoothed with a
3-day running mean filter). SSI = solar spectral irradiance.

The cross correlation as a function of lag of the anomaly of the modeled Na, K, and Fe atoms in mixing ratio
and temperature at Arecibo versus SSI anomaly are presented in Figure 2, for solar maximum (left panel) and
solar minimum (right panel). Na, K, and Fe atoms all show a strong anticorrelation (correlation coefficients
up to −0.5) with essentially no time lag at heights above ∼100 km, while the corresponding temperature
shows a positive correlation in the same altitude range (Figure 2g). As discussed in Plane et al. (2015),
ion chemistry dominates above 100 km, and the rate of direct photo-ionization, as well as charge transfer
with ambient NO+ and O+

2 ions, increases with increasing UV solar irradiance. Metal atoms are therefore
converted more rapidly to metal ions. Of course, the increased electron concentration, which essentially
balances the NO+ and O+

2 concentrations to preserve charge neutrality (metallic ions are a minor compo-
nent, apart from in sporadic E layers), should also lead to faster dissociative recombination of molecular
metal-containing ions (e.g., Na+·N2 and FeO+) to produce metal atoms. Thus, the rates of ionization and
neutralization would both speed up by essentially the same factor, so the balance between neutral metal
atoms and metal ions would be approximately constant. However, other factors play a role.

First, increased extreme ultraviolet (EUV) radiation causes an increase in the atomic O mixing ratio (i.e., a
positive correlation with SSI above 120 km; Figure S2b). O reduces molecular ions back to atomic metal ions
(e.g., FeO+ + O → Fe+ + O2), and thus prevents dissociative recombination to neutral metal atoms (Plane
et al., 2015). Interestingly, the cross correlation between the WACCM daytime O density anomaly and SSI
shows a time lag of 13 days (Figure S2a), which is in good agreement with the observations of Lednyts'kyy
et al. (2017). Second, the O3 mixing ratio (and density) are anticorrelated with SSI (Figures S2c and S2d). In
the case of Fe+, the reaction with O3 to form FeO+, which is the first step above 100 km for converting Fe+

to Fe, will therefore be slower, reinforcing the anticorrelation of Fe with SSI. Lastly, the strong correlation
of temperature with SSI (Figure 2g) means that at zero time lag, the recombination reactions which form
clusters (e.g., Na+ + N2 (+ N2) → Na+·N2) which then dissociatively recombine with electrons, and dielec-
tronic recombination of the metal ions with electrons (e.g., Na+ + e− →Na + h𝜈) get slower because their
rate coefficients have negative temperature dependences (Plane et al., 2015).
All these factors explain why the metal layers above 100 km are anticorrelated with solar irradiance.
At the metal peak height (∼91 km for Na and K and ∼87 km for Fe, see, e.g., Plane et al., 2015),
neutral chemistry dominates. The simulated temperature exhibits a weak (though still significant) pos-
itive correlation with the 27-day solar cycle around 90 km (Figure 2g). For Na and Fe, the rate coef-
ficients for the reactions which release the metal atoms from their reservoirs (NaHCO3 + H → Na
+ H2CO3; FeOH + H → Fe + H2O) increase with rising temperature (i.e., have positive activation
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Figure 2. Cross-correlation functions between Whole Atmosphere Community Climate Model results and solar spectral irradiance at 121.5 nm as function of
altitude and response time lag. Daytime for the solar maximum (left panel: a, c, e, and g) and minimum (right panel: b, d, f, and h). Colored areas: 99%
confidence.
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Figure 3. Superposed epoch analysis results of Whole Atmosphere Community Climate Model metal 27-day response with the standard error bars for Total
Column Density (left panel) and partial Column Density above 100 km (right panel); dashed lines represents 99% confidence (see Text S1 for further details;
Adams et al., 2003). SSI = solar spectral irradiance.

energies; Plane et al., 2015). This compensates for the neutral metal atoms lost by ionization, so that the
overall response to solar radiation is not significant at the layer peaks but is positively correlated on the
layer undersides (Figures 2a and 2e). In contrast, for K, the reaction KHCO3 + H has a very large activation
energy and hence does not play a role at the low temperatures of the MLT (Plane et al., 2014). Thus, the K
layer peak and solar radiation are anticorrelated. In comparison with solar maximum, the results for solar
minimum (right panel of Figure 2) are significantly weaker. Therefore, in the rest of this study, we will focus
on results from the period around solar maximum.
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Figure 4. Superposed epoch analysis results of (a) Optical Spectrograph
and InfraRed Imaging System Na 27-day response and (b) SSI at
Lyman-alpha (121.5-nm wavelength), with the standard error bars during
period of 2004–2013 over the tropics; dashed lines represents 95%
confidence. SSI = solar spectral irradiance.

After demonstrating a clear response of the three metal layers to the
27-day solar cycle at each altitude, we now investigate the response in
more detail. SEA (Chree, 1913) was applied to acquire a more quantifi-
able response to solar activity during solar maximum. This method is
carried out in two stages, the first to find the local maxima of SSI to align
the epochs and the second to average these epochs along with the data
from day −15 to day +15 within each epoch. In this study, for the solar
maximum of 1989–1994, we selected a total of 83 epochs for analysis.
Figure 3 shows the superposed epoch anomalies of the calculated metal
abundances and temperature anomalies. According to the vertical distri-
bution of the metal layers, the total column density of each metal species
(left panel of Figure 3) mostly reflects the response of the main layer, and
the temperature anomaly at 90 km (Figure 3g) represents the actual tem-
perature variability in the main metal layers. In general, Na, K, and Fe
all exhibit a negative correlation with solar forcing. Considering the error
bars, only the total column density of K is significant at the 99% level
among the three metals, which is consistent with the conclusions drawn
from Figure 2. The mean reduction of potassium at a time lag of 0 days is
∼3%, corresponding to a ∼7% increase in the SSI index.

As discussed in relation to Figure 2, there are significant anticorrelations
between the metal atom densities and SSI above 100 km. Therefore, we
also performed a SEA for the partial column density anomalies of the
metal layers only above 100 km. The results are presented in the right
panel of Figure 3, as well as the temperature anomaly at 100 km. All
three metal anomalies are significantly negatively correlated with SSI
anomaly, with a zero time lag, which is consistent with the previous con-
clusions (Figure 2). The epoch mean decrease of Na, K, and Fe atoms
above 100 km is about 4% at 0-day time lag. Note that the temperature
anomaly at 100 km reaches a maximum at day −3 and is not synchro-
nized with the metal layers. This confirms that the ion chemistry in this
region is largely independent of temperature (Plane et al., 2015).

The SEA method was then applied to OSIRIS Na raw data (also without
a 3-day running mean smoothing) during the period of 2004–2013 over

the tropics for a total of 65 epochs. As shown in Figure 4, a similar negative correlation with solar forcing is
observed to that illustrated in Figure 3. Although the larger observational uncertainties (which arise because
of the smaller size of the data set) mean that the correlation in Figure 4 is barely statistically significant,
it nevertheless supports the modeled correlation and is the best that can be done with currently available
observational data.

To make the correlation more robust, we applied the scatter diagram method to quantitatively determine
the correlation between the 31 data points of the epoch averaged values of the SSI anomaly and the rela-
tive metal anomaly data sets, as well as the temperature anomaly. The Pearson correlation coefficient and
linear regression were used to determine the statistical significance and sensitivity (see Figure S3). The sen-
sitivity of the modeled partial column densities of Na, K, and Fe above 100 km with respect to the SSI index
data are −0.46% (±0.04%)/(1% SSI index), −0.46% (±0.04%)/(1% SSI index), and −0.52% (±0.05%)/(1% SSI
index), respectively. The sensitivity of the Na, K, and Fe responses determined by the slope of the fitted line
at each altitude as a function of altitude for the solar maximum period is illustrated in Figure S4. In the
peak layer (∼90 km), only potassium exhibits a significant anticorrelation with a sensitivity value of approx-
imately −0.3%/(1% SSI index). Above 100 km, Na, K, and Fe show similar sensitivity values and trends. The
maximum sensitivity value reaches approximately −1% at these higher altitudes.

4. Conclusions
The response of the Na, K, and Fe layers to the 27-day solar rotational cycle has been investigated by using
the WACCM model with added metal chemistry. This is the first time that the solar-driven 27-day variation
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of the metal layers in the MLT region has been identified. The following features of the MLT response of
metal layers are noteworthy: (1) The metal response is significantly stronger during solar maximum than
solar minimum. (2) Above 100 km, the significant anticorrelation of the metal layers with SSI is explained
by the role of ion-molecule chemistry (Plane et al., 2015). (3) At the metal layer peaks, only K shows a small
anticorrelation within error, which is consistent with the response of the K layer to the 11-year solar cycle
(Dawkins et al., 2016). The only available observational data of the Na layer made by the spaceborne OSIRIS
instrument also shows a weak anticorrelation to the 27-day solar rotational cycle during 2004–2013, which
is consistent with the WACCM analysis.

To our knowledge, there have been no previous studies of the response to the 27-day solar cycle of the metals
layers, either from observations or simulations in the MLT. The sensitivities of the metal layer responses are
comparable to the O3 (Gruzdev et al., 2009, and references therein) and OH and H2O (Shapiro et al., 2012)
responses in the MLT. Moreover, in the thermosphere above 100 km, where there is growing interest in the
metal layers and their response to solar activity (Chu et al., 2011; Gao et al., 2015; Xue et al., 2013; Wang
et al., 2012), the model sensitivity is greater than−0.5%/(1% SSI). It is desirable that the response of the metal
layers to solar activity in the thermosphere should be further investigated with continuous high-resolution
lidar measurements and chemical-dynamical models coupled containing ionospheric physics.
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