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Accelerated directed evolution 
of dye-decolorizing peroxidase using a bacterial 
extracellular protein secretion system (BENNY)
Abdulrahman H. A. Alessa1†, Kang Lan Tee1*†, David Gonzalez-Perez1, Hossam E. M. Omar Ali1, 

Caroline A. Evans1, Alex Trevaskis1, Jian-He Xu2 and Tuck Seng Wong1* 

Abstract 

Background: Dye-decolorizing peroxidases (DyPs) are haem-containing peroxidases that show great promises in 

industrial biocatalysis and lignocellulosic degradation. Through the use of Escherichia coli osmotically-inducible pro-

tein Y (OsmY) as a bacterial extracellular protein secretion system (BENNY), we successfully developed a streamlined 

directed evolution workflow to accelerate the protein engineering of DyP4 from Pleurotus ostreatus strain PC15.

Result: After 3 rounds of random mutagenesis with error-prone polymerase chain reaction (epPCR) and 1 round of 

saturation mutagenesis, we obtained 4D4 variant (I56V, K109R, N227S and N312S) that displays multiple desirable 

phenotypes, including higher protein yield and secretion, higher specific activity (2.7-fold improvement in kcat/Km) 

and higher  H2O2 tolerance (sevenfold improvement based on  IC50).

Conclusion: To our best knowledge, this is the first report of applying OsmY to simplify the directed evolution work-

flow and to direct the extracellular secretion of a haem protein such as DyP4.

Keywords: Directed evolution, Extracellular protein secretion, Dye-decolorizing peroxidase, Osmotically-inducible 

protein Y, Hydrogen peroxide tolerance

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Open Access

*Correspondence:  k.tee@sheffield.ac.uk; t.wong@sheffield.ac.uk 
†Abdulrahman H. A. Alessa and Kang Lan Tee contributed equally to this 

work
1 Department of Chemical & Biological Engineering and Advanced 

Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield 

Building, Mappin Street, Sheffield S1 3JD, UK

Full list of author information is available at the end of the article

Introduction
Dye-decolorizing peroxidases (DyPs; PF04261; EC 

1.11.1.19) comprise a recently described family of haem 

peroxidase enzymes, which is unrelated to the super-

families of plant and animal peroxidases (Martinez et al. 

2017). According to the RedoxiBase [http://perox ibase 

.toulo use.inra.fr/; accessed on 07/04/19, (Fawal et  al. 

2013)] a total of 237 DyPs have been identiied in the 

genomes of fungi, bacteria and archaea. Although their 

physiological functions are yet to be fully elucidated, 

DyPs have several characteristics that distinguish them 

from all other peroxidases. hey exhibit low sequence 

similarity to the classical fungal peroxidases, such as 

lignin peroxidase (LiP; EC 1.11.1.14) and manganese per-

oxidase (MnP; EC 1.11.1.13). Structural characterization 

of DyPs revealed the presence of a two-domain, α + β 

ferredoxin-like fold that is distinct from the all α-helical 

fold of the other peroxidase superfamilies (Singh and 

Eltis 2015). Initial structure- and sequence-based align-

ments identiied four phylogenetically distinct classes 

of DyPs (A to D). Classes A to C predominantly contain 

bacterial sequences while class D is mostly represented 

by fungal DyPs. DyPs are bifunctional enzymes display-

ing not only oxidative activity but also hydrolytic activ-

ity (Hofrichter et al. 2010). hey show a particularly wide 

substrate range and function well under much lower pH 

conditions compared to other plant peroxidases. hey 

are also able to oxidize a variety of organic compounds 

of which some are poorly converted by established per-

oxidases, including dyes (e.g. anthraquinone-based 

industrial dyes), β-carotene and aromatic sulphides. 

http://orcid.org/0000-0001-7689-9057
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40643-019-0255-7&domain=pdf
http://peroxibase.toulouse.inra.fr/
http://peroxibase.toulouse.inra.fr/
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Accumulating evidence shows that DyPs play a key role 

in lignin degradation. Owing to these unique properties, 

DyPs are potential candidates for a variety of biotechno-

logical applications.

In this article, we enhanced the hydrogen perox-

ide  (H2O2) tolerance of dye-decolorizing peroxidase 4 

(DyP4) from Pleurotus ostreatus strain PC15 (oyster 

mushroom) using directed evolution. DyP4 was the irst 

reported fungal DyP capable of oxidizing manganese (II) 

(Fernandez-Fueyo et  al. 2015). Additionally, it oxidizes 

both low and high redox-potential dyes. It also displays 

high thermal and pH stability. DyP4 was detected in 

the secretome of P. ostreatus grown on diferent ligno-

cellulosic substrates, suggesting that the generation of 

 Mn3+ oxidizers plays a role in the P. ostreatus white-rot 

lifestyle.

To accelerate DyP4 evolution, we used a bacterial 

extracellular protein secretion system (BENNY) based 

on the Escherichia coli osmotically-inducible protein Y 

(OsmY). OsmY was originally identiied as a naturally 

excreted protein in a systematic proteomic analysis of 

the extracellular proteome of E. coli BL21 (DE3) (Qian 

et al. 2008). It was subsequently used as a fusion partner 

to direct the extracellular secretion of various recom-

binant proteins expressed in E. coli, including endoglu-

canase (Gupta et  al. 2013), β-glucosidase (Gupta et  al. 

2013), xylanase (Zheng et al. 2012; Le and Wang 2014), 

xylosidase (Zheng et  al. 2012), single-chain antibody 

(Cheng et al. 2014) and various human proteins (Kotzsch 

et al. 2011). To our best knowledge, this is the irst report 

of applying OsmY to streamline directed evolution 

worklow and to direct extracellular secretion of a haem 

protein such as DyP4.

Materials and methods
Materials

Chemicals were purchased from Sigma-Aldrich (Dorset, 

UK) and ForMedium (Norfolk, UK). DNA modifying 

enzymes, deoxyribonucleotides and DNA ladders were 

purchased from New England Biolabs (Hitchin, UK), 

hermo Fisher Scientiic (Loughborough, UK) and Agi-

lent Technologies (Cheadle, UK). Nucleic acid puriica-

tion kits were purchased from Qiagen (Manchester, UK), 

Machery-Nagel (Düren, Germany) and Omega Bio-tek 

(Norcross, USA). All oligonucleotides were synthesized 

by Euroins Genomics (Ebersberg, Germany) and sum-

marized in Table 1.

Strains

Escherichia coli DH5α was used for all molecular clon-

ing, plasmid propagation and maintenance. E. coli BL21 

(DE3) (Merck; Darmstadt, Germany) was used for DyP4 

and OsmY-DyP4 protein expression.

Molecular cloning of DyP4 and OsmY‑DyP4

he DNA sequence encoding both the E. coli osmotically-

inducible protein Y (OsmY; GenBank: AUY30809.1) and 

the Pleurotus ostreatus strain PC15dye-decolorizing per-

oxidase 4 (DyP4; GenBank: KP973936.1) was codon-opti-

mized for protein expression in E. coli and synthesized by 

GenScript (Piscataway, USA). he gene (Additional ile 1: 

Figure S1) was cloned into pET-24a(+) vector (Merck; 

Darmstadt, Germany) using NdeI and EcoRI sites, and 

the resulting plasmid [pET-24a(+)-OsmY-DyP4; Addi-

tional ile 1: Figure S2] was used for protein engineering 

in this study. To create pET-24a(+)-DyP4 plasmid, DyP4 

gene was ampliied with NdeI-DyP4-Fwd and DyP4-Rev 

primers, digested with NdeI and EcoRI and cloned into 

pET-24a(+) vector.

Random mutagenesis by epPCR

hree error-prone polymerase chain reaction (epPCR) 

conditions were used in this study: high (H), medium (M) 

and low (L) error rates. For epPCR of high error rate, the 

50-μL PCR mixture contained 1× standard Taq reaction 

bufer (Mg-free), 7 mM  MgCl2, 0.05 mM  MnCl2, 0.2 mM 

of each dNTP, 20  pmol BamHI-DyP4-Fwd primer, 

20  pmol DyP4-Rev primer, 50  ng pET-24a(+)-OsmY-

DyP4 and 1.25  U Taq DNA polymerase (New England 

Biolabs). For epPCR of medium error rate, the 50-μL PCR 

mixture contained 1× standard Taq reaction bufer (Mg-

free), 7 mM  MgCl2, 0.2 mM dATP, 0.2 mM dGTP, 1 mM 

dTTP, 1  mM dCTP, 20  pmol BamHI-DyP4-Fwd primer, 

20 pmol DyP4-Rev primer, 50  ng pET-24a(+)-OsmY-

DyP4 and 1.25 U Taq DNA polymerase (New England 

Biolabs). For epPCR of low error rate, the 50-μL PCR mix-

ture contained 1× standard Taq reaction bufer (Mg-free), 

1.5 mM  MgCl2, 0.01 mM  MnCl2, 0.3 mM of each dNTP, 

4.5  pmol BamHI-DyP4-Fwd primer, 4.5  pmol DyP4-Rev 

primer, 3.5  ng pET-24a(+)-OsmY-DyP4 and 1.25  U Taq 

DNA polymerase (New England Biolabs). he PCR mix-

tures were thermocycled using the following conditions: 

(i) 30 s initial denaturation at 95 °C, (ii) 30 cycles of 20 s 

denaturation at 95 °C, 30 s annealing at 68 °C and 1 min 

30  s extension at 68  °C and (iii) 5 min inal extension at 

68  °C. PCR products were either puriied by gel extrac-

tion (high and medium error rate) or PCR puriication 

following DpnI digestion (low error rate). After restrictive 

digestion with BamHI and EcoRI, the PCR products were 

cloned into pET-24a(+)-OsmY vector. he recombinant 

plasmids were subsequently electroporated into E. coli 

BL21 (DE3) to create OsmY-DyP4 mutant libraries.

Cultivation and protein expression in 96‑well microtitre 

plates

Individual colonies were picked manually using sterile 

toothpicks into 96-well microtitre plates, with each well 
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containing 150  μL 2× TY medium (16  g/L tryptone, 

10 g/L yeast extract and 5 g/L NaCl) supplemented with 

50 μg/mL kanamycin. Wells B2, E6 and G11 were inoc-

ulated with either wildtype (WT) or parental strain as 

internal control. Plates were covered with lids, sealed and 

cultivated at 30 °C for 24 h. Following cultivation, 100 μL 

of 50% (v/v) glycerol solution was added to each well, and 

these master plates were stored at − 80 °C.

To prepare pre-culture for protein expression, master 

plates were replicated using a pin replicator into fresh 

96-well microtitre plates, with each well containing 

150  μL 2× TY medium supplemented with 50  μg/mL 

kanamycin. hese pre-culture plates were grown at 30 °C 

for 18  h, before being used to inoculate fresh 96-well 

microtitre plates, with each well containing 150  μL 2× 

TY-based auto induction medium [AIM; 16 g/L tryptone, 

10 g/L yeast extract, 3.3 g/L  (NH4)2SO4, 6.8 g/L  KH2PO4, 

7.1 g/L  Na2HPO4, 0.5 g/L glucose, 2.0 g/L α-lactose and 

0.15 g/L  MgSO4] supplemented with 50 μg/mL kanamy-

cin. After cultivation at 30  °C for 24  h, the plates were 

centrifuged at 4000  rpm (eq.  2342  g) for 10  min. he 

spent medium containing secreted OsmY-DyP4 was used 

for high-throughput screening (HTS).

Abgene 96-well polypropylene storage microplates 

(hermo Fisher Scientiic; AB0796) and Abgene polypro-

pylene plate covers (hermo Fisher Scientiic; AB0755) 

were used in preparing master plates, pre-culture plates 

and protein expression plates. All plate cultivations were 

conducted in Titramax1000 plate shaker coupled to an 

Incubator 1000 heating module (Heidolph Instruments; 

Essex, UK) using a shaking speed of 1050 rpm.

Screening for higher  H2O2 tolerance

Flat-bottom clear 96-well polystyrene microplates 

(Greiner Bio-One; 655161) were used for screening. 

Twenty microlitre of spent medium was transferred to 

96-well microtitre plate, with each well containing 150 μL 

of 10  mM 2,2′-azino-bis(3-ethylbenzothiazoline-6-sul-

phonic acid) (ABTS) prepared in 0.1  M citrate–0.2  M 

 Na2HPO4 pH 3.4 bufer solution. he mixture was shaken 

for 2 min before  reaction was initiated by adding 50 μL 

of 17.5  mM  H2O2 solution. Absorbance at 405  nm was 

recorded with Multiskan FC microplate photometer 

(hermo Fisher Scientiic), after a 2-min reaction with 

shaking. All solutions were freshly prepared prior to 

screening. All shaking steps were conducted in Titramax 

Table 1 Oligonucleotides used in this study

epPCR error-prone polymerase chain reaction, SDM site-directed mutagenesis, SM saturation mutagenesis

Oligonucleotide Applications DNA sequence (5′–3′)

NdeI-DyP4-Fwd Cloning TAT ACA TAT GAT GAC CAC CCC GGC GCC GCC GCTG 

DyP4-Rev Cloning, epPCR, SM ATG CGA ATT CTT ACG CGC TGA TCG GCG CTT GGC TGT GC

BamHI-DyP4-Fwd epPCR, SM GAT CGG ATC CAT GAC CAC CCC GGC GCC GCC GCTGG 

M43L-F SDM AAA GCG AAC CTG GCG CAC TTC ATC CCG CAC ATT AAG ACC AGC GCGG 

M43L-R SDM GAA GTG CGC CAG GTT CGC TTT AAA TTG ATC AAC GTT GGT CAC GTCG 

M77L-F SDM CTG GTG CCG CTG GCG GCG GTG AAC GTT AGC TTT AGC CAC CTG GGCC 

M77L-R SDM CAC CGC CGC CAG CGG CAC CAG ACC CGG TTT CTT CTG ACG TTT GTGT 

M253L-F SDM CTG TTC CAA CTG GTG CCG GAG TTT GAC GAT TTC CTG GAA AGC AACC 

M253L-R SDM CTC CGG CAC CAG TTG GAA CAG GTA ACG GAA GGT CAG AAA GCT ACCA 

M253F-F SDM CTG TTC CAA TTT GTG CCG GAG TTT GAC GAT TTC CTG GAA AGC AACC 

M253F-R SDM CTC CGG CAC AAA TTG GAA CAG GTA ACG GAA GGT CAG AAA GCT ACCA 

NOP-312N-F SM TGC GCA GCGTNNKAAC AAG TTT GAC TTC 

NOP-312N-R SM TCC GCC GCC AGT TTC GGA TCG TCC T

4P-56N-F SM ACC AGC GCG GGC NNKATT AAA GAC CGT GAG 

4P-56N-F SM TTT AAT MNNGCC CGC GCT GGT CTT AAT GTG 

4P-109N-F SM ACC GGC CAG CGT NNKGAC GCG GAG ATT CTG 

4P-109N-R SM CGC GTC MNNACG CTG GCC GGT GGT GAA CGC 

4P-227N-F SM CTG GCG AAG GAG NNKGGT GAC AGC CGT GCG 

4P-227N-R SM GTC ACC MNNCTC CTT CGC CAG AAT GAA ACC 

4P-306N-F SM GAT CCG AAA CTG NNKGCG GAT GCG CAG CGT 

4P-306N-R SM ATC CGC MNNCAG TTT CGG ATC GTC CTT CAG 

4P-374N-F SM ACC AGC CAA GAA NNKCAC GAC AAG AAA ACC 

4P-374N-R SM GTC GTG MNNTTC TTG GCT GGT CAC TTC CGG 
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1000 (Heidolph Instruments) using a shaking speed of 

1050 rpm.

Site‑directed mutagenesis and saturation mutagenesis

Mutagenic primers (Table  1), PCR mixtures and PCR 

conditions for all site-directed mutagenesis and satura-

tion mutagenesis studies were designed using OneClick 

programme, which is publicly accessible via the web-link: 

http://tucks engwo ng.staf .shef.ac.uk/OneCl ick/ (War-

burton et al. 2015).

All methionine-substituted variants were created 

using pET-24a(+)-DyP4 as template. To construct 

M43L (primers M43L-F and M43L-R), M253L (primers 

M253L-F and M253L-R) and M253F (primers M253F-

F and M253F-R) variants, partially overlapping primers 

and Q5 high-idelity DNA polymerase (New England 

Biolabs) were used in a 2-stage PCR. To construct M77L 

variant (primers M77L-F and M77L-R), DNA polymer-

ase used was substituted with PfuUltra high-idelity DNA 

polymerase AD (Agilent Technologies).

Saturation mutagenesis was performed on positions 56, 

109, 227, 306, 312 and 374 of DyP4 using pET-24a(+)-

OsmY-DyP4 variant 3F6 as template. For position 312, 

non-overlapping primers were used (Table 1). For positions 

56, 109, 227, 306 and 374, a 4-primer method was applied 

using 2 lanking primers (BamHI-DyP4-Fwd and DyP4-

Rev) and 2 internal primers (Table 1). Q5 high-idelity DNA 

polymerase (New England Biolabs) was used in all PCRs.

Protein expression and puriication

For protein expression, plasmid was freshly transformed 

into E. coli BL21 (DE3). Cells were grown in 2× TY 

media supplemented with 50 μg/mL kanamycin at 37 °C. 

When  OD600 reached 0.5–0.6, 1  mM isopropyl β-d-1-

thiogalactopyranoside (IPTG) was added to induce pro-

tein expression and temperature was lowered to 25  °C. 

After 24 h, cells were harvested and pellets were stored 

at − 20 °C.

For protein puriication, cells were resuspended in pre-

chilled bufer A (50 mM Tris–HCl pH 8.5, 1 mM EDTA) 

supplemented with DNase, RNase, protease inhibitor and 

lysozyme, and were lysed by sonication (Vibra-Cell ultra-

sonic liquid processors; Sonics & Materials; Newtown, 

USA). Lysed cells were centrifuged and supernatant 

was loaded onto a 5-mL HiTrap Q HP anion exchange 

chromatography column (GE Healthcare Life Sciences; 

Pittsburgh, USA) pre-equilibrated with bufer A. After 

washing with 5 column volumes (CVs) of bufer A, pro-

tein was eluted with a linear gradient of NaCl (0–1  M) 

in bufer A. Protein was subsequently diluted 10× with 

bufer B (25 mM acetate pH 4.0) to adjust the NaCl con-

centration, before loading onto a 5-mL HiTrap SP HP 

cation exchange chromatography column (GE Healthcare 

Life Sciences) pre-equilibrated with bufer B. After wash-

ing with 5 CVs of bufer B, protein was eluted with a 

linear gradient of NaCl (0–1  M) in bufer B. Fractions 

containing target protein were pooled and loaded onto 

HiLoad 26/600 Superdex 75  pg column (GE Healthcare 

Life Sciences) pre-equilibrated with bufer C [0.1 M cit-

rate–0.2  M  Na2HPO4 pH 4.0, 100  mM NaCl, 10% (v/v) 

glycerol]. Puriied DyP4 protein was immediately lash 

cooled in liquid nitrogen and stored in − 80 °C.

UV–visible spectroscopy and concentration measurement 

of puriied DyP4 WT and variants

Puriied DyP4 stored at − 80  °C was thawed and trans-

ferred to a quartz cuvette. UV–visible spectra were col-

lected using a UV-3100PC spectrophotometer (VWR; 

Lutterworth, UK). Spectra between 250–800  nm were 

recorded at ambient temperature for all proteins in bufer 

C, typically at concentrations of 3–6  μM. DyP4 protein 

concentration was calculated based on absorbance at 

280 nm, measured using the BioPhotometer Plus (Eppen-

dorf; Stevenage, UK), and an extinction coeicient of 

29,575 M−1 cm−1 (calculated using ProtParam).

Kinetic constants of DyP4 WT and variants

he kinetic constants of DyP4 were determined for 

ABTS oxidation. All ABTS stock solutions were prepared 

in 0.1  M citric acid–0.2  M  Na2HPO4 bufer pH 3.4 and 

1  mM hydrogen peroxide was prepared in deionised 

water. he assay was performed at ambient tempera-

ture in lat-bottom clear 96-well polystyrene microplates 

(Greiner Bio-One; 655161). 140 μL of ABTS stock solu-

tion (inal concentrations of 0.1–7.0 mM) was transferred 

to the microtitre plate before 10  μL of puriied DyP4 

(inal concentrations of 0.1–0.2  μM) was added. he 

reaction was initiated by 50 μL of 1 mM  H2O2 and for-

mation of ABTS cation radical  was recorded at 405  nm 

[ε405 = 36.8 mM−1 cm−1, (Otieno et al. 2016)] with Mul-

tiskan FC microplate photometer (hermo Fisher Sci-

entiic). All experiments were performed in triplicates. 

he Michaelis constants (Km and Vmax) were obtained by 

non-linear regression analysis to the Michaelis–Menten 

model using GraphPad Prism (GraphPad Software; San 

Diego, USA). he catalytic rate (kcat) was calculated using 

kcat= Vmax/(DyP4 concentration).

Hydrogen peroxide tolerance of DyP4 and variants

he hydrogen peroxide tolerance for DyP4 was deter-

mined using ABTS oxidation. Assay procedure is similar 

to the determination of DyP4 kinetic constants, except 

7 mM ABTS in 0.1 M citric acid–0.2 M  Na2HPO4 bufer 

pH 3.4 and 0.15–50.00  mM  H2O2 were used. All reac-

tion rates were normalized against the reaction rate 

at 0.25  mM  H2O2 for the respective DyP4 wildtype or 

http://tucksengwong.staff.shef.ac.uk/OneClick/
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variants. All experiments were performed in triplicates. 

he residual activity was plotted against  H2O2 concentra-

tion and non-linear regression analysis to the “[inhibitor] 

vs. response—variable slope (four parameter)” model was 

performed using GraphPad Prism (GraphPad Software) 

to obtain  IC50 values of  H2O2.

Acetone precipitation of protein

One volume of spent medium (350 μL) was mixed with 

4 volumes of acetone (1400 μL) that was pre-chilled 

at −  20  °C. he mixture was vortexed thoroughly and 

incubated at − 80 °C for 15 min, before overnight incu-

bation at −  20  °C. Subsequently, the mixture was cen-

trifuged at 21,000 g and 4 °C for 15 min. After decanting 

the supernatant, residual acetone was allowed to evapo-

rate at room temperature for 30 min. Protein pellet was 

dissolved in 35 μL of 1× SDS sample loading bufer and 

20 μL of protein sample was analysed by SDS-PAGE.

Proteomic analysis

Proteins present in SEC fractions 2 and 7 were irst 

resolved by SDS-PAGE. Gel bands were excised from the 

SDS-PAGE gel manually, post visualization by Coomas-

sie blue stain. he gel bands were then de-stained and 

proteolytically digested with trypsin to generate peptides 

for mass spectrometry analysis (Shevchenko et al. 2006) 

using liquid chromatography LC–MS/MS. Mascot soft-

ware search engine was employed to process the mass 

spectrometry data to identify proteins from the peptide 

sequence reference database for Escherichia coli (strain 

B/BL21-DE3) (UniProt Proteome ID: UP000002032; 

4156 entries; downloaded on 07/04/2019). he sequence 

of the recombinant OsmY-DyP4 protein was included as 

an additional entry to this reference proteome.

Results and discussion
Methionine substitution did not improve  H2O2 tolerance 

of DyP4

Peroxidases use  H2O2 as the electron acceptor to cata-

lyse numerous oxidative reactions. For DyP4, the opti-

mum  H2O2 concentration for ABTS oxidation was 

determined to be 0.25  mM. his was consistent with a 

previous study that used exactly the same  H2O2 concen-

tration for the oxidation of ABTS,  Mn2+, Reactive Blue 

19 (RB19), Reactive Black 5 (RB5) and 2,6-dimethoxy-

phenol (DMP) (Fernandez-Fueyo et al. 2015). Other DyPs 

operate optimally in similar  H2O2 concentration range. 

For example, 0.2 mM  H2O2 was used for ABTS, guaiacol 

and DMP oxidation by bacterial DyP from Pseudomonas 

putida MET94 (PpDyP) (Brissos et  al. 2017). DyP from 

cyanobacterium Anabaena sp. strain PCC 7120 (AnaPX) 

functioned optimally at 0.4  mM  H2O2 for RB5 oxida-

tion (Ogola et al. 2009). For DyP from Irpex lacteus, the 

optimum  H2O2 concentration for ABTS oxidation was 

between 0.4 and 0.8 mM (Salvachua et al. 2013).

As with other DyPs, DyP4 is inhibited by  H2O2. In an 

attempt to enhance the  H2O2 tolerance of DyP4, we cre-

ated 4 methionine-substituted variants (M43L M77L 

M253L and M253F). Our decision was guided by two 

reasons: (1) he amino acids methionine, cysteine, his-

tidine, tryptophan and tyrosine are typical targets for 

oxidation within proteins due to the high reactivity of 

sulphur atoms and aromatic rings towards various reac-

tive oxygen species (Li et  al. 1995), and (2) Ogola et  al. 

successfully enhanced the  H2O2 stability of AnaPX by 

2.4- to 8.2-folds through substituting methionine resi-

dues with high redox residues such as isoleucine, leucine 

and phenylalanine (Ogola et al. 2010).

Although all 4 methionine-substituted variants were 

properly folded judging by the absorption spectra of 

the puriied proteins and were catalytically active, there 

was no improvement in their  H2O2 tolerance (data not 

shown). his result prompted us to apply directed evolu-

tion to enhance  H2O2 tolerance.

N‑terminal OsmY fusion resulted in extracellular DyP4 

secretion

In directed evolution using E. coli as protein expression 

host, protein variants are often expressed in 96-well for-

mat. Prior to enzymatic assays, cells are lysed to release 

recombinant proteins using physical (e.g. freeze–thaw 

cycle), chemical (e.g. polymyxin B, Triton X-100, Tween 

20, NP40, CHAPS and cholate etc.), enzymatic (e.g. 

lysozyme) or combinations of these approaches. In engi-

neering PpDyP using directed evolution, for instance, E. 

coli cells were disrupted through multiple steps to release 

DyP enzymes: (i) cell harvest by centrifugation, (ii) phys-

ical-enzymatic treatment (freeze at −  80  °C for 15  min, 

thaw at 30 °C for 5 min, re-suspension in bufer contain-

ing lysozyme) and (iii) cell debris removal by centrifuga-

tion (Brissos et al. 2017).

To streamline the DyP4 directed evolution worklow, 

we fused E. coli OsmY to the N-terminus of DyP4 and 

investigated protein secretion using 2 expression hosts 

[E. coli BL21 (DE3) and E. coli C41 (DE3)] and 2 protein 

expression temperatures (30  °C and 37  °C) in 2× TY-

based AIM. Using ABTS assay, we conirmed extracel-

lular OsmY-DyP4 secretion and E. coli BL21 (DE3) was 

superior to E. coli C41 (DE3) based on the activity of 

secreted protein. In addition, an expression temperature 

of 30  °C resulted in higher protein secretion. By using 

OsmY as secretory carrier and fusion protein expres-

sion in AIM, we bypassed both (i) protein induction (i.e. 

addition of IPTG inducer) and (ii) cell disruption, which 

allows us to develop a far more elegant HTS as depicted 

in Additional ile  1: Figure S3. Worthy of a mention, in 
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addition to DyP4, OsmY was also a good carrier protein 

for β-glucosidase (53  kDa) and lipase (20  kDa) (unpub-

lished data).

Accelerated HTS with BENNY

After conirming the extracellular secretion of OsmY-

DyP4 using BENNY, we adapted this to 96-well format 

(Additional ile  1: Figure S3). Based on ABTS assay, we 

obtained an apparent coeicient of variance (CV) of 8% 

for OsmY-DyP4 (Fig. 1 and Additional ile 1: Figure S4). 

Concurrently, we cultivated E. coli BL21 (DE3) carrying 

no plasmid in a 96-well plate (denoted as background 

plate) to calculate the background absorbance. After sub-

tracting the background absorbance  (Abs405 = 0.2427), 

we obtained a true CV of 22%. he increase in  Abs405 of 

0.1425, on average, was therefore due solely to the enzy-

matic oxidation of ABTS by the secreted OsmY-DyP4.

A closer look at both the assay plate and the back-

ground plate revealed that the deviation was mainly 

caused by liquid evaporation from bordering wells, which 

resulted in higher secreted protein concentration in these 

wells (Additional ile 1: Figure S4). If all bordering wells 

were excluded, the apparent and true CVs were reduced 

to 4% and 11%, respectively.

herefore, BENNY-assisted ABTS assay was well 

suited for directed evolution to diferentiate and identify 

improved protein variants. Worthy of note, in order to 

isolate OsmY-DyP4 variants of enhanced  H2O2 tolerance, 

we intentionally increased the  H2O2 concentration in our 

assay from 0.25 to 4  mM, representing a 16× increase. 

At 4  mM  H2O2, DyP4 WT showed a relative activity 

of ~ 30%, compared to that at 0.25 mM  H2O2.

Random mutagenesis by epPCR

As this was our irst directed evolution attempt on DyP4, 

we created random mutagenesis libraries of OsmY-DyP4 

using 3  epPCR conditions (H, M and L). Important to 

note, mutations were only targeted to the sequence 

encoding for DyP4, leaving the OsmY sequence unal-

tered. he error rate of Taq DNA polymerase was manip-

ulated by increasing  Mg2+ concentration, adding  Mn2+, 

applying imbalanced nucleotide concentration or uti-

lizing combinations of these factors (Wong et  al. 2006). 

As evidenced in Fig. 2a, at high and medium error rates, 

we observed a reduction in the PCR product yield and 

appearance of multiple side products. herefore, com-

bining increased  Mg2+ concentration and  Mn2+ addition 

(condition H) gave the highest error rate. A combination 

of increased  Mg2+ concentration and imbalanced nucleo-

tide concentration (condition M) gave the medium error 

rate. Finally, adding 0.01  mM  Mn2+ alone (condition L) 

gave the lowest error rate.

his was further conirmed by screening these epPCR 

libraries using BENNY-assisted ABTS assay (Fig.  2b). 

Most of the clones (77.42%; Additional ile 1: Figure S5) 

in the library prepared with condition H were either 

inactive or not as active as the parental strains (wells 

B2, E6 and G11). hese percentages were much lower in 

the libraries prepared with conditions M (41.94%) and L 

(40.86%).

Improved OsmY‑DyP4 variants isolated from all epPCR 

conditions (H, M and L)

In total, we performed 3 rounds of random mutagen-

esis using epPCR. In the 1st and 2nd rounds, we 

screened 558 clones [2 96-well plates from each epPCR 

condition (H, M, L)]. In the 3rd round, 1116 clones 

[4 96-well plates from each epPCR condition (H, M, 

L)] were screened. he best variant from each epPCR 

round (OsmY-1D2 from 1st round and OsmY-2A5 from 

2nd round) was used as parental template for the sub-

sequent epPCR round. In the 4th round, we performed 

saturation mutagenesis on each mutated amino acid 

position identiied (56, 109, 227, 306, 312 and 374), 

using OsmY-3F6 as template DNA.

As summarized in Table 2, OsmY-DyP4 variants with 

enhanced total activity under screening conditions were 

identiied from all epPCR conditions (H, M, L). DNA 

sequencing of this set of improved variants showed that 

nucleotide substitutions were predominantly AT→GC 

transitions (63.6%; Additional ile 1: Table S1), consist-

ent with the expected mutational spectrum of epPCR 

using Taq DNA polymerase (Wong et al. 2006; Tee and 

Wong 2013). On average, there were 1.82 nucleotide 

substitutions per DyP4 gene, which was deemed appro-

priate for directed evolution.
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Fig. 1 Activity values  (Abs405) of OsmY-DyP4-catalysed ABTS 

oxidation in a 96-well plate, reported in a descending order (black—

before background subtraction, blue—after background subtraction). 

The assay was conducted using a protocol streamlined with 

OsmY-based BENNY. The apparent coefficient of variance (CV) was 

calculated without subtracting the assay background, while the true 

CV was obtained after background subtraction
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he best variant, OsmY-4D4, carries 4 amino acid 

substitutions (I56V, K109R, N227S and N312S; Fig.  3 

and Additional ile  1: Figure S6) along with 4 other 

silent mutations (Table  2). he crystal structures of 

F194Y (PDB 6FSK) and F194W (PDB 6FSL) variants of 

DyP4 were recently released. Residues 56 and 109 are 

located within α-helices, while the other two residues 

(227 and 312) are located in turns. None of these resi-

dues is in the vicinity of haem.

To further investigate the amino acid substitutions 

found in directed evolution, we looked at 3 aspects more 

closely solvent accessibility, B-factor and H-bond forma-

tion. Of the 4 residues, residue 109 is the only surface-

exposed residue. he average B-factor of residue 109 

(21.5678) is also slightly higher than protein average 

(21.146) and those of residues 56 (17.6775), 227 (15.9750) 

and 312 (15.4975). Interestingly, K109R and N312S sub-

stitutions resulted in higher number of H-bonds formed 

(3 H-bonds in R109 vs. 1 H-bond in K109 and 4 H-bonds 

in S312 vs. 3 H-bonds in N312).

DyP4 variants showed higher protein yield, speciic activity 

and  H2O2 tolerance

he enhanced total activity of OsmY-DyP4 variants 

in Table  2 could be due to one or more of the follow-

ing factors: (1) increased protein expression or yield, (2) 

enhanced  H2O2 tolerance and (3) increased extracellular 

protein secretion. To determine the efects of mutations 

found, we removed the N-terminal OsmY of WT, 3F6 

and 4D4, expressed and puriied these 3 proteins, and 

performed further characterizations.

Judging on the reddish colour of the cell pellets (Addi-

tional ile  1: Figure S7) and the protein content of cell 

extract (Additional ile  1: Figure S8), the protein yield 

of 3F6 and 4D4 was higher than that of WT. From 200-

mL shake lask cultures, the estimated amounts of puri-

ied protein obtained were 1.16 mg for WT, 1.20 mg for 

3F6 and 2.70 mg for 4D4. his could potentially explain 

marginally higher protein secretion that we observed for 
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Fig. 2 a Products and side products of epPCRs with high (H), medium (M) and low (L) mutation rates. b ABTS oxidation activity values  (Abs405) of 

OsmY-DyP4 mutant libraries from the 3rd round of epPCR [blue—epPCR library with low (L) mutation rate, green—epPCR library with medium (M) 
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Table 2 A list of  OsmY-DyP4 variants and  the  mutations 

in DyP4-coding sequences veriied by DNA sequencing

Clones labelled with an asterisk * were used as parental template for the 

subsequent round of mutagenesis; mutations in italics represent nucleotide 

substitutions added to a parental template

OsmY‑DyP4 
and variants

Mutagenic rate 
of epPCR library

Missense 
mutations

Silent 
mutations

OsmY-WT* N/A N/A N/A

OsmY-1D2* L N312S (A→G) D241 (T→C)
I444 (C→T)

OsmY-1D7 H A306V (C→T) R323 (T→C)

OsmY-2A5* M I56V (A→G)
N312S (A→G)

D241 (T→C)
I444 (C→T)
G73 (T→A)
L245 (G→T)

OsmY-2C2 M H374R (A→G)
N312S (A→G)

D241 (T→C)
I444 (C→T)

OsmY-2F8 H N227D (A→G)
N312S (A→G)

D241 (T→C)
I444 (C→T)

OsmY-3F6* L K109R (A→G)
N312S (A→G)
I56V (A→G)

D241 (T→C)
I444 (C→T)
G73 (T→A)
L245 (G→T)

OsmY-4D4 N/A N227S
N312S (A→G)
I56V (A→G)
K109R (A→G)

D241 (T→C)
I444 (C→T)
G73 (T→A)
L245 (G→T)
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OsmY-3F6 and OsmY-4D4 when we loaded the acetone-

precipitated protein samples onto SDS-PAGE (Additional 

ile 1: Figure S9). After protein puriication, all 3 puriied 

proteins exhibited a distinctive Soret band  at 406  nm 

with a slight shoulder at ~ 385  nm (Fig.  4). Q band at 

504 nm and a charge-transfer (CT) band at 637 nm were 

also clearly visible.

Using the puriied proteins, we investigated the kinetic 

parameters for ABTS oxidation (Table 3). he kcat values 

of 3F6 and 4D4 were found to be 5.02 s−1 and 4.52 s−1, 

respectively. hese are slightly higher than WT’s kcat of 

3.86 s−1. Variants 3F6 and 4D4 showed lower Km values 

of 0.427  mM and 0.390  mM, respectively, compared to 

WT (0.895 mM). his was unexpected as we used a rel-

atively high ABTS concentration in our HTS, 6.8  mM, 

which is 7.6× above the WT’s Km value. In fact, the WT’s 

Km value we determined (0.895 mM) was almost identical 

to a previously reported value (0.779  mM) (Fernandez-

Fueyo et  al. 2015). he combination of higher kcat and 

lower Km resulted in a 2.7-fold improvement in speciic 

activity for both 3F6 and 4D4.

We also conducted ABTS assay in the presence of 

increasing  H2O2 concentration (0.15–50.00  mM), with 

ABTS concentration kept at 7 mM. In Fig. 5, the activi-

ties at 0.25  mM  H2O2 (the most optimal  H2O2 concen-

tration for ABTS oxidation) for WT and variants were 

arbitrarily set as 100% and used as reference points. 

Activities of WT, 3F6 and 4D4 at all other  H2O2 concen-

trations were benchmarked against their respective ref-

erence. It became immediately apparent that the curves 

corresponding to 3F6 and 4D4 were shifted upwards and 

rightwards, indicating higher activity, a shift to higher 

optimal  H2O2 concentration and higher  H2O2 tolerance. 

Upon itting the curves to an inhibitory dose–response 

curve with a variable slope (4 parameters), the  IC50 value 

was increased from 0.97  mM (WT) to 4.67  mM (3F6) 

and 7.03 mM (4D4), as summarized in Table 4. In other 

words, the  H2O2 tolerance of 4D4 was improved 7×, 

comparing its  IC50 value to that of WT.

Protein production rate is likely faster than protein 

secretion rate

When we compared the cell pellets of DyP4 and vari-

ants with or without N-terminal OsmY fusion part-

ner (Additional file 1: Figure S7), we noticed apparent 

colour difference between the two sets. The set with 

OsmY displayed much lighter reddish colour, which 

was expected for a system that allows extracellular pro-

tein secretion. Consistent with the set without OsmY, 

OsmY-3F6 and OsmY-4D4 showed slightly darker red-

dish colour compared to OsmY-WT, again suggesting 

higher protein yield of these two variants. This result 

also indicated that a portion of OsmY-DyP4 was not 

secreted. To understand the reason behind, we puri-

fied the OsmY-DyP4 from the cell pellets by following 

the identical protein purification scheme as DyP4.

In the final size exclusion chromatographic (SEC) 

step, we noticed that the haem-containing protein 

peak had a slight right shoulder (Additional file  1: 

Figure S10), indicating the presence of a slightly 

smaller protein. This was further confirmed when we 

loaded all collected protein fractions (F2 to F7) onto 
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Fig. 3 Protein model of 4D4 variant, created with PyMOL using 

crystal structure of DyP4 F194Y variant (PDB 6FSK) as template. 

Missense mutations in 4D4 are indicated (I56V, K109R, N227S and 

N312S)
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SDS-PAGE, where we saw two distinct protein bands 

(Additional file  1: Figure S10). We excised the pro-

tein band in F2 (larger Mw) and the protein band in F7 

(smaller Mw), and conducted proteomic analysis. Mass 

spectrometry data acquired by LC–MS/MS led to both 

F2 and F7 matching to the recombinant OsmY-DyP4, 

with a lower sequence coverage for F7 (71%) relative to 

F2 (89%). Overlaying identified peptides to the amino 

acid sequence of OsmY-DyP4 fusion protein (Fig.  6) 

suggests a potential N-terminal truncation of the F2 

protein to generate the F7 protein. The data suggested 

that the truncation likely occurred within the first 50 

amino acids of OsmY. In other words, the signal pep-

tide of OsmY (positions 1–28) was proteolytically 

cleaved, resulting in no secretion of this truncated pro-

tein pool. This signal peptide of OsmY was previously 

shown to play a key role in protein secretion (Qian 

et al. 2008).

Taken together, our experimental data suggested that 

(1) protein production rate of OsmY-DyP4 is likely 

faster than its extracellular secretion rate, and (2) the 

N-terminal region of OsmY, which encompasses its 

first 28 amino acids, is susceptible to proteolytic cleav-

age. These two factors potentially contribute to reten-

tion of small amount of DyP4 within the cell.

Conclusion
In conclusion, we were able to apply E. coli OsmY  in 

a BENNY-assisted HTS system to significantly stream-

line the workflow of directed DyP4 evolution. Using 

this simplified scheme, we successfully isolated DyP4 

variants that show multiple desirable phenotypes 

including higher protein yield, higher specific activity 

and higher  H2O2 tolerance. We are now further engi-

neering 4D4 variant for the oxidation of  S-type phe-

nolic lignin units (Camarero et  al. 1994; Pardo et  al. 

2013) such as syringaldehyde, acetosyringone and 

sinapic acid etc. (on-going work).

he application of OsmY-based BENNY can further be 

extended to engineering other enzyme types, express-

ing toxic proteins and simplifying downstream process-

ing in recombinant enzyme production. We are currently 

expanding the BENNY toolbox by (1) identifying new 

secretory proteins, (2) engineering OsmY and other 

related proteins for higher secretory phenotypes and 

(3) extending the application of OsmY to other bacterial 

hosts, encompassing both Gram-positive and Gram-

negative bacteria (on-going work). Concurrently, we see 

exciting development in the ield of BENNY reported 

by other research groups, such as identiication of use-

ful secretory carriers [e.g. YebF (Zhang et  al. 2006) and 

Hly (Ruano-Gallego et al. 2019)] and engineering E. coli 

Table 3 Kinetic parameters for ABTS oxidation of DyP4 and its variants

DyP4 and variants Km (mM) Vmax  (mM−1 s−1) kcat  (s
−1) kcat/Km  (mM−1 s−1)

WT 0.895 ± 0.065 6.779 ± 0.142 × 10−4 3.86 ± 0.08 4.31 ± 0.41

3F6 0.427 ± 0.055 6.877 ± 0.202 × 10−4 5.02 ± 0.15 11.78 ± 1.86

4D4 0.390 ± 0.059 6.966 ± 0.233 × 10−4 4.52 ± 0.15 11.60 ± 2.14
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Fig. 5 Relative ABTS oxidation activities of purified WT (black), 3F6 

(blue) and 4D4 (red), at increasing  H2O2 concentrations from 0.15 to 

50.00 mM, with ABTS concentration kept at 7 mM. The WT activity 

at 0.25 mM  H2O2was arbitrarily set as 100% and used as a reference 

point

Table 4 H2O2 tolerance data of DyP4 and its variants were 

itted to an inhibitory dose–response curve with a variable 

slope (4 parameters), using GraphPad software

Best it values WT 3F6 4D4

Bottom 23.7 ± 1.6 35.4 ± 8.9 32.0 ± 6.8

Top 111.7 ± 5.9 110.8 ± 4.4 113.3 ± 3.8

HillSlope 1.6 ± 0.2 1.3 ± 0.4 1.3 ± 0.3

IC50 0.97 ± 0.10 4.67 ± 1.06 7.03 ± 1.33

R2 0.9680 0.9131 0.9315
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a Protein sequence coverage of fraction F2: 89%

Matched peptides shown in red.

1 MTMTRLKISK TLLAVMLTSA VATGSAYAEN NAQTTNESAG QKVDSSMNKV

51 GNFMDDSAIT AKVKAALVDH DNIKSTDISV KTDQKVVTLS GFVESQAQAE

101 EAVKVAKGVE GVTSVSDKLH VRDAKEGSVK GYAGDTATTS EIKAKLLADD

151 IVPSRHVKVE TTDGVVQLSG TVDSQAQSDR AESIAKAVDG VKSVKNDLKT

201 KGSGSMTTPA PPLDLNNIQG DILGGLPKRT ETYFFFDVTN VDQFKANMAH

251 FIPHIKTSAG IIKDREAIKE HKRQKKPGLV PMAAVNVSFS HLGLQKLGIT

301 DDLSDNAFTT GQRKDAEILG DPGSKNGDAF TPAWEAPFLK DIHGVIFVAG

351 DCHGSVNKKL DEIKHIFGVG TSHASISEVT HVRGDVRPGD VHAHEHFGFL

401 DGISNPAVEQ FDQNPLPGQD PIRPGFILAK ENGDSRAAAR PDWAKDGSFL

451 TFRYLFQMVP EFDDFLESNP IVLPGLSRKE GSELLGARIV GRWKSGAPIE

501 ITPLKDDPKL AADAQRNNKF DFGDSLVRGD QTKCPFAAHI RKTYPRNDLE

551 GPPLKADIDN RRIIRRGIQF GPEVTSQEHH DKKTHHGRGL LFVCYSSSID

601 DGFHFIQESW ANAPNFPVNA VTSAGPIPPL DGVVPGFDAI IGQKVGGGIR

651 QISGTNPNDP TTNITLPDQD FVVPRGGEYF FSPSITALKT KFAIGVASPA

701 PHSQAPISA

b Protein sequence coverage of fraction F7: 71%

Matched peptides shown in red.

1 MTMTRLKISK TLLAVMLTSA VATGSAYAEN NAQTTNESAG QKVDSSMNKV

51 GNFMDDSAIT AKVKAALVDH DNIKSTDISV KTDQKVVTLS GFVESQAQAE

101 EAVKVAKGVE GVTSVSDKLH VRDAKEGSVK GYAGDTATTS EIKAKLLADD

151 IVPSRHVKVE TTDGVVQLSG TVDSQAQSDR AESIAKAVDG VKSVKNDLKT

201 KGSGSMTTPA PPLDLNNIQG DILGGLPKRT ETYFFFDVTN VDQFKANMAH

251 FIPHIKTSAG IIKDREAIKE HKRQKKPGLV PMAAVNVSFS HLGLQKLGIT

301 DDLSDNAFTT GQRKDAEILG DPGSKNGDAF TPAWEAPFLK DIHGVIFVAG

351 DCHGSVNKKL DEIKHIFGVG TSHASISEVT HVRGDVRPGD VHAHEHFGFL

401 DGISNPAVEQ FDQNPLPGQD PIRPGFILAK ENGDSRAAAR PDWAKDGSFL

451 TFRYLFQMVP EFDDFLESNP IVLPGLSRKE GSELLGARIV GRWKSGAPIE

501 ITPLKDDPKL AADAQRNNKF DFGDSLVRGD QTKCPFAAHI RKTYPRNDLE

551 GPPLKADIDN RRIIRRGIQF GPEVTSQEHH DKKTHHGRGL LFVCYSSSID

601 DGFHFIQESW ANAPNFPVNA VTSAGPIPPL DGVVPGFDAI IGQKVGGGIR

651 QISGTNPNDP TTNITLPDQD FVVPRGGEYF FSPSITALKT KFAIGVASPA

701 PHSQAPISA

Fig. 6 Mass spectrometry data of SEC fractions F2 (a) and F7 (b) proteins. Mascot database searching against the Escherichia coli (strain B/BL21-DE3) 

reference proteome, plus the recombinant OsmY-DyP4 sequence, led to matching to this recombinant protein. Matched peptides are shown in red 

against the full-length amino acid sequence of the recombinant protein
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cells showing hyper secretory phenotypes (e.g. E. coli 

BW25113 ΔyaiW and E. coli BW25113 ΔgfcC) (Natarajan 

et al. 2017).

Additional ile

Additional ile 1. Supplementary material.
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Abs405: absorbance at 405 nm; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-

6-sulphonic acid); AIM: auto induction medium; AnaPX: dye-decolorizing 

peroxidase from cyanobacterium Anabaena sp. strain PCC 7120; BENNY: 

bacterial extracellular protein secretion system; CV: coefficient of variance; CVs: 

column volumes; dATP: deoxyadenosine triphosphate; dCTP: deoxycytidine 

triphosphate; dGTP: deoxyguanosine triphosphate; DMP: 2,6-dimethoxyphe-

nol; dNTP: deoxynucleotide; dTTP: deoxythymidine triphosphate; DyP: dye-

decolorizing peroxidase; DyP4: dye-decolorizing peroxidase 4 from Pleurotus 

ostreatus strain PC15; E. coli: Escherichia coli; epCPR: error-prone polymerase 

chain reaction; HTS: high-throughput screening; IC50: half maximal inhibitory 

concentration; IPTG: isopropyl β-D-1-thiogalactopyranoside; LiP: lignin peroxi-

dase; MnP: manganese peroxidase; Mw: molecular weight; OD600: optical den-

sity at 600 nm; OsmY: osmotically-inducible protein Y; PCR: polymerase chain 

reaction; P. ostreatus: Pleurotus ostreatus; PpDyP: dye-decolorizing peroxidase 

from Pseudomonas putida MET94; RB5: Reactive Black 5; RB19: Reactive Blue 19; 
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