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Despite being highly abundant and well

adapted, Gossmann et al. report that the

Alpine marmot is among the least

genetically diverse animal species. The

low diversity is found to be the

consequence of consecutive, climate-

related events, including long-term

extreme niche adaptation, that also

greatly retarded the recovery of its

genetic diversity.
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SUMMARY

Some species responded successfully to prehistoric

changes in climate [1, 2], while others failed to adapt

and became extinct [3]. The factors that determine

successful climate adaptation remain poorly under-

stood. We constructed a reference genome and

studied physiological adaptations in the Alpine

marmot (Marmota marmota), a large ground-dwell-

ing squirrel exquisitely adapted to the ‘‘ice-age’’

climate of the Pleistocene steppe [4, 5]. Since the

disappearance of this habitat, the rodent persists in

large numbers in the high-altitude Alpine meadow

[6, 7]. Genome and metabolome showed evidence

of adaptation consistent with cold climate, affecting

white adipose tissue. Conversely, however, we found

that the Alpine marmot has levels of genetic variation

that are among the lowest for mammals, such that

deleterious mutations are less effectively purged.

Our data rule out typical explanations for low diver-

sity, such as high levels of consanguineous mating,

or a very recent bottleneck. Instead, ancient demo-

graphic reconstruction revealed that genetic diver-

sity was lost during the climate shifts of the Pleisto-

cene and has not recovered, despite the current

high population size. We attribute this slow recovery

to the marmot’s adaptive life history. The case of the

Alpine marmot reveals a complicated relationship

between climatic changes, genetic diversity, and

conservation status. It shows that species of

extremely low genetic diversity can be very success-

ful and persist over thousands of years, but also that

climate-adapted life history can trap a species in a

persistent state of low genetic diversity.

RESULTS AND DISCUSSION

We sequenced, assembled, and annotated a reference genome

for the Alpine marmot (Figure 1A) on the basis of a wild-living

male selected from a typical, central Alpine habitat (Mauls
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region, North Italy; Data S1; STAR Methods). Phylogenomic

and phylogenetic analyses confirmed the Alpine marmot’s rela-

tionships to other mammals, rodents, squirrels, and marmots,

including the groundhog (Marmota monax) [8, 9] (Figures 1B–

1D; Data S1; Figure S1). We also identified an unusually large

integration of mitochondrial genome into the nuclear genome

(nuclear mitochondrial DNA segment, NUMT [10]), which com-

prises 91% of the mitochondrial genome. The NUMT is well

conserved (with 84% similarity to the mtDNA), despite no

evidence of functional constraint (no expression on the

mRNA level, and many premature stop codons). The nuclear

insertion occurred before the common ancestor of Marmota,

Ictidomys, and Cynomys (Figures 1D and S2), during which

time substitutions occurred at most synonymous sites in the

mitochondrial genomes (mitochondrial Ks estimates: Ictid-

omys-Marmota 0.48; Tamias-Marmota 1.11). This is suggestive

of a low rate of nuclear genome evolution, and this was

confirmed by a comparison of genome-wide rates in other ro-

dents (median synonymous substitutions per codon/year: Mar-

mota:0.0017 versus Ictidomys:0.0020, Wilcoxon test p = 1.6 3

10�20; Marmota/Ictidomys:0.0029 versus Mus/Rattus:0.0042,

p = 6.1 3 10�106) and by a collinearity analysis (Figure 1B).

The Alpine marmot is therefore characterized by an overall

low rate of genomic evolution.

We next searched for genes undergoing exceptional rates of

protein evolution specific to hibernating rodents (Figure S3A).

Among a group of 1,571 differentially evolving genes, there

was specific enrichment for genes related to photoreception

(Data S1), and for the metabolic pathway of glycerolipid meta-

bolism, which is essential for the synthesis of triacylglycerols

(TAGs), the precursor of fatty acids (Figure 2A). Furthermore,

genes in the pathway of fat digestion and absorption, which is

essential for the utilization of stored fats, have undergone diver-

sifying rates of evolution within the marmot lineage after the split

with the thirteen-lined ground squirrel (Ictidomys tridecemlinea-

tus; Figures 2B and S3B).

While the specific enrichment for photoreception was unex-

pected, the adaptation of the lipidome is plausibly associated

with cold temperature adaptation. For physical reasons, a higher

degree of unsaturation increases membrane fluidity at low tem-

perature. This adaptation is particularly evident in the white adi-

pose tissue (WAT) that serves hibernating animals for energy
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Figure 1. A Slow Rate of Genomic Evolution

and the Phylogenetic Relationship of the

Alpine Marmot as Revealed by Its Nuclear

and Mitochondrial Reference Genome

(A) Marmota marmota is a large, ground-dwelling,

highly social rodent that has colonized high-alti-

tude meadows across the Alps since the end of

the last glaciation in the Quaternary.

(B) Collinearity of the genome assembly generated

for M. marmota marmota with its close relatives,

and that of other rodents. The M. marmota

genome aligns to a higher fraction of the human

genome (outgroup) than to its fellow rodents

(i.e., mouse and mole), one of several indicators

of a slower rate of genomic evolution. Here,

collinear blocks in the human chromosomes are

colored at random; small blocks with many colors

depict lower N50 scaffold length of genome as-

semblies. Connections indicate collinearity breaks

and block rearrangements compared to the hu-

man genome (intra-chromosomal only for the

plotted rodents, except for M. marmota where

interchromosomal rearrangements are plotted in-

side the graph). Colors indicate connections

observed in M. marmota that are conserved

across the sampled rodents (green; n = 72), all

rodents except M. musculus (blue, n = 13), be-

tween I. tridecemlineatus andM.marmota (purple;

n = 57), or that are specific toM.marmota (orange;

n = 148).

(C) Reconstruction of the phylogenetic tree of

Rodentia. The tree is derived from multiple whole-

genome alignments of protein-coding and non-

coding sequences from available rodent genomes

(about 94 Mbp alignment per species). Humans

are included as an outgroup. The short branch

length of the Alpine marmot since the split from

the last common ancestor (LCA) of primates and

rodents agrees with the higher fraction of alignable genomic sequence between the Alpine marmot and human compared to Alpine marmot and mouse or mole-

rat (Data S1). The scale denotes nucleotide substitutions per site.

(D) A phylogenetic tree for family Sciuridae based on their mitochondrial genomes. The scale denotes nucleotide substitutions per site.

See also Data S1 and Figures S1 and S2.
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storage [11], where the levels of polyunsaturated fatty acids

are positively correlated with survival during winter hibernation

[11–13]. We therefore used mass spectrometry and recorded a

lipidome of WAT obtained from Alpine marmots and compared

it to that of two non-hibernating rodents: rats (Wistar line) and

mice (C57Bl6 line).WAT (Figure 2C; Table S1) TAG and diacylgly-

cerol (DAG) lipids were highly discriminatory, and in the Alpine

marmot characterized by greater acyl chain length and unsatura-

tion. Indeed, some changes were substantial: detected up to

4-fold higher level of unsaturation in TAGs and DAGs, the main

energy storage lipids that need to be accessed at low tempera-

ture (Figure 2D).

A further known adaptation of the Alpine marmot is complete

parasite clearance prior to hibernation [14]. While we found no

enrichment at the pathway level, four genes involved in anti-para-

site defense exhibit significantly elevated molecular substitution

rates in comparison to the thirteen-lined ground squirrel. The

A B

DC

Figure 2. Genomic Signatures of Metabolic

Evolution in the Alpine Marmot, Plausibly

Associated with Cold-Climate Adaptation,

Are Reflected in an Altered White Adipose

Tissue Lipidome

(A) Phylogenetic analysis by maximum likelihood

(PAML) followed by tests for functional enrichment

identifies biological processes that underwent

diversifying evolution in the Alpine marmot line-

age. The group of differentially evolving genes

in the hibernating rodents (Alpine marmot and

thirteen-lined ground squirrel) show significant

enrichment at the pathway level for diacylglyceride

(DAG) and triacylglyceride (TAG) biosynthetic

metabolism. Enzymes under differential selection

pressure are highlighted in red.

(B) The Alpine marmot lineage shows specific

and significant enrichment of potentially adaptive

substitutions in genes required for fatty acid stor-

age, when compared to the thirteen-lined ground

squirrel. Enzymes encoding differentially evolving

genes are highlighted in red.

(C) Partial least-squares-discriminatory analysis

(PLS-DA) of the white adipose tissue (WAT) lipid

composition as determined by liquid chromatog-

raphy-tandem mass spectrometry, comparing

mouse, rat, and Alpine marmot WAT. The Alpine

marmot WAT is clearly distinguishable from that of

rat and mouse

(D) Higher degree of unsaturation, and longer

chain lengths in Alpine marmot WAT DAGs and

TAGs, as determined by liquid chromatography-

tandem mass spectrometry.

See also Data S1, Table S1, and Figure S3.

fastest gene was Interleukin 4 (dN/dS of

2.3072, top 1% in a phylogenetic analysis

by maximum likelihood [PAML] analysis)

(Data S1). The cytokine-cytokine receptor

pathway may therefore have undergone

adaptive evolution, suggesting that para-

site clearance before hibernation might

be more than a passive process caused

by starvation of the parasites.

We next studied the genome-level diversity of the Alpine

marmot. Unexpectedly, the within-individual diversity was found

to be remarkably low, with a heterozygosity of 0.12 per kilobase

(Figure 3A). To place this result in context, we performed the

same analysis on a panel of other mammalian genomes. As well

as humans, and close relatives of the marmot, we chose species

known for very low heterozygosity, often associated with conser-

vation risk, habitat loss, extreme isolation, or artificial inbreeding

[15] (Data S1). Although it is not considered a conservation

concern, and despite its high abundance and large geographic

range, the Alpine marmot is the least heterozygous among the

panel of wild-living animals, including the extreme case of low di-

versity for a wild-living animal, the Iberian Lynx (Figure 3A). Lower

heterozygosity was found only in the lab mouse (129P2/OlaHsd),

artificially backcrossed for decades (0.05/kb; Data S1). The Alpine

marmot also remains extreme among a large number of species

for which heterozygosity values are available in the literature [15].

1714 Current Biology 29, 1712–1720, May 20, 2019



An individual may have low levels of genetic diversity for three

different reasons: either there is low diversity in their species as

awhole or in their local breedingpopulation, or theymight have re-

sulted from close inbreeding (i.e., consanguineous mating) within

an otherwise diverse population [16]. The latter two explanations

were strong possibilities in the Alpine marmot, where breeding

takesplace in extended family groups, and inbreedingdepression

has been observed [17–20]. To distinguish between these possi-

bilities, we resequenced a further 11 Alpine marmot individuals

(Data S1), both from the reference population, and two additional

populations, fromGsies, a neighboring valley less than50 kmEast

of Mauls and La Grande Sassière (LGS) Nature Reserve, French

Alps�390kmwest (Figure 3B), to obtain twomale and two female

genomes per population. For each population, we calculated the

overall levels of diversity at synonymous sites, ps, across the

genome, and typical levels of relatedness (Figures 3E, S4A, and

S4B), while, for each individual, we calculated the genome-wide

heterozygosity (Figure S4C), runs of homozygosity (RoH) [16] (Fig-

ure 3D; Table S2), and the coefficient of inbreeding (Figure S4).

Results showed that the three populations were genetically sepa-

rable (Figure 3C) and suggested clear differences in their effective

population sizes.Most notably, theLGSpopulationhadover twice

the overall genetic diversity (pS: LGS 0.037%; Mauls 0.016%;

Gsies 0.014%; Figures 3E and S4C), and—consistent with

this—LGS individuals had higher intra-individual diversity (Figures

S4 and 3D). In particular, the Mauls and Gsies marmots had

heterozygosity of �0.1–0.13/kb, similar to the reference animal

(Figure 3A), while estimates from LGS marmots were over twice

as high (0.29–0.34/kb; Figure S4C), although these values are still

extremely low compared to other mammals (Figure 3A).

The data suggest that the smaller local populations (Gsies and

Mauls) contain a high proportion of close relatives (Figure S4A),

but there was no evidence of consanguineous mating, whose

signature is high variance in the total length of homozygous

blocks [16] (Figure 3D), and consistently high inbreeding coeffi-

cients. Indeed, estimated inbreeding coefficients are skewed

toward negative values (Figure S4B). Furthermore, there is evi-

dence that the diversity of the Gsies and Mauls marmots nests

within that of the LGS marmots, as would be the case if these

populations had ‘‘budded’’ from the larger LGS population

[21, 22]. For example, diversity is slightly higher for the LGS sam-

ple alone, than for the complete pooled sample (pS = 0.037%

versus pS = 0.033%), and for the mitochondrial genomes, all

Gsies and Mauls marmots descend from the most recent com-

mon ancestor of the LGS sample (Figure S3C). This scenario is

also consistent with the Gsies and Mauls marmots being sepa-

rable only by the fifth principal component (Figure 3C). Taken

together, then, the low levels of diversity within individual mar-

mots are partly due to population structure but also reflect a

low effective population size in the species as a whole.

A B
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E F

Figure 3. Extremely Low Levels of Genetic

Diversity and Impaired Purifying Selection

Characterize Different Alpine Marmot Pop-

ulations

(A) The Alpine marmot genome is characterized by

remarkably low heterozygosity at the genome

level. The heterozygosity for a panel of other

mammalian genomes has been determined by re-

mapping the original sequence reads used to

assemble their reference genomes, using identical

software parameters (Data S1), so that heterozy-

gosity values are directly comparable.

(B) The locations and height profiles of our sampled

Alpine marmot populations: Mauls (Italy), Gsies

(Italy), and La Grande Sassière (LGS, France).

(C) Principal-component analysis (PCA) of whole-

genome genetic diversity (SNPs, including single-

tons) of animals from Mauls, Gsies, and LGS. PC1

distinguishes the Mauls and Gsies populations

from the LGS marmots, while only PC5 separates

all three populations. Axes 2–4 mainly describe

genetic diversity within the LGS population, which

has comparable diversity to the combined sample.

(D) Logarithmic density distributions of runs of ho-

mozygosity (RoH) for individuals of the three pop-

ulations. Distributions are very similar for the Mauls

andGsies populationsbutdifferent for LGS, and this

iswellexplainedby theirdifferences in localbreeding

sizes. There is little evidence of consanguineous

mating, nor of a recent bottleneck recovery.

(E) Differences in the coding diversity (synony-

mous and nonsynonymous sites) among the three

marmot populations. LGS individuals are around

three times more diverse that the inner Alpine

populations Mauls and Gsies (right).

(F) Distribution of fitness effects of nonsynonymous mutations suggests that more than 30% of nonsynonymous mutations within the Alpine marmot populations

are effectively neutral, with a further 5%–10% in the nearly neutral range. There is little variation of fitness effects across populations. Error bars indicate the SE.

See also Data S1, Table S2, and Figures S3 and S4.
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When the effective population size is low, natural selection can

become less effective. This situation was evident in the Alpine

marmot genome. First, ratios of amino acid changing to synony-

mous polymorphism are high (pN/pS: LGS 33.7%; Mauls 37.5%;

Gsies 39.0%; combined sample: 34.6%; Figure 3E). Second, the

distribution of fitness effects [23] suggests that 30%–40% of

amino acid variants are under ineffective purifying selection,

and a further 5%–10% in the ‘‘slightly deleterious’’ range (1 <

Nes < 10), where selection might become ineffective, following

any further drop in Ne (Figure 3F).

Given the fact that the Alpine marmot is well adapted and

highly abundant, these results initially appeared surprising.

To explain the low diversity, we next considered the marmot’s

unusual life history, which differs, in part substantially, from

that of typical (Alpine) mammals. Previous work has shown

that species-wide diversity across a broad range of animal spe-

cies is well predicted by their ‘‘propagule size,’’ i.e., the size of

the life stage that leaves its parents and disperses [24]. The

Alpine marmot fits this pattern remarkably well (Figure 4A). Simi-

larly, the levels of effective selective constraint, pN/pS, are very

similar to those that would be predicted from previously

observed correlations with pS (Figure 4B). In both cases, the

Alpinemarmot is an extreme case compared to all other sampled

animal species, with the lowest pS and the highest pN/pS, but

this reflects the extremity of its life history. Its unusually large

propagule size is a result of both its large adult body size and
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Figure 4. The Low Genomic Diversity in the

Alpine Marmot Is Explained by Its Life His-

tory and a Lack of Recovery from a Bottle-

neck that Coincides with the Climate Shifts

of the Pleistocene

(A) The genetic diversity of the Alpine marmot is

predictable from its life history. Species-wide syn-

onymous site diversity from a wide range of animal

species [24] is plottedagainst their ‘‘propagule size’’

(i.e., the size in centimeters of the dispersing life

stage). The delayed dispersal of the Alpinemarmot,

and its large adult body size, yields a very large

propagule size [25], consistent with the observed

low diversity (filled red point). The diversity inferred

for the ancestral marmot population at the end

of the Pleistocene (empty red point; F) fits this

prediction even more closely. The correlations

observed are very similar whether the marmot data

are excluded (gray lines) or included (black lines).

(B) The strength of purifying selection on amino

acid variation in Alpine marmots corresponds to

their low effective population size revealed from a

pattern consistent across diverse animal species.

Data from the Alpine marmot (colored points) have

been added to the data of [24]. The correlations

are very similar whether the marmot data are

excluded (gray lines) or included (black lines).

(C) Microsatellite diversity in different Alpine

marmot populations compared to many other

species of mammals, including other marmot and

rodent species. The number of microsatellite

alleles (y axis) is plotted against the expected

heterozygosity (x axis). Populations of the Alpine

marmot from LGS are shown as red points, and

estimates from other subpopulations of the same

species, also from the French alps, are shown in as

empty red bordered circles. Other species in the genusMarmota are shown as black filled circles, including the threatenedM. vancouverensis, which appears at

the bottom left of the graph. In difference to the genome-wide diversity, for which theMarmot is an extreme (A andB), it has a typical diversity in these sites that are

characterized by a higher spontaneous mutation rate.

(D) Life history of the Alpine marmot (red point) in comparison to other Eutherian mammals (data from [26]). After correcting for bodymass, much of the variance in

mammalian life histories can be captured by two factors [27]: ‘‘reproductive output’’ (in which species vary according to their investment in offspring ‘‘quality’’

versus ‘‘quantity’’) and ‘‘reproductive timing’’ (in which species vary on a ‘‘fast-slow’’ continuum). The Alpine marmot appears as an extreme outlier.

(E) Pairwise sequential Markovian coalescent (PSMC) analysis reveals details of the genetic past of the Alpine marmot. Evident is a decline in the LGS population

after the last glacial maximum, consistent with independent evidence from the fossil record. Earlier events might suggest a longer-term decline but are more likely

attributable to partial isolation between breeding populations (in which case earlier rates of coalescence reflect rates of gene flow and not Nes).

(F) The ancient migration (AM) is the most likely demographic scenario for the Gsies and La Grande Sassière (LGS) populations inferred from the joint site fre-

quency spectrum (SFS). This model predicts that a large ancestral population split up �26,145 ya into two smaller daughter populations. Gene flow between

these two populations ceased �785 ya and was strongly asymmetrical with most migrants going from the large LGS population to the very small Gsies pop-

ulation. The joint SFS for the LGS and Gsies populations was obtained from 178,098 SNPs (bottom right) and shows strong visual agreement with the maximum-

likelihood SFS under the model (top right).

See also Table S3.
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its delayed, adult dispersal, consistent with its form of proto-

cooperative breeding. Even after correcting for body size, the

Alpine marmot is extreme among mammals, and especially ro-

dents, in the extent to which it invests in a small number of

‘‘high-quality’’ offspring (Figure 4D). These traits are plausibly

adaptations to cold-climate habitation [25, 26].

While correlations of genetic diversity with life history are well

established, it remains unclear exactly why they hold. One pos-

sibility is that a species’ life history has a major influence on its

response to demographic perturbations, such as major changes

in climate [24]. Such events are historical contingencies, but

different species might respond in predictably different ways,

with predictable consequences for their genetic variation. The

Alpine marmot is a useful case study here, because its fossil re-

cord provides clear evidence of a major demographic perturba-

tion, associated with climate change. In particular, the species

underwent a large range contraction toward the end of the

Pleistocene, after the last glacial maximum [28]. The shift from

the steppe to Alpine habitats might also have brought increasing

isolation, exacerbated by the expansion of forests that replaced

the cold steppe of the Pleistocene, and that are incompatible

with the Alpine marmot’s lifestyle. To shed light on the demo-

graphic history and its effects on genetic variation, we recon-

structed the effective population size over time, using the pair-

wise sequentially Markovian coalescent (PSMC). Toward the

end of the Pleistocene (left-hand side of the plot in Figure 4E)

the PSMCs confirmed the signature of the known range contrac-

tion, with a dip in the LGSpopulation size between the last glacial

maximum (�20 ka), and the start of the Holocene (11.65 ka). This

signature is messy, but this is as expected in a structured popu-

lation [29, 30]. To investigate the more recent demographic

events, we analyzed the genome-wide site frequency spectrum

of the two least connected populations (LGS and Gsies; Fig-

ure 4F; Table S3). After comparing several different demographic

models, we inferred that these populations descended from a

single ancestral population, that was roughly three times larger

than the current populations (11,942 versus 4,544 breeding indi-

viduals). The population split and decline is dated at 26 kybp,

with confidence intervals overlapping the last glacial maximum.

We also infer strong and asymmetrical gene flow, continuing

long after the split. Our findings are consistent with a post-glaci-

ation colonization hypothesis progressing from the West to East

Alps that matches the fossil record [21, 22].

By combining the population size estimates (Figure 4F), and

our measure of current diversity,pS, we can estimate the genetic

diversity of this ancestral marmot population (empty red point,

Figure 4A). The inferred ancestral diversity is remarkably close

to the value that would be predicted from the marmot propagule

size (inferred ancestral, pS = 8.6 3 10�4; predicted from propa-

gule size, pS = 7.7 3 10�4).

If the low genetic diversity of the Alpine marmot is due to a

slow recovery from past demographic events, then we might

predict to see signs of an ongoing recovery in the data. No

such evidence was found in the genome-wide data: neither

RoH, nor the site frequency spectrum showed signs of recovery

from a bottleneck (Figure 3D; Tajima’s D at synonymous

sites = 0.45). However, in regions of the genome with typical mu-

tation rates, the recovery of diversity might be glacially slow. In

this case, a recovery would leave its signature only in rare re-

gions with very high mutation rates, such as microsatellite loci

[24, 31]. Indeed, in stark contrast to their low genome-wide diver-

sity, the microsatellite diversity of Alpine marmots was found to

be typical, of mammals as a whole, of rodents, and of the genus

Marmota (Figure 4C). Levels of microsatellite diversity in this

genus are conspicuously lower only for Marmota vancouveren-

sis, which lives only in the limited habitat of Vancouver island,

and is the sole marmot species under threat of extinction [32].

Taken as a whole, these results have two contrasting implica-

tions for our understanding of extinction risk. First, it is clear that

low levels of genome-wide variation, on their own, need not

imply an imminent threat of extinction. The Alpine marmot has

persisted successfully, with remarkably low levels of genetic

variation, for tens of thousands of years. Conversely, however,

there is no cause for complacency. If adaptation to future envi-

ronmental change does require abundant genomic variation,

then populations may be unable to respond, even if they are

characterized by high levels of microsatellite diversity and large

population size. All species may undergo occasional demo-

graphic fluctuations, but factors such as low fecundity, long gen-

eration time, and a slow rate of genome evolution would cause

some species to take much longer to replenish their genetic di-

versity after these events. All of these factors are characteristic

of the Alpine marmot, very plausibly due to its niche adaptation

(Figures 1B, 1C, and 4D), and our data suggest that even their

large population size was not sufficient to regenerate diversity

over thousands of years. Hence, if low genetic variation is a

contributory factor to extinction risk, not only small but also large

populations can be at risk, if their life history traps them perma-

nently in a state of low genetic diversity.
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(2008). Climate change, humans, and the extinction of the woolly

mammoth. PLoS Biol. 6, e79.

4. Bichet, C., Allain�e, D., Sauzet, S., and Cohas, A. (2016). Faithful or not:

direct and indirect effects of climate on extra-pair paternities in a popula-

tion of Alpine marmots. Proc. Biol. Sci. 283, 20162240.

5. Tafani, M., Cohas, A., Bonenfant, C., Gaillard, J.-M., and Allain�e, D. (2013).

Decreasing litter size of marmots over time: a life history response to

climate change? Ecology 94, 580–586.

6. Couturier, M. (1955). Acclimatation et acclimatement de la Marmotte des

Alpes, Marmota marmota (Linn�e 1758), dans les Pyr�en�ees françaises.

Saugetierkdl. Mitt. 3, 105–107.

7. Besson, J.P. (1971). Introduction de la marmotte dans les Pyr�en�ees occi-

dentales. CR du 96ème Congrès des Soci�et�es Savantes, Toulouse 3,

397–399.

8. Fabre, P.H., Hautier, L., Dimitrov, D., andDouzery, E.J.P. (2012). A glimpse

on the pattern of rodent diversification: a phylogenetic approach. BMC

Evol. Biol. 12, 88.

9. Blanga-Kanfi, S., Miranda, H., Penn, O., Pupko, T., DeBry, R.W., and

Huchon, D. (2009). Rodent phylogeny revised: analysis of six nuclear

genes from all major rodent clades. BMC Evol. Biol. 9, 71.

10. Hazkani-Covo, E., Zeller, R.M., and Martin, W. (2010). Molecular polter-

geists: mitochondrial DNA copies (numts) in sequenced nuclear genomes.

PLoS Genet. 6, e1000834.

11. Cochet, N., Georges, B., Meister, R., Florant, G.L., and Barr�e, H. (1999).

White adipose tissue fatty acids of Alpine marmots during their yearly cy-

cle. Lipids 34, 275–281.

12. Frank, C.L. (1992). The influence of dietary fatty acids on hibernation by

golden-mantled ground squirrels (Spermophilus lateralis). Physiol. Zool

65, 906–920.

13. Bruns, U., Frey-Roos, F., Pudritz, S., Tataruch, F., Ruf, T., and Arnold, W.

(2000). Essential fatty acids: their impact on free-living Alpine marmots

(Marmota marmota). In Life in the Cold, P.D.G. Heldmaier, and M.

Klingenspor, eds. (Springer Berlin Heidelberg), pp. 215–222.

14. Bohr, M., Brooks, A.R., and Kurtz, C.C. (2014). Hibernation induces im-

mune changes in the lung of 13-lined ground squirrels (Ictidomys tride-

cemlineatus). Dev. Comp. Immunol. 47, 178–184.

15. Robinson, J.A., Ortega-Del Vecchyo, D., Fan, Z., Kim, B.Y., vonHoldt,

B.M., Marsden, C.D., Lohmueller, K.E., and Wayne, R.K. (2016).

Genomic flatlining in the endangered island fox. Curr. Biol. 26, 1183–1189.

16. Ceballos, F.C., Joshi, P.K., Clark, D.W., Ramsay, M., and Wilson, J.F.

(2018). Runs of homozygosity: windows into population history and trait

architecture. Nat. Rev. Genet. 19, 220–234.

17. Arnold, W. (1990). The evolution of marmot sociality: I. Why disperse late?

Behav. Ecol. Sociobiol. 27, 229–237.

1718 Current Biology 29, 1712–1720, May 20, 2019

https://doi.org/10.1016/j.cub.2019.04.020
https://doi.org/10.1016/j.cub.2019.04.020
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref1
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref1
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref1
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref1
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref2
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref2
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref2
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref3
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref3
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref3
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref3
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref4
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref4
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref4
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref4
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref5
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref5
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref5
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref5
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref6
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref7
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref8
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref8
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref8
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref9
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref9
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref9
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref10
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref10
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref10
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref11
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref11
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref11
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref11
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref12
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref12
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref12
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref13
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref13
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref13
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref13
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref14
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref14
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref14
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref15
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref15
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref15
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref16
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref16
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref16
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref17
http://refhub.elsevier.com/S0960-9822(19)30418-X/sref17


18. Goossens, B., Chikhi, L., Taberlet, P., Waits, L.P., and Allain�e, D. (2001).

Microsatellite analysis of genetic variation among and within Alpine

marmot populations in the French Alps. Mol. Ecol. 10, 41–52.

19. Cohas, A., Yoccoz, N.G., Da Silva, A., Goossens, B., and Allain�e, D. (2005).

Extra-pair paternity in the monogamous alpine marmot (Marmota mar-

mota): the roles of social setting and female mate choice. Behav. Ecol.

Sociobiol. 59, 597–605.

20. Nichols, H.J. (2017). The causes and consequences of inbreeding avoid-

ance and tolerance in cooperatively breeding vertebrates. J. Zool.

(Lond.) 303, 1–14.

21. Preleuthner, M., Pinsker, W., Kruckenhauser, L., Miller, W.J., and Prosl, H.

(1995). Alpine marmots in Austria. The present population structure as a

result of the postglacial distribution history. Acta Theriol. (Warsz.) 40,

87–100.

22. Kruckenhauser, L., and Pinsker, W. (2004). Microsatellite variation in

autochthonous and introduced populations of the Alpine marmot

(Marmota marmota) along a European west–east transect. J. Zoological

Syst. Evol. Res. 42, 19–26.

23. Keightley, P.D., and Eyre-Walker, A. (2007). Joint inference of the distribu-

tion of fitness effects of deleteriousmutations and population demography

based on nucleotide polymorphism frequencies. Genetics 177, 2251–

2261.

24. Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil,

A., Chiari, Y., Dernat, R., Duret, L., Faivre, N., et al. (2014). Comparative

population genomics in animals uncovers the determinants of genetic di-

versity. Nature 515, 261–263.

25. Ge, D.Y., Liu, X., Lv, X.F., Zhang, Z.Q., Xia, L., and Yang, Q.S. (2013).

Historical biogeography and body form evolution of ground squirrels

(Sciuridae: Xerinae). Evol. Biol. 41, 99–114.

26. Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O’Dell, J., Orme, C.D.L.,

Safi, K., Sechrest, W., Boakes, E.H., Carbone, C., et al. (2009).

PanTHERIA: a species-level database of life history, ecology, and geogra-

phy of extant and recently extinct mammals. Ecology 90, 2648–2648.

27. Bielby, J., Mace, G.M., Bininda-Emonds, O.R.P., Cardillo, M., Gittleman,

J.L., Jones, K.E., Orme, C.D.L., and Purvis, A. (2007). The fast-slow con-

tinuum in mammalian life history: an empirical reevaluation. Am. Nat.

169, 748–757.

28. Zimina, R.P., andGerasimov, I.P. (1973). The periglacial expansion of mar-

mots (Marmota) in Middle Europe during Late Pleistocene. J. Mammal. 54,

327–340.

29. Chikhi, L., Rodrı́guez, W., Grusea, S., Santos, P., Boitard, S., and Mazet,

O. (2018). The IICR (inverse instantaneous coalescence rate) as a sum-

mary of genomic diversity: insights into demographic inference and model

choice. Heredity 120, 13–24.

30. Li, H., and Durbin, R. (2011). Inference of human population history from

individual whole-genome sequences. Nature 475, 493–496.

31. Pannell, J.R., and Charlesworth, B. (2000). Effects of metapopulation pro-

cesses on measures of genetic diversity. Philos. Trans. R. Soc. Lond. B

Biol. Sci. 355, 1851–1864.

32. Roach, N. (2017). Marmota vancouverensis. (IUCN Red List of Threatened

Species). https://doi.org/10.2305/iucn.uk.2017-2.rlts.t12828a22259184.

33. Ralser, M., Kuhl, H., Ralser, M., Werber, M., Lehrach, H., Breitenbach, M.,

and Timmermann, B. (2012). The Saccharomyces cerevisiaeW303-K6001

cross-platform genome sequence: insights into ancestry and physiology

of a laboratory mutt. Open Biol. 2, 120093.

34. Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross, E., Moore, B., Holt,

C., Sánchez Alvarado, A., and Yandell, M. (2008). MAKER: an easy-to-use

annotation pipeline designed for emerging model organism genomes.

Genome Res. 18, 188–196.

35. Leggett, R.M., Clavijo, B.J., Clissold, L., Clark, M.D., and Caccamo, M.

(2014). NextClip: an analysis and read preparation tool for Nextera Long

Mate Pair libraries. Bioinformatics 30, 566–568.

36. Mueller, J.C., Kuhl, H., Timmermann, B., and Kempenaers, B. (2016).

Characterization of the genome and transcriptome of the blue tit

Cyanistes caeruleus: polymorphisms, sex-biased expression and selec-

tion signals. Mol. Ecol. Resour. 16, 549–561.

37. Kie1basa, S.M., Wan, R., Sato, K., Horton, P., and Frith, M.C. (2011).

Adaptive seeds tame genomic sequence comparison. Genome Res. 21,

487–493.

38. Frankl-Vilches, C., Kuhl, H., Werber, M., Klages, S., Kerick, M., Bakker, A.,

de Oliveira, E.H., Reusch, C., Capuano, F., Vowinckel, J., et al. (2015).

Using the canary genome to decipher the evolution of hormone-sensitive

gene regulation in seasonal singing birds. Genome Biol. 16, 19.

39. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990).

Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

40. Grabherr, M.G., Russell, P., Meyer, M., Mauceli, E., Alföldi, J., Di Palma, F.,
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information should be directed to and will be fulfilled by the Lead Contact, Markus Ralser (markus.ralser@crick.

ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

Four animals (two males, two females) each were obtained from three wild Alpine marmot populations in the Central Alps near Mauls

(Italy, at 2367 m.a.s.l. at Mt Senges 46�52040.55’’N 11�34’56.12’’E (including the reference individual), around St Martin, Gsies, (Italy)

(at > 2,000 m.a.s.l, 46�49’44.2’’N 12�12015.5’’E), and in the nature reserve of La Grande Sassière (at 2,340 m a.s.l., French Alps,

45�29’N, 65�90’E, animals 1426, 1442, 1467 and 1508). All animals were from different families. The animals’ sex was confirmed

by genome analysis (Data S1). Italian Alpine marmot samples were obtained from the Forestry and Hunting Authorities South Tyrol

according to national guidelines. The fieldwork involving the French Alpine marmot samples was undertaken after deliverance of the

permit number AP n82010/121 by the Pr�efecture de la Savoie. A.C. is authorized for experimentation with animals (diploma

n8R45GRETAF110). The protocol has been approved by the ethical committee of the University of Claude Bernard Lyon 1

(n8BH2012-92 V1). All procedures involving rats and mice lipidomics analysis were carried out in accordance with UK Home Office

protocols by a personal license holder.

METHOD DETAILS

General approach

To sequence, assemble and annotate a reference genome for the Alpine marmot (Figure 1A) including both sex chromosomes, we

selected a wild-living male, in a typical habitat: a high altitude valley of the Central Alps that is largely free of artificial barriers due to

tourismor industrial agriculture (mount Senges, near ‘Mauls’ village, Bolzano province, Italy, 46�52040.5’’N 11�34’56.1’’E, 2367 above

sea level). In order to minimize potential technology biases in low-frequency variant calling [33], genomic DNAwas sequenced by two

complementary sequencing technologies (Illumina and Roche/454) and different types of library protocols for illumina sequencing

(Data S1). Using a hybrid assembly approach, to make the best use of short- and long-read data we assembled a genome consensus

sequence of 2.51 Gbp, with a contig N50 size of�44 Kbp, scaffold N50 size of 5.6Mbp and superscaffold N50 size of 31.3Mbp (Data

S1). The large superscaffold N50 sizewas achieved by collinearity analyses based on the genome of the thirteen-lined ground squirrel

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Reference individual (male) this paper Mauls 1

Re-sequenced individuals this paper N/A

Mauls (2 female, 1 male) Liver samples N/A Mauls 2-4

Gsies (2 female, 2 male) Skin/Bones samples N/A Gsies 1-4

LGS (2 female, 2 male) Hair samples N/A LGS 1-4

Deposited Data

Genome archive NCBI/ENA GenBank: GCF_001458135, ENA: GCF_001458135

Genome browser customised server http://public-genomes-ngs.molgen.mpg.de

Experimental Models: Organisms/Strains

Mouse male strain Charles River Laboratories C57Bl6 line

Rat male strain Charles River Laboratories Wistar line

Software and Algorithms

DADI bitbucket https://bitbucket.org/gutenkunstlab/dadi

PAML custom website http://abacus.gene.ucl.ac.uk/software/paml.html

PSMC github https://github.com/lh3/psmc

DFE-alpha custom website http://www.sussex.ac.uk/lifesci/eyre-walkerlab/

documents/dofe-31-for-linux.zip
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(Ictidomys tridecemlineatus, the closest relative for which a genome was available), and the house mouse (Mus musculus, Data S1).

The draft genome assemblies of thirteen-lined ground squirrel (scaff. N50 = 8.2 Mbp) and Alpine marmot (scaff. N50 = 5.6 Mbp) were

highly complementary during the collinearity scaffolding process. The Alpinemarmot genomewas then annotated upon the inclusion

of mRNA expression data, generated by mRNA sequencing from spleen and liver tissues, employing the MAKER pipeline [34],

expanded by comparative approaches as well as manual curation. Eventually, we yielded a reference set of 22,349 protein coding

genes (Data S1). Of this gene set,�19,000 genes could be annotated with gene symbols and�14,700 associated to functional path-

ways (Data S1).We have refrained from attempting to include ancient DNA into the study because of the difficulties of obtaining useful

samples of aDNA for the Alpine marmot, such as ancient nuclear or mitochondrial genomes. While reconstruction of ancient nuclear

genomes is possible, accurate whole genome heterozygosity estimates from whole genome ancient DNA is currently very difficult to

achieve. While ancient mitochondrial genomes are easier to reconstruct, their clonal, maternal inheritance, and lower effective size

make them much less useful regarding the Alpine marmot’s demographic past at the end of the Pleistocene.

DNA extraction, genomic sequencing and resequencing

Genomic DNA was extracted from spleen, liver, bone and hair tissues by the QIAamp DNAMini-Kit (QIAGEN) according to the man-

ufacturer’s instructions (including proteinase K digest to obtain high molecular weight DNA). To create the Alpine marmot reference

genome, we sequenced an animal from the most centrally located population (Mauls I) using Illumina Hiseq 2500 short read and

Roche / 454 long read sequencing technologies. We constructed paired end (500 bp and 800 bp gel selected fragment size, Truseq

version2 kit), mate pair (‘‘gelfree’’ library (MP3000) and 5kbp, 10kbp and 20kbp gel selected fragment size, NexteraMate Pair Kit) and

Roche/454 single read libraries. We produced a high sequencing coverage based on the paired end libraries and supplementary

lower coverage using the matepair libraries and the 454 technology (sequencing statistics are given in Data S1). For genome re-

sequencing of the other individuals we constructed paired end libraries with insert sizes of 300-500 bp using the Illumina Truseq

version2 kit. Sequence data were generated by either Hiseq2500 (2 3 100 bp) or Nextseq500 sequencers (2 3 150 bp) (Data S1)

Assembly of a reference genome for the Alpine marmot

Prior to assembly we filtered high quality non-duplicate Illumina reads and removed adaptor sequences from the paired end reads.

Mate pair reads were filtered using the Nextclip tool [35]. Next, we kept the largest region of a read that had no PhredQ value below 11

and was exceeding 32 bp in length for genome assembly. Processing of Roche/454 reads was included in the Newbler version 3 step

of the genome assembly.

The sequencing reads were assembled in a hybrid approach using the IDBA assembler followed by the Newbler assembler (v3.0,

similar as in [36]; IDBA version 1.1 was used to assemble all short reads into contigs and locally re-assembled contigs using iterative

kmers with sizes 33,63,93,123 and 124).

Contigs and locally re-assembled contigs from IDBAwere split into 29kbp fragments with 4000bp overlaps tomeet maximum read

length of Newbler, so that 454 data could be added to the assembly. Mate pair data were added to allow for scaffolding. We applied

all filtered reads of the 5,000bp, 10,000bp and 20,000bp libraries for scaffolding. To reduce computational time of the Newbler as-

sembly, we added only 15,000,000 read pairs of the gelfree mate pair library (MP3000) to the Newbler assembly (corresponding to

�15 X fragment or physical coverage of the genome).

The assembly short range continuity (contig N50) was improved by the GapCloser v1.12. We used Illumina libraries with high

sequencing coverage in this regard (PE500, PE800 and MP3000 library). Long range continuity (scaffold to superscaffold N50)

was improved by comparison with the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and the house mouse (Mus mus-

culus) MM10 genomes. We used whole genome alignments which were done using the LAST aligner [37] to infer links by putative

genome collinearity between our Alpine marmot scaffolds, which were then applied by SSPACE2 to arrange the scaffolds into super-

scaffolds (as described in [38]). We assigned MM10 chromosomal IDs to the superscaffolds.

Finally, we identified additional overlaps between neighboring contigs in superscaffolds by BLASTn [39] (min. identity 95%/min.

length 43) and then joined these contigs (contigA end overlaps contigB start).

For genome collinearity analysis, we aligned the genome assemblies ofMarmota marmota, Ictidomys tridecemlineatus, Heteroce-

phalus glaber and Mus musculus against the assembled human chromosomes (GRCh38) using the LAST aligner [37]. Filtering for

ortholog alignments was done by single_cov2. Blocks of shared collinearity were calculated by converting MAF format to the

satsuma tabular format and then running the BlockDisplaySatsuma script from the Satsuma v1.17 package [40]. The BlockDisplay-

Satsuma script was run a second time after removal of smaller collinear blocks (< 6,000bp). The removal of these spurious blocks

after round 1 resulted in larger blocks after round 2. Collinear blocks along the 22+XY human chromosomes were plotted using CIR-

COS [41]. Additionally, we plotted links between collinear blocks to determine the phylogenetic position of the rearrangements.

Phylogenomic tree for rodent species

The Alpine marmot genomewas aligned to whole genomes of 15 other rodent species and the human genome as outgroup. Genome

assemblies were downloaded from the public NCBI assembly repository (as of January 2015). The genomes were aligned to the

Alpine marmot genome using LAST [37]. The output was screened for ortholog matches using single_cov2 from the MultiZ package

[42]. Pairwise alignments were combined into a multiple alignment using MultiZ. The multiple alignment file (MAF) was screened for

blocks aligned in all species. All alignment blocks were concatenated into a multi fasta alignment (length 94 Mbp). We found that

500kbp fragments of the total alignment were sufficient to produce a stable tree topology using the FastTree [43] method with the
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GTR model of evolution. We split the whole alignment into 188 independent segments of 500kbp and calculated trees for each

segment. We compared these 188 trees to the consensus tree using CompareToBootstrap.pl from the FastTree website: http://

meta.microbesonline.org/fasttree.

Spleen RNA extraction and RNASeq

For coding gene annotation RNaseq library from spleenwe usedQIAGENRNAeasy kit for RNA isolation followed by the Illumina True-

seq v2 RNA kit for library construction. The RNaseq libraries were sequenced by the Illumina HiSeq2500 using a paired-end protocol

with read lengths of 50bp or 100bp.

Repeat annotation

In addition to repeat libraries from RepBase, Custom repeat libraries were created using RepeatModeler version open-1.0.8, Re-

peatScout version 1.0.5, RECON version 1.08, and Tandem Repeats Finder (TRF). RepeatMasker version 4.0.5 was used to predict

repeats in the marmot genome assembly marMar2.1 from the repeat libraries.

Gene model prediction

To avoid spuriousmatches to the genome, low-complexity repeat regionsweremasked from the genome assemblymarMar2.1 using

RepeatMasker. The paired-end RNASeq reads were aligned tomarMar2.1 using TopHat v2.0.9 [44]. The transcripts were assembled

using Cufflinks and merged with Cuffmerge [45]. The predicted proteomes of human, mouse, rat and thirteen-lined ground squirrel

were obtained from Ensembl [46] and UniProt [47] and the protein sequences of naked mole-rat was obtained from NCBI [48] and

UniProt respectively. The gene models were predicted with MAKER [34] genome annotation pipeline in three iterations (genome

browser track: ‘‘Maker’’). The predicted proteomes downloaded from UniProt [47] were used for the homology search. The assem-

bled transcripts from RNASeq reads were included as experimental evidence in the pipeline. In the first iteration, ab initio prediction

was made using Augustus [49] with human as the training species model. In the second and final iterations, gene models that were

obtained as output from the previous iteration were utilized for training SNAP [50] for ab initio prediction. Maximum annotation edit

distance threshold of 0.75 and minimum protein size of 50 amino acids were used as thresholds for filtering of gene models.

The gene models were also predicted from a custom annotation pipeline in which gene models were predicted from homology

search using SPALN aligner v2.1.2 [51], where the predicted proteins for the above mentioned species from Ensembl [46] and

NCBI [48] were utilized (see genome browser track ‘‘Aligned Proteins’’).We chose the best-scoring protein in a cluster based on exact

exon–exon matches in a first iteration, and overlapping exons in a second iteration (track ‘‘Best Proteins match’’). Second, the CDS

models from SPALN were combined with spliced transcripts assembled from RNaseq using Cuffmerge [45] This resulted in a high

number of possible transcript models, whose open reading frames were annotated by the Transdecoder tool (https://transdecoder.

github.io). The transcript models were weighted with scores assigned for the different models based on their origin (highest rank:

RNaseq only, lowest rank: SPALN only) and the open reading frames length. In addition, only gene models of at least 50 amino acids

in length were retained.

The two sets of gene models were manually inspected, and the consensus gene models were chosen as the reference gene

models (see track ‘‘protein coding genes’’). If the gene models from the two sets were different, individual sources of evidence

were utilized in choosing reference gene models.

Functional annotation

BLASTP [39] was used for Alpine marmot coding sequences against the predicted proteomes of above mentioned species obtained

fromEnsembl [46] andNCBI [48] databases. The functional annotation was inferred for Alpinemarmot proteins from their best BLAST

[39] matches. Alpine marmot proteins were also associated to gene symbols from their homologous proteins with functional anno-

tation. The Gene Ontology (GO) terms [52] were assigned for Alpine marmot predicted proteins by identifying shared signatures with

proteins of known function using InterProScan v5.17-56.0 [53]. Alpine marmot protein-coding genes were annotated to their meta-

bolic and cellular pathways by KEGG [54] Automated Annotation Server (KAAS). This provides KEGG Orthology annotation to each

gene and corresponding pathway annotations.

For orthology annotation (COG/ eggNOG, KOannotation), the predicted protein sequenceswere compared to the eggNOG4.1 [55]

eukaryotic database as well as KEGG [54] Release 77 database, using diamond aligner with options ‘‘blastp -k 3 -e 0.0001–sensi-

tive.’’ Results were post filtered using custom Perl scripts, filtering for the best hit with an alignment length of at least 50% of the

reference sequence and an e-value cutoff of 1e-10. NOG categories were assigned by linking the relevant COG (http://eggnogdb.

embl.de/download/eggnog_4.1/data/NOG/NOG.members.tsv.gz).

Non-coding RNA annotation

The genome assembly that wasmaskedwith RepeatMasker was also used for tRNA annotation in order to avoid spuriousmatches to

low complexity regions. tRNA genes were annotated from the repeat masked genome with tRNAscan-SE-1.23 [56].

Mitochondrial genome annotation

Gene models for the mitochondrial genome were predicted using Open Reading Frame Finder (ORFfinder, http://www.ncbi.nlm.nih.

gov/orffinder/). The functional annotations were transferred to predicted ORFs from protein coding genes of known functions from

Current Biology 29, 1712–1720.e1–e7, May 20, 2019 e3

http://meta.microbesonline.org/fasttree
http://meta.microbesonline.org/fasttree
https://transdecoder.github.io
https://transdecoder.github.io
http://eggnogdb.embl.de/download/eggnog_4.1/data/NOG/NOG.members.tsv.gz
http://eggnogdb.embl.de/download/eggnog_4.1/data/NOG/NOG.members.tsv.gz
http://www.ncbi.nlm.nih.gov/orffinder/
http://www.ncbi.nlm.nih.gov/orffinder/


the NCBI non-redundant sequence database [48] through BLASTP [39]. Similarly, mitochondrial tRNAs were predicted with tRNAs-

can-SE-1.23 [56].

Sciuridae phylogeny based on mtDNA conservation

Complete mitochondrial genomes of members of Sciuridae were downloaded from GenBank (accessed 15th Feb 2016, although

excluding the genome identified as the Daurian ground squirrel (Spermophilus dauricus [57], because the phylogenetic placement

of this genome suggests misidentification, or introgression between distantly-related species). The complete genomes were aligned

with MUSCLE v. 3.8.31 [58] and manually corrected. Because highly variable regions cannot be aligned between sciurid subfamilies,

we then extracted non-overlapping coding sequences, according to the annotation of Pallas’ squirrel (Callosciurus erythraeus, Gen-

Bank: NC_025550), andmade a concatenated alignment of 3,786 translatable codons. Phylogeny was estimated via maximum likeli-

hood using RaxML v. 8.2.4 [59], using its GTR+G model and 1,000 rapid bootstraps. The phylogeny shown fits standard taxonomy

[60, 61]; [62], and an identical topology was obtained when we repeated the analysis after excluding the rapidly-evolving third codon

positions.

Protein coding sequence alignment across species

For all predicted marmot protein-coding genes, we obtained DNA and protein sequences of potential orthologs from nine

mammals species. Seven genomes were from other rodents plus the rabbit (Oryctolagus cuniculus), and a human genome.

Sequence annotations were obtained from the NCBI database [48] for human (Homo sapiens, GenBank: GCF_000001405.29),

mouse (Mus musculus domesticus, GenBank: GCF_000001635.24), rat (Rattus norvegicus, GenBank: GCF_000001895.5),

rabbit (GenBank: GCF_000003625.3), Upper Galilee mountains blind mole-rat (Nannospalax galili, GenBank: GCF_000622305.1),

chinese hamster (Cricetulus griseus, GenBank: GCF_000419365.1), naked mole-rat (GenBank: GCF_000247695.1), thirteen-lined

ground squirrel GenBank: GCF_000236235.1) and damaraland mole-rat (Fukomys damarensis, GenBank: GCF_000743615.1). Or-

thologs of the predicted Alpine marmot proteins were identified using best protein BLAST [39] hits of each refseq-annotated genome

using an expect value (E) threshold of 0.01 and aminimum percent identity of 65%. Protein sequences were then aligned usingMUS-

CLE [58]. Alignment quality at each individual position was measured using the probabilistic framework of ZORRO [63] and incon-

sistent positions (positional score < 9) were removed from the alignment. The filtered protein alignments were then prepared along

with their respective coding DNA sequences with PAL2NAL [64] to produce codon-based alignments as input for the substitution rate

analysis.

Inferring positive natural selection on protein coding genes

We used PAML [65] v4.8a to calculate the rate of substitution at nonsynonymous (amino-acid changing) and synonymous sites in

protein coding genes. The ratio of these quantities is denoted dN/dS = u. Estimated u values < 1, = 1, and > 1 indicate purifying se-

lection, neutral evolution, and diversifying (positive) selection, respectively. Pairwise estimates of dN and dS of two protein coding

sequences were obtained using the pairwise maximum-likelihood approach implemented in PAML (runmode = �2). We also used

two branch models taking the underlying phylogeny into account. First, we tested for differences in substitution rates between

theMarmota+Ictidomys clade (Figure S3A), and the remaining species using a two branch model. Second, we tested for further het-

erogeneity within the Marmota+Ictidomys clade, with a four branch model (Figure S3B). The two branch model was compared to a

single ratio model, and the four branch model was compared to a two branch model. Significant differences between the models

were assessed by likelihood-ratio tests (LRTs) which assume that 2DlnL is approximately c2 distributed, with the degrees of freedom

equal to the number of free parameters.P-valueswere corrected formultiple testing using the false discovery rate (FDR), according to

the procedure of [66].

Gene set enrichment analysis

Genes with an FDR-adjusted p-value < 0.05 in ‘between branches’ category, and FDR-adjusted p-value R 0.05 in ‘within branch’

category, were categorized as being rapidly evolving between the two clades of rodents (i.e., the clade that contains the Alpine

marmot and thirteen-lined ground squirrel, and the clade that contains the other sequenced rodents). The genes that had FDR-

adjusted p value R 0.05 in the ‘between branches’ category and FDR-adjusted p value < 0.05 in the ‘within branch’ category

were categorized as being rapidly evolving within the hibernating rodent branch, but not between the two rodent branches. In addi-

tion, other genes exhibiting rapid evolution (falling in the top 10% or 1% of dN/dS values) in a series of pairwise comparisons (Alpine

marmot - thirteen-lined ground squirrel; Alpine marmot - human; and Alpine marmot - mouse) were also filtered for further analysis.

Gene set enrichment analysis and pathway enrichment analysis was carried out on these datasets using hypergeometric testing with

WebGestalt toolkit [67]. The multiple testing correction used FDR < 0.01 as the threshold for significant enrichment. In addition, gene

sets involved in functions of interest, namely anti-parasite defense and fatty acid desaturation were prepared. Regardless of enrich-

ment at pathway or gene family level, we also checked all rapidly evolving genes in ‘‘marmot - thirteen-lined ground squirrel’’

comparison.

Variant impact analysis between Alpine marmot and thirteen-lined ground squirrel

Themarmota genome (as single_cov2 treatedMAF file) was converted to sam format usingmaf-convert a tool which is provided with

LAST aligner [37], the thirteen-lined ground squirrel genome was used as reference sequence. The sam file was converted to a bam
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file, sorted and indexed using samtools [68]. We converted whole genome alignments in bam format to vcf. format using samtools

mpileup and bcftools. The bam file was used three times as input to meet minimum coverage criteria to call SNPs and insertion/de-

letions (INDELs). The resulting variants were annotated using SNPeff [69] using pre-build SNPeff annotation files (spetri2.79) derived

from the Ensembl [46] annotation. Genes with more than 1, 2 or 3 high impact variants were analyzed using string-db [70] (http://

string-db.org). Significantly enriched KEGG [54] pathway genes for (FDR corr. P value % 0.05) hinted at ‘‘Circadian entrainment.’’

The corresponding genes were checked manually for signs of positive selection using the branch site analysis results described

above [54, 65].

Heterozygosity analysis across species and SNP calling of Alpine marmot individuals

Complementing the Alpine marmot data, the paired-end sequence read data, genome assembly data and annotation data of other

mammalian species were downloaded from their respective sources (Data S1). Reads were aligned to the genome assembly with

bwa -mem v0.7.17 [71, 72]. Duplicate fragments introduced by PCR based library preparation were removed using Picard tools’

MarkDuplicates (version 2.12.1-SNAPSHOT; http://broadinstitute.github.io/picard). For detecting variation in Alpine marmot sam-

ples the Genome Analysis Toolkit’s (GATK version 3.6) HaplotypeCaller was used in gvcf mode [73]. Individual gvcf files were

used for joint genotyping with GATK’s GenotypeGVCFs tool to build a single variant file containing every Alpine marmot sample.

For comparative analyses of the genic regions between marmot and other mammals the mapped read files were analyzed for vari-

ation using GATK’s HaplotypeCaller (version nightly-2017-07-11) restricted to regions listed in the respective species’ gff file (Data

S1). Further filtering was based on base-wise coverages that were determined for these regions with bedtools coverage (v2.24.0; doi:

10.1093/bioinformatics/btq033). The ‘‘vfutils’’ script from SAMtools were used to further filter the SNPs. 20% of mean coverage and

200% of mean coverage were chosen as minimum and maximum coverage for variant filtering. We also required to have at least 6

supporting reads for a genotype and that heterozygous allele read are in balance, i.e., the ratio of reference allele and alternative allele

is between 0.23 and 0.76 [15]. In addition, minimumRMSmapping quality (Q) of 20 was used for filtering SNPs. VCFTools v0.1.11 [74]

was used for all post-filtering steps including INDEL removal, removal of homozygous SNPs and calculation of relatedness and

inbreeding coefficients (–relatedness2 and –het options). Site quality value of 20 was also used as a threshold for filtering high quality

SNPs. Runs of homozygosity (RoH) were calculated for each re-sequenced individual for autosomes only, using bcftools v1.7 roh [75]

implemented with the -O r option, and results are shown for RoH > 2MB, which would be indicative of recent inbreeding.

Dendrogram-based Alpine marmot population analysis

SNP calling and filtering was carried out for all 12 sequenced Alpine marmot individuals as described above. Genetic distances were

calculated from these matrices and cluster dendrograms were then produced from these distances. The depth of coverage of mito-

chondrial genomes from the 12 sequenced individuals were determined fromBAMalignments using ‘genomeCoverageBed’ function

of BEDTools [76]. The SNPs that mapped to mitochondrial genome were filtered using VCFTools [74]. A population-level variant ma-

trix was created and the ‘co-phylogenetic correlation’ function was used to calculate the correlation between hierarchical clusters

that were obtained from nuclear genome SNPs and mitochondrial SNPs respectively. The hierarchical clustering and co-phyloge-

netic correlation was carried out with R (v.3.4.3).

Demographic inference with PSMC

Each of the 12 Alpine marmot genomes was analyzed using pairwise sequential Markovian coalescent analysis (PSMC) [30]. Using

heterozygous positions, PSMC infers rates of coalescence over time. To convert relative to absolute timescales, we assumed an

average generation time, g, of 5 years [77], and a mutation rate of 2 3 10�9 per year per site. This estimate was obtained from

the median divergence at synonymous sites in the nuclear genome (ds = 0.04) between the Alpine marmot and thirteen lined ground

squirrel sequence, and assuming a split at 8.5Mya. Under the most straightforward interpretation of these plots, population sizes

were much larger in the earlier Pleistocene (1myr and before), and underwent a steady decline (Figure 4E). However, this interpre-

tation ignores the strong possibility of population subdivision, and in this case, the older events are determined by migration rate be-

tween local breeding populations, and not the species-wide effective population size [29, 30]. We therefore focused on inference of

recent events.

Diffusion Approximation for Demographic Inference (DADI) and PCA

SNP calling and filtering was carried out for all 12 sequenced Alpine marmot individuals as described above. We filtered the raw SNP

dataset by removing non bi-allelic and low quality SNPs (average DP < 10 or > 50, QUAL < 30). We then detected false positive SNPs

(FP-SNPs) by using the two independent sequencing datasets of the reference individual. Since both datasets were from the same

individual, we reasoned that any position differing by homozygous genotypes was a false positive SNP (mostly due tomapping errors

in low complexity and/or duplicated regions). We thus computed the density of homozygous SNPs in 5Kb windows and removed

from our dataset any window with more than 1 FP-SNP. Doing so, we discarded 96% of the detected FP-SNPs by removing

10% of the genome only. To filter out the last undetected FP-SNPs, we applied hard filters according to the GATK Best Practices

recommendations [78, 79]. Hard filter values were defined by checking the distribution of the following statistics for the detected

FP-SNPs: QD > 2, SOR < 3, MQ > 50, MQRankSum < �2.4, MQRankSum > 0.6, ReadPosRankSum < �2.2, ReadPosRankSum >

2.4. Finally, we masked genotypes with GQ < 10. After cleaning, 2,357,482 SNPs remained. PCA was computed with Plink

v1.90b3.44 including singletons.
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We then kept one SNP per 20kb-windows as a requirement for independence among loci. Such a thinning has led to a total of

178,098 SNPs left for analysis. Joint folded SFS for La Grande Sassière and Gsies populations respectively were estimated using

the program dadi [80]. Thus joint SFS ranges from 0 to 4 allele counts in both samples.

We used the power of composite likelihood diffusion approximation implemented in dadi to infer demographic history of La Grande

Sassière and Gsies populations. We tested a first set of 4 models including Strict Isolation (SI), Isolation with Migration (IM), Ancient

Migration (AM) and Secondary Contacts (SC) [81]. In the four DADI models, an ancestral population of effective size Na splits into two

daughter populations (N1 and N2, respectively) at time Ts. The two daughter populations may either not exchange migrants at all

(Strict Isolation (SI), 4 parameters), or undergo continuous bidirectional gene flow (Isolation withMigration (IM), 6 parameters), or bidi-

rectional gene flow ceasing at time Ta after the split (Ancestral Migration (AM), 7 parameters) or bidirectional gene flow starting at time

Tsc after the split (Secondary Contact (SC), 7 parameters). These models were evaluated and fitted with the the observed joint SFS

using 50 replicate runs per model. Models were ranked according to their log likelihoods. For nested models, comparison was per-

formed using likelihood ratio tests. For non-nested models, we used Akaike Information Criterion (AIC) (see Table S3). Parameter

estimation used a non-thinned dataset including 1,780,734 SNPs and the best-fitting model.

Coding diversity analysis

Genic diversity for coding regions was obtained for the 11 re-sequenced individuals to avoid reference bias, based on SNP calling for

the dadi analysis prior to thinning, as described above. We focused on bi-allelic SNP variation and created the folded site frequency

spectra for synonymous and nonsynonymous sites on a gene by gene basis using the python egglib package [82]. Statistics (q,p and

Tajima’s D) were calculated on the summed site frequency spectra across all genes. Because of the evidence of population structure,

we obtained population genetic statistics for each population separately as well as jointly for all 11 individuals. To estimate the dis-

tribution of fitness effects (DFE) of new nonsynonymous mutations we used a method that controls for segregation of slightly dele-

terious mutations [23], with the site frequency spectra for synonymous mutations as the neutral reference. Here, the strength of se-

lection is measured by the selection coefficient s, and the efficacy of selection, by the product of the selection coefficient and the

effective population size (Nes). Low levels of Nes illustrate less effective (e.g., low) selection against deleterious mutations. Population

genetic estimates (e.g., pN/pS) for populations from other animal species were obtained from [83] and [24].

Microsatellite diversity across the mammals

To compare the diversity at microsatellite loci of the Alpinemarmot to other mammal species, we plotted the number of microsatellite

alleles against the expected heterozygosity in a wide range of published datasets (Figure 4C). We show populations of the Alpine

marmot from LGS, and estimates from other subpopulations, also from the French Alps.We included other species in the genusMar-

mota, such as the threatenedM. vancouverensis and other rodent species. The Alpine marmot data come from individual published

sources [18, 84], while the data from all other species were retrieved from the compilation of microsatellite data in the VarVer data-

base [85].

Life history of the Alpine marmot in comparison to other Eutherian mammals

To compare the life history of the Alpine marmot to other Eutherian mammals (Figure 4D), we followed the approach of Bielby and

coauthors [27]. These authors showed that, after correcting for bodymass, much of the variance in mammalian life histories could be

captured by two factors, i.e., weighted sums of multiple life history variables. One factor included contributions from neonatal mass

(g), litter size, and gestation length (days), and can be considered as a measure of ‘‘reproductive output,’’ in which species vary ac-

cording to their investment in offspring ‘‘quality’’ versus ‘‘quantity.’’ The other factor includes contributions from interbirth interval,

weaning age, and age at sexual maturity (all measured in days), and can be considered as a measure of ‘‘reproductive timing,’’ in

which species vary on a ‘‘fast-slow’’ continuum. Figure 4D uses all records from placental mammals in the PanTheria database

[26], which includes high quality measures of all seven quantities (the six life history variables and adult body mass). All quantities

were log transformed, and then we calculated the residuals of the regressions of each variable onto body mass. We then calculated

a weighted sum of these residuals using the loadings for Eutheria reported in Table 1 of reference [27].

Lipidomics

Male rats (Wistar, 6 weeks old) andmale mice (C57Bl6, 6 weeks old) (Charles River Laboratories) were housed in conventional cages

at room temperature with a 12-h light/dark photoperiod. All procedures were carried out in accordance with UK Home Office pro-

tocols by a personal license holder.

Lipids were extracted from 50mg of Alpine marmot, rat or mouse white adipose tissue as previously described [86]. Samples were

reconstituted in 500mL 2:1:1 isopropyl alcohol:acetonitrile:water andwere analyzed in positive ionmode using aWaters XevoG2quad-

rupole time of flight (Q-ToF) mass spectrometer combined with an Ultra Performance Liquid Chromatography (UPLC) unit (Acquity,

Waters Corporation, Manchester, UK). 1ml of the sample was injected onto an Acquity UPLC Charged Surface Hybrid (CSH) C18 col-

umn (1.7mmx 2.1mmx 100mm) (Waters Corporation) held at 55�C. The binary solvent system (flow rate 0.4ml/min) consisted of solvent

A containing HPLC grade acetonitrile-water (60:40) with 10mM ammonium formate and solvent B consisting of LC-MS grade aceto-

nitrile-isopropanol (10:90) and 10mM ammonium formate. The gradient started from 60% A / 40% B, reached 99% B in 18min, then

returned back to the starting condition, and remained there for the next 2min. The data was collected over the mass range of m/z 105-

1800 with a scan duration of 0.2 s. The source temperature was set at 120�C and nitrogen was used as the desolvation gas (900 L/h).
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The voltages of the sampling cone, extraction cone and capillarywere 30kV, 3.5kV and 2kV respectively, with a collision energy of 6V for

each single scan, and a collision ramp from 20 to 40V for the fragmentation function. As lockmass, a solution of 2ng/l acetonitrile-water

(50:50) leucine enkephaline (m/z 556.2771) with 0.1% formic acid was infused into the instrument every 30 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were conducted with appropriate packages in R and Python.

DATA AND SOFTWARE AVAILABILITY

The Alpinemarmot genome ismade available at NCBI [48] and ENA [87] genome archives (marMar2.1). The accession number for the

Alpine marmot genome and sequence reads of the 11 re-sequenced individuals reported in this paper is GenBank: GCF_001458135

and ENA: GCF_001458135. For visualization, we have also made it accessible via the UCSC genome browser [88] including gene

and repeat annotations, a BLAT [89] server for alignment searches and possibilities to upload and view custom data. The browser

is available at http://public-genomes-ngs.molgen.mpg.de.
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