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Weighted Transfer Learning for Improving Motor

Imagery-based Brain-computer Interface
Ahmed M. Azab, Student member, IEEE, Lyudmila Mihaylova, Senior Member, IEEE, Kai Keng Ang, Senior

Member, IEEE, and Mahnaz Arvaneh, Member, IEEE

Abstract—One of the major limitations of motor imagery (MI)-
based brain-computer interface (BCI) is its long calibration time.
Due to between sessions/subjects variations in the properties of
brain signals, typically a large amount of training data needs
to be collected at the beginning of each session to calibrate
the parameters of the BCI system for the target user. In this
paper, we propose a novel transfer learning approach on the
classification domain to reduce the calibration time without
sacrificing the classification accuracy of MI-BCI. Thus, when only
few subject-specific trials are available for training, the estimation
of the classification parameters is improved by incorporating
previously recorded data from other users. For this purpose, a
regularization parameter is added to the objective function of
the classifier to make the classification parameters as close as
possible to the classification parameters of the previous users
who have feature spaces similar to that of the target subject.
In this study, a new similarity measure based on the kullback
leibler divergence (KL) is used to measure similarity between
two feature spaces obtained using subject-specific common spa-
tial patterns (CSP). The proposed transfer learning approach
is applied on the logistic regression classifier and evaluated
using three datasets. The results showed that compared to the
subject-specific classifier, the proposed weighted transfer learning
classifier improved the classification results particularly when
few subject-specific trials were available for training (p < 0.05).
Importantly, this improvement was more pronounced for users
with medium and poor accuracy. Moreover, the statistical results
showed that the proposed weighted transfer learning classifier
performed significantly better than the considered comparable
baseline algorithms.

Index Terms—Brain computer interface, Transfer learning,
Logistic regression, Motor imagery.

I. INTRODUCTION

BRAIN-computer interface (BCI) provides a direct com-

munication between a person’s brain and an electronic

device without the need for any muscle control [1], [2].

Electroencephalogram (EEG) is the most widely used brain

signals in BCI since it is measured non-invasively with a high

temporal resolution [2], [3]. Different neurophysiological pat-

terns of EEG have been used to operate BCIs, such as steady

state visual evoked potentials, P300, readiness potentials and

motor imagery [4]. Among them motor imagery (MI) has

attracted increased attention, as unlike many other types of
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BCI, MI-based BCI does not require any external stimuli and

can be used in a self-paced way which is closer to a natural

and intuitive control [5].

Despite several recent advances, most of the MI-based BCI

applications are still limited to the laboratory due to their

long calibration time. As the literature shows [6]–[8], due

to considerable inter-subject and inter-session variations, a

reliable machine learning model that performs well across all

sessions and subjects has not been feasible yet. Consequently,

a 20-30 minutes calibration phase at the beginning of each new

session is typically conducted to acquire sufficient labeled data

to train the subject-specific BCI model. This calibration phase

is time consuming and fatiguing, leaving a reduced amount of

time for real BCI interactions [9]. Thus, developing reliable

methods and approaches that reduce calibration time while

keeping accuracy in an acceptable range is highly desirable in

MI-based BCI research [7], [9], [10].

One potential approach to reduce the calibration time is

transfer learning, where data from other sessions or subjects

are mined and used to compensate the lack of labeled data

from the current target user [11]. Transfer learning aims at

learning characteristics that are consistent across sessions and

subjects and at the same time adjusting those characteristics

to the available target subject’s few trials. Indeed, how to do

transfer learning is not a trivial task, due to the non-stationarity

inherent in EEG signals [11], [12]. Transfer learning has been

successfully applied in different machine learning applications

such as: text, image, and human activity classification [13].

In MI-based BCIs, transfer learning can be applied on either

raw EEG, feature or classification domains. The proposed

transfer learning algorithms on raw EEG have been mostly

based on either importance sampling cross validation [14],

[15] or instance selection [16], [17]. For example, a covariate

shift adaptation has been proposed in [14], where data from

other subjects were weighted based on importance sampling

cross-validation. The parts with high weights were then used to

estimate the final prediction function. In [16], [17], an instance

selection approach has been proposed based on active learning

to select trials that were close to the few informative trials of

the new subject. The selected trials were added to the existing

labeled trials of the new subject to train the BCI model.

In the feature domain, most of the proposed transfer learning

algorithms focus on improving common spatial patterns (CSP)

through modification of either the covariance matrix estimation

method [18], [19] or the CSP optimization function [20],

[21]. As an example, Samek et al. in [19] have proposed an

extension of CSP, where stationary information across multiple
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subjects instead of discriminative information was transferred

by learning a stationary subspace.

Domain adaptation techniques [22]–[24] and ensemble

learning of classifiers [10], [25] have been adapted in many

existing MI-based BCI transfer learning algorithms on the

classification domain. In the domain adaptation, the source

domain classifier is used for a target domain while its param-

eters are adjusted with respect to the target data. Different

from the domain adaptation, ensemble learning of classifiers

combines different classifiers trained from different source

domains to acquire better classification accuracy on the target

domain. Recently an application of multi-task learning has

been proposed in BCI [26], [27] where the classification

parameters of multiple subjects were learned jointly such that

the average total errors as well as dissimilarities between

the parameters of the different classifiers were minimized.

Despite success to some extent, the proposed algorithm is

computationally expensive as a big number of parameters

need to be optimized simultaneously. Moreover, it does not

consider similarities/dissimilarities between the data from the

new subject and the existing data from other subjects during

the learning process.

This paper proposes a novel transfer learning approach

in the classification domain to improve the MI-based BCI

performance when only a few subject-specific trials are avail-

able for training. In the proposed approach, the classification

parameters of each available subject with relatively large num-

ber of trials are calculated independently by minimizing the

subject-specific classification error. To cope with the problem

of having small train data for a new subject, we hypothesize

that there is some common information across the subjects

performing the same mental tasks (i.e. MI). Following this

assumption, the classification parameters of the new target

subject with few labeled trials are calculated such that not only

the classification error is minimized but also the classification

parameters of this target subject get as close as possible to

the classification parameters of other existing subjects. This is

achieved by adding a regularization term into the classification

objective function making a trade-off between minimizing the

classification error of the new subject and dissimilarities with

the classification parameters of previous users.

It is important to consider that the above-mentioned transfer

learning approach may not be very precise for MI-based BCIs

that use CSP features, since using the subject-specific CSP

for feature extraction leads to different feature spaces for

different subjects. To address this issue, we assume, with a

fixed coordinate of electrodes, these feature spaces are still

relevant as EEG signals are originated from roughly the same

areas of the brain for the same motor imagery task leading

to nearly similar CSP weights for corresponding channels.

Consequently, to transfer the classification parameters across

different CSP feature spaces, we link the features of different

subjects with the features of the target subject through a new

similarity measure obtained using KL divergence. Therefore,

the proposed transfer learning approach is further improved

by assigning different weights to the previous subjects based

on the similarities between their features and the features of

the new subject.

The proposed approach is applied on a logistic regression

classifier with and without considering similarity weights.

The proposed classifiers are evaluated using three datasets

with large, moderate, and small number of subjects. The

performance of the proposed classifiers are also compared with

the results of two state-of-the-art algorithms.

Our results suggest that the proposed weighted transfer

learning approach could significantly reduce the required cali-

bration time and also enhance the average classification accu-

racy, particularly when there are enough previously recorded

EEG sessions available for transfer learning. Moreover, the

obtained results showed that the proposed weighted transfer

learning algorithms significantly outperformed the baseline

algorithms.

II. METHODOLOGY

In this paper, we assume that multiple EEG sessions pre-

viously recorded from different subjects or from the same

subject are available. Given s ∈ {1, .....,m} as one of the

previously recorded sessions, the set of labeled EEG trials

from session s can be presented as ds = (xi
s
, yi

s
)ns

i=1
, where

x
i
s

and yi
s

respectively denote the feature vector and the class

label of the ith trial, and ns refers to the total number of the

trials. Thus, the feature matrix for the session s is presented as

Xs=[x1
s
,x2

s
, ...,xns

s
], where Xs∈R

v×ns and v is the number

of features per trial. Subsequently, the label vector is presented

as Ys=[y1
s
, y2

s
, ..., yns

s
], where yi

s
∈ {0, 1}.

This paper assumes that previously recorded sessions have

sufficiently large numbers of labeled trials, whereas the new

target subject has only few labeled trials available. Typically, a

predictive function, f(.), is trained using the available subject-

specific training features to predict the labels of the unlabeled

trials. However, when only few labeled trials are available for

training, the estimation of the joint distribution P (Xs,Ys) may

not be sufficiently accurate. Hence, the predictive function

trained using few trials is often not optimal. This paper

proposes a number of transfer learning algorithms to improve

the estimation of the predictive function of the new target

subject using previously recorded EEG data. Indeed, how to do

transfer learning is not a trivial task, due to the non-stationarity

inherent in EEG signals P (Xs,Ys) 6=P (Xt,Yt), where t refers

to the new target subject.

A. Proposed Logistic Regression-based Transfer Learning Al-

gorithm (LTL)

A logistic regression model provides probabilistic predic-

tions by transforming a linear model through a logistic sigmoid

function as [28]:

P (yi
s
=1|xi

s
;ws) =

1

1 + exp−(wT
s
x
i
s
)
, (1)

where s denotes the session s, and ws ∈ R
v×1 refers to the

classification parameters being used to predict the class labels

of the trials Xs. The obtained probabilistic prediction is then

used to predict the class label.

The proposed LTL algorithm consists of two main steps.

In the first step, for every previously recorded session, ∀ds∈
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{d1, d2, ..., dm}, the classification parameters, ws, are calcu-

lated using the following objective function [29]:

L1(ws) = min
ws

(

ns
∑

i=1

H(ws; y
i

s
,xi

s
) + λs||ws||

2
2

)

, (2)

where H and ||.||2 denote the cross-entropy and 2-norm

functions respectively. In fact, in L1(ws), the cross entropy

aims at finding ws that minimizes the error rate while the 2-

norm penalizes large values of ws to reduce the risk of over-

fitting. The subject-specific regularization parameter λs is used

to control the degree of penalization. Cross entropy function

H is also called negative log-likelihood where its minimization

is equivalent to maximizing the log likelihood [28], [30], as

follows [31]:

H(ws;x
i

s
, yi

s
) = −yi

s
logP (yi

s
=1|xi

s
;ws)− (1− yi

s
)

log(1− P (yi
s
=1|xi

s
;ws)),

(3)

where P (yi
s
=1|xi

s
;ws) is calculated using (1). The objective

function L1(ws) does not have a closed form solution. How-

ever, it has a unique minimum that can be found using simple

and effective iterative approaches such as the gradient descent

or Newton’s methods [28], [32].

Despite being sufficiently effective for sessions with large

training data sizes, the objective function L1(ws
) may fail

in estimating the classification parameters of the new subject

since few available subject-specific trials typically are not

able to accurately represent the distributions of the features.

Thus, to estimate the classification parameters of the new

subject, L1(ws) is modified such that not only the error rate

is minimized, but also the estimated classification parameters

get as close as possible to the classification parameters of

the other existing sessions. In other words, in addition to the

discriminative parameters, we are interested in parameters that

are similar to the classification parameters of the other sessions

with this assumption that there is some common information

across the sessions performing the same mental tasks (i.e.

motor imagery).

Given the above-mentioned assumption, after calculating the

classification parameters of the previously recorded sessions

using (2), in the second step, the classification parameters of

the new target subject, wt, is calculated using the following

objective function:

L2(wt)=min
wt

(

nt
∑

i=1

H(wt; y
i

t
,xi

t
) + λtRTL(wt)

)

, (4)

where RTL is the regularization term penalizing dissimilar-

ities between wt and the previously calculated ws, ∀ds ∈
{d1, d2, ..., dm}. The regularization parameter λt is making

a trade-off between minimizing the error and dissimilarities

between the new target subject and previous sessions in terms

of the classification parameters. The term RTL is calculated

by taking into account the prior distribution of the existing

classification parameters and comparing them with wt as [27]:

RTL(wt) = 0.5[(wt−µ)TΣ−1
TL

(wt−µ)+ log(|ΣTL|)], (5)

where µ and ΣTL are respectively calculated as follows:

µ = (1/m)

m
∑

s=1

ws, (6)

ΣTL =
diag(

∑

m

s=1(ws − µ)(ws − µ)T )

trace(
∑

m

s=1(ws − µ)(ws − µ)T )
. (7)

As can be seen in (7), ΣTL ∈ R
v×v only includes the

normalized diagonal elements of the covariance matrix, where

diag and trace give the diagonal elements and the sum of

the diagonal elements of a matrix respectively. Indeed, in

this study, only diagonal elements are used to reduce the

optimization complexity. Subsequently, in (5), ΣTL is used

to normalize the divergence of each parameter of wt from the

average of the corresponding parameters of the other classifier.

B. Proposed Weighted Logistic Regression-based Transfer

Learning Algorithm

The proposed LTL algorithm attempts to improve the es-

timation of the classification parameters of a new subject

by incorporating the data from previously recorded sessions.

However, it treats different feature spaces from the previous

sessions similarly, whereas the distribution of EEG signals

can be different from session to session and from subject

to subject, leading to different subject-specific CSP feature

spaces. Thus, depending on the distributions of EEG signals,

the EEG features of the new subject might be similar to

the EEG features of some of the previously recorded ses-

sions while very different from those of some others. Thus,

taking into account these differences might further improve

the estimation of the classification parameters for a new

subject. To address this issue, in the proposed weighted logistic

regression-based transfer learning algorithm different weights

are allocated to the previously recorded sessions to represent

similarities between these sessions and the new subject in

terms of distributions of the features.

Kullback-Leibler (KL) divergence is frequently used in the

literature to calculate similarities between two sets of EEG

features [33]. Since in MI-based BCIs the features are typically

normalized log-power of CSP filtered EEG data, they are

commonly assumed normally distributed [21]. Thus, in this

paper, the KL divergence between two normal distributions

are used to measure divergence between EEG features.

Given two normal distributions presented as N0(µ0,Σ0)
and N1(µ1,Σ1), the KL divergence has the following closed

form [33],

KL[N0||N1] = 0.5[(µ1 − µ0)
T
Σ

−1
1 (µ1 − µ0)

+trace(Σ−1
1 Σ0)− ln

(

det(Σ0)

det(Σ1)

)

−K],
(8)

where det, T and K denote the determinant function, transpose

of the matrix, and the dimension of the data, respectively. In

this paper, the total divergence between the features of two

EEG sessions, K̄L, can be calculated in two ways, namely

supervised and unsupervised. In the supervised case, the total

divergence is calculated by averaging the KL divergences

calculated for each class separately. On the other hand, in
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the unsupervised case, the total divergence equals to the KL

divergence between the two sessions without considering the

class labels. Subsequently, the similarity weight αs between

the feature sets of the target subject dt and the feature sets of

each of the previous sessions/subjects ds, is calculated as:

αs =
(1/ ¯(KL[dt, ds] + ǫ)4)
m
∑

i=1

(1/ ¯(KL[dt, di] + ǫ)4)
, (9)

where K̄L is the total divergence calculated using the features

distributions of the few available training trials of the target

subject dt (i.e. 10, 20 or all trials per class depending on how

many trials are defined as available) and the available trials

from the previous subject/session ds. In (9), ǫ = 0.0001 is

used to ensure the stability of the equation when K̄L[dt, ds]
gets equal to zero due to having two compared distributions

completely similar. Although, this is a very rare event, we must

take into account the possibility of unseen events. The power

of 4 is applied to the inverse of KL between the distribution of

two feature sets to give larger weights to more similar distri-

butions and smaller weights to less similar distributions. This

results in an increased sparsity in the similarity weights αs.

Finally, the similarity weight, proposed in (9), is normalized by

dividing it to the sum of all similarity measurements between

the feature sets of the new target subject and all other available

subjects.

The proposed weighted logistic regression-based transfer

learning algorithm has the same steps as the proposed LTL.

However, instead of equal weights, different weights are

assigned to the previously recorded sessions using (9). Ac-

cordingly, the new weighted µ is obtained as [34]

µw =
m
∑

s=1

αsws. (10)

Likewise, the weighted ΣTL is calculated as

ΣTLw
=

diag(
∑

m

s=1(αsws − µw)(αsws − µw)
T )

trace(
∑

m

s=1(αsws − µw)(αsws − µw)
T )

. (11)

Finally, RTL in (5) is calculated by replacing µ and ΣTL

with µw and ΣTLw
respectively. Considering the two above-

mentioned ways to calculate the similarity weights, the pro-

posed weighted algorithms are referred to as either supervised

weighted logistic regression-based transfer learning (S-wLTL)

or unsupervised weighted logistic regression-based transfer

learning (Us-wLTL) in the remaining parts of this paper.

III. EXPERIMENTS

A. Data Description

In order to evaluate the proposed algorithms, a dataset from

[35], dataset 2a from BCI Competition IV 2008 [36], [37] and

dataset IVa from BCI Competition III [38] were used.

Dataset 1: EEG was collected from 19 healthy subjects

using 27 channels. For each subject, EEG data were collected

without feedback in two sessions conducted on separate days.

In this paper, we used only motor imagery data recorded in

the first session. This MI part of the dataset consisted of two

runs of EEG recording where the subjects were instructed

to perform MI of the chosen hand versus background rest

condition. Each run comprised of 40 trials of MI and 40 trials

of background rest condition. Thus, in total, there were 160

trials per subject recorded without feedback.

Dataset 2 (Dataset 2a from BCI Competition IV): This

dataset consists of EEG data recorded from 9 subjects using

22 electrodes. During the recording sessions, the subjects were

instructed to perform one of the four following motor imagery

tasks: left hand, right hand, foot or tongue. Two sessions on

different days were recorded for each subject with a total

of 288 trials per session. In this paper, only data from right

and left-hand motor imagery were used. Moreover, only data

recorded from the second day were used due to the practical

assumption that the training and the testing data of a new

subject are recorded on the same day.

Dataset 3 (Dataset IVa from BCI Competition III): This

dataset includes EEG signals from five subjects. EEG was

recorded using 118 electrodes. It contains data from two

classes of right hand and foot imagery. In total, there are

280 trials per subject all recorded on the same day without

receiving feedback.

B. Data Processing

A single elliptic bandpass filter from 8 to 30 Hz was used

for filtering the EEG data as recommended in [39]–[41], since

this single frequency band includes the range of frequencies

that are mainly involved in performing motor imagery. Then,

CSP were computed for each previous subject independently.

Similarly, for the new subject, the CSP filters were calculated

only using the available subject-specific training trials. After

that, the spatially filtered signals were obtained using the first

and the last three spatial filters of CSP as recommended in

[42]. Finally, the normalized log band power of the spatially

filtered signals were obtained as the features.

For each subject of the three datasets the first 80 trials

were considered as the training set and the remaining trials

were used as the testing set. To assess the performance of the

proposed transfer learning algorithms, three different numbers

of training trials were examined for the new subjects; i.e.

the first 10 and 20 training trials per class as well as all the

training trials were used in order to form the subject-specific

training set. Besides, all the available training trials of the other

subjects from the same dataset were used for transfer learning.

The regularization parameters, λs and λt, were selected from

21 values which satisfy ei, where i ∈ {−1,−0.9, ..., 0.9, 1}.

5-fold cross-validation was performed for each subject using

the available training trials to select the best regularization

parameters.

The results of the proposed transfer learning algorithms

were compared with two baseline algorithms. The first algo-

rithm is the commonly used subject-specific (SS) BCI model

where the support vector machine (SVM) classifier is trained

independent from other subjects using features extracted from

CSP algorithm similar to what suggested in [6], [39], [43].

This algorithm is abbreviated as (SS) in the rest of the paper.

logistic regression classifier was not included as a classifier
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TABLE I
CLASSIFICATION ACCURACIES CALCULATED USING THE BASELINE ALGORITHMS (SS, AND MT-L) AND THE PROPOSED ALGORITHMS (LTL, S-WLTL,
AND US-WLTL) WHEN ONLY 10 TRIALS PER CLASS WERE AVAILABLE FOR TRAINING FROM THE NEW SUBJECT. THE RESULTS OF ALL DATASETS SHOW

THAT THE PROPOSED WEIGHTED LOGISTIC TRANSFER LEARNING ALGORITHMS (S-WLTL AND US-WLTL) OUTPERFORMED THE REST.

Dataset 1 Overall

Algorithm sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 sub10 sub11 sub12 sub13 sub14 sub15 sub16 sub17 sub18 sub19 Mean Std

SS 64 55 55 60 69 72 47 90 81 52 48 84 54 76 50 64 58 80 88 65.6 14

Mt-L 65 55 55 62 69 68 45 90 81 50 48 82 54 75 49 58 63 84 86 65.2 14.2

LTL 65 55 55 60 69 72 50 90 80 50 48 80 54 81 50 58 66 80 84 65.6 13.6

S-wLTL 67 70 60 68 69 78 60 90 86 55 48 79 54 86 74 58 68 86 93 71 13.3

Us-wLTL 66 57 61 65 72 78 60 90 82 53 48 88 56 86 73 55 70 85 93 70.3 14.2

Dataset 2 Overall Dataset 3 Overall

Algorithm sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 Mean Std sub1 sub2 sub3 sub4 sub5 Mean Std

SS 70 51 93 57 66 56 73 87 81 70.4 14.5 67.5 93.5 61 66 77.5 73.1 17

Mt-L 88 60 83 52 50 57 77 92 73 70.2 15.9 70 94 59 58 90 74.2 17

LTL 83 57 87 58 67 60 75 98 75 73.6 14.3 69 94 59 57 85 72.8 15

S-wLTL 90 55 93 60 68 60 73 98 83 75.6 16 69 95 63 56 88 74.2 15

Us-wLTL 88 53 93 60 67 60 73 98 83 75 16.2 69 94 63 61 88 75 16.6

for the subject-specific baseline algorithm in this paper as it

performed significantly worse than SVM classifier, specially

when few subject-specific trials were available for training.

The second baseline algorithm is the multi-task learning-based

logistic regression classifier (Mt-L) proposed in [44]. This

algorithm has been applied on the classifier domain similar

to the proposed transfer learning algorithms.

IV. RESULTS AND DISCUSSION

Table I presents the classification results of the proposed

transfer learning algorithms (LTL, S-wLTL, and Us-wLTL)

as well as the baseline algorithms (SS, Mt-L) when the new

subjects had only 10 trials per class for training. Based on

the results obtained from all the three datasets, the proposed

LTL outperformed the results of SS and Mt-L by an average

of 1% and 0.8% respectively. Importantly, the proposed S-

wLTL algorithm achieved the highest average results with

3.9% and 3.7% higher than SS and Mt-L respectively. On

average S-wLTL performed slightly better than Us-wLTL

(0.2%). Looking deeper in Table I reveals that in the dataset 1,

where data from 18 subjects were used for transfer learning,

the proposed S-wLTL outperformed the baseline algorithms

SS, and Mt-L by 5.4% and 5.8 % respectively. Whereas, the

proposed Us-wLTL outperformed SS and Mt-L by 4.7% and

5.1% respectively. Moreover, S-wLTL and Us-wLTL improved

the classification accuracy for 16 out of 19 subjects from this

dataset. Interestingly, for sub2, sub7 and sub15 the proposed

S-wLTL yielded 15%, 13%, and 24% improvements compared

to the corresponding SS results. For the dataset 2, where

data from 8 other subjects were used for transfer learning,

the proposed weighted transfer learning algorithms, S-wLTL

and Us-wLTL, outperformed SS in 7 subjects out of 9 by an

average of 5.2% and 4.6%. Compared to Mt-L, S-wLTL and

Us-wLTL outperformed in 7 subjects out of 9 by an average of

5.4% and 4.8% respectively. Enchantingly, for sub1 and sub8,

the proposed S-wLTL yielded 20% and 11% improvements

compared to the corresponding SS results. Finally, in the

dataset 3, where data from only 4 subjects were available for

transfer learning, still the proposed weighted algorithms (S-

wLTL and Us-wLTL) improved the results of SS in 4 out of the

5 subjects. Based on the average values, S-wLTL outperformed

SS by 1.1% and yielded similar results as Mt-L, whereas Us-

wLTL outperformed SS and Mt-L by an average of 1.9% and

0.8% respectively.

Fig. 1 presents the classification results of the different

algorithms when 10, 20 and all subject-specific training trials

per class were available from the new target subject. As

shown in Fig. 1(a) all the proposed transfer learning algorithms

outperformed SS and Mt-L algorithms when 10 and 20 trials

per class were available for training whereas, only S-wLTL

outperformed the baseline algorithms when all trials were

available for training. Specifically, the improvement was more

pronounced when only 10 subject-specific trials per class

were available for training. However, in Fig. 1(b) all the

proposed transfer learning algorithms outperformed SS and

Mt-L algorithms across all the above-mentioned different num-

ber of subject-specific training trials. Again, the improvement

was more pronounced when only 10 subject-specific trials

were available. Interestingly, on average the proposed weighed

transfer learning algorithms when only 10 trials per class

were available for training outperformed the subject-specific

algorithm when all trials were available for training. These

outcomes support our aim to reduce the calibration time and

at the same time increase the classification accuracy.

Learning from few examples typically leads to an ill-posed

optimization problem. That was why we applied transfer

learning to overcome this problem when only few trials were

available for training. Since dataset 3 contains only data from

5 subjects, transfer learning had been done using only the

available data from 4 subjects. As shown in Fig. 1(c), despite

having such a small pool of data for transfer learning, the

proposed transfer learning algorithms still had superior results

compared to the baseline algorithms when a few subject-

specific trials were available for training. When only 10

training trials per class were available from the new subject,

Us-wLTL outperformed baseline algorithms while S-wLTL

outperformed only the SS algorithm. Moreover, when 20 trials
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(a) 19 subjects dataset (b) 9 subjects dataset (c) 5 subjects dataset

Fig. 1. Comparison between the average classification accuracy calculated using the proposed logistic transfer learning algorithms (LTL, S-wLTL, and Us-
wLTL) and the baseline algorithms (SS and Mt-L) when 10, 20, and all trials per class were available for training from the new subjects. From left to right,
the sub-figures present the classification results of a) dataset 1, b) dataset 2, and c) dataset 3 respectively. This figure shows that the proposed S-wLTL and
Us-wLTL algorithms outperformed the baseline algorithms, particularly when a small number of subject-specific train trials from the target subject, and/or a
medium to large number of previously recorded sessions from different subjects were available.

per class were available for training from the new subject,

both of the proposed S-wLTL and Us-wLTL outperformed the

baseline algorithms. Increasing the number of subject-specific

training trials from the new subject led to a decrease in the

improvement, such that the SS algorithm outperformed the

proposed transfer learning algorithms when all subject-specific

trials (i.e. 80 trials) were available. Thus, with larger amounts

of target training data, transfer learning became ineffective.

Concerning statistical significance, the Shapiro-Wilk test

was used to make sure that our classification accuracy results

were normally distributed. Based on the Shapiro-Wilk test re-

sults, we rejected the alternative hypothesis and concluded that

our classification results came from a normal distribution and

hence ANOVA test could be used to compare the classification

accuracy between different algorithms at a different number

of trials. A 3 (Number of trials)×5 (Algorithms) repeated

measure ANOVA test was performed on the results of each

dataset separately followed by post-hoc analyses. For dataset 1

Statistical results revealed that using different algorithms had

a main effect on the classification accuracy with (P=0.001).

Based on the post-hoc analysis, S-wLTL (Us-wLTL) signif-

icantly outperformed SS and Mt-L with the P values equal

to 0.001 and 0.0001 (0.011 and 0.003) respectively. Similarly,

for dataset 2, the use of different algorithms also had a main

effect on the classification accuracy with (P = 0.035). Based

on the post-hoc analysis, S-wLTL (Us-wLTL) significantly

outperformed SS and Mt-L with the P values equal to 0.031

and 0.025 (0.035 and 0.04) respectively. Finally, for dataset 3,

as expected, there was no significant difference between any

of the proposed and the baseline algorithms.

Another comparison was done where results from the three

datasets were combined together. A 3 (Number of trials)×5

(Algorithms) repeated measure ANOVA test was conducted.

Results showed that using different algorithms significantly

affected the classification accuracy with P=0.0001. Post-hoc

multiple comparisons revealed that S-wLTL was significantly

better than SS and Mt-L with P values of 0.002 and 0.001

respectively. Besides, Us-wLTL was significantly better than

SS, and Mt-L with P -values of 0.032 and 0.01 respectively.

Moreover, there was no significant difference between Mt-L

and SS.

TABLE II
OVERVIEW OF THE RESULTS WHEN 10 TRIALS PER CLASS WERE

AVAILABLE FOR TRAINING FROM THE NEW SUBJECT. GROUPING WAS

PERFORMED BASED ON SS ERROR RATE.

Error Rate 0-10 10-30 >30

SS (Mean) 93.3 80 57.9

Mt-L (Mean) 87 81.7 56.4

S-wLTL(Mean) 94 85.8 62.2

Us-wLTL(Mean) 93.5 86 61.4

p− value(SS versus S-wLTL) 0.5 0.01 0.023

p− value(SS versus Us-wLTL) 0.5 0.003 0.038

p− value(Mt-L versus S-wLTL) 0.258 0.069 0.003

p− value(Mt-L versus Us-wLTL) 0.314 0.056 0.004

To gain a better insight into the performance of the proposed

weighted transfer learning algorithms, the subjects from all

datasets were categorized to three groups based on their

error rates obtained using the SS algorithm. Table II presents

the results when 10 subject-specific trials per class were

available for training. The first four rows of this table compare

the average classification accuracies of the different groups

obtained by the baseline algorithms (SS, and Mt-L) and the

proposed weighted transfer learning algorithms (S-wLTL, and

Us-wLTL) respectively. As shown in these four rows, both S-

wLTL and Us-wLTL outperformed the baseline algorithms in

all the three groups. Subsequently, the last four rows show

the statistical paired t-test results between the baseline and

the proposed weighted transfer learning algorithms for the

different groups. As shown in the fifth and sixth rows, the

proposed weighted transfer learning algorithms were more

effective when the error rate obtained by the SS algorithm

was medium and high. On the other side, the subjects who

performed well with the SS algorithm benefited less from

applying the proposed transfer learning approach. This makes

sense since these subjects already have well-separated features

obtained using the standard CSP filters and the subject-specific

classifier. Thus, there is not that much room for improvement

of the performance for these subjects. In contrast, changing

the classifier parameters through the proposed transfer learning

approach improved the accuracy of the subjects with poor and

medium BCI performance. Finally, the last two rows of Table

II show that there was a significant difference between Mt-L
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and the proposed algorithms for poor subject-specific BCI per-

formance and tends to be significant with medium performance

subjects. Again, there was no significant difference between

Mt-L and any of the proposed weighted algorithms at the low

error rate.

V. DISCUSSION

The KL divergence measurement requires estimation of

the covariance matrices. The estimation of the covariance

matrices could be very inaccurate when only few EEG trials

are available [45] as those few trials may not well represent

the entire distribution of the data. Despite this limitation, our

results showed that even using a few trials from the target

subjects the proposed KL-based weights were successful in

enhancing the classification accuracy. To further improve the

classification results, in the future work, we aim to improve

the estimation of the KL divergence in the proposed similarity

weight formula by applying robust methods of estimating the

covariance matrices (such as [46] where the negative impact

of having few trials are mitigated).

Another issue to discuss is the use of the power of 4

for KL in (9). In fact, in (9), power 4 was applied on KL

rather than power 1 to increase sparsity between similarity

weights and to give larger weights to subjects with similar

feature distributions and smaller weights to subjects with

dissimilar features. In a number of random investigations, we

noticed when using the power of 1, fairly similar weights were

obtained for many different subjects. Subsequently, compared

to LTL, the proposed Sw-LTL algorithm with KL power of

1 did not yield better results. On the other hand, the S-

wLTL classification results were greatly enhanced when KL

power was increased to 4 in (9). For example, in dataset 2,

when only 10 subject-specific trials per class were available,

the Sw-LTL algorithm with the KL power of 4 significantly

outperformed the Sw-LTL algorithm with the KL power of

1 by an average of 2.6% (p=0.0478). Future work could be

extended to estimate the optimum KL power for each subject

individually.

Regarding the calibration and computational complexity, the

time required for collecting the calibration trials was reduced

from around 15 minutes when using the trials of a full session

to 2.83 minutes when using only 10 trials per class for training.

In order to compare the proposed algorithms and SS from

the computational time point of view, we need to note that

the proposed algorithms can be divided into two parts. The

first part, where the classification parameters of the previous

subjects and share priors are calculated using equations (2) to

(7), can be done offline without using any data from the target

subject. The second part, where the classification parameters

of the target subject are calculated using the few available

trials of the target subject and the previous subjects shared

priors (i.e. µw,ΣTLw) needs to be done online. This part

is the part that should be compared to the SS algorithm

in terms of computational time. This computation time was

considerably incomparable with the time needed for collecting

calibration trials. Using MATLAB 2016b and an Intel Core i5-

6500 CPU @ 3.20 GHz, the proposed algorithm required 0.14

sec more time for training the classification model compared

to the SS algorithm. Thus, in summary, compared to the

SS algorithm, the proposed approach remarkably reduced the

calibration time, while it just required extra 0.14 S to train the

classification model.

In summary, our results suggested that the proposed S-

wLTL and Us-wLTL could improve the classification accuracy

particularly when a small subject-specific training data was

available. Importantly, when there were sufficient previously

recorded subjects/sessions available, the proposed S-wLTL and

Us-wLTL algorithms not only reduced the required calibration

time but also for many subjects they enhanced the classi-

fication accuracy. The classification results obtained by S-

wLTL and Us-wLTL were on average very similar. However,

the main advantage of Us-wLTL against S-wLTL was that

Us-wLTL did not need any labeled data for calculating the

weights.

VI. CONCLUSION

This paper proposed a novel weighted transfer learning

approach on classification domain to improve MI-based BCI

systems. Our results suggested that applying the proposed

weighted transfer learning algorithms could lead to reducing

the calibration time to 10 trials per class with significantly less

sacrifice in the average accuracy of the MI-BCI systems. The

results obtained showed that the proposed weighted algorithms

significantly outperformed subject-specific BCI algorithm and

the multi-task learning algorithm.

Interestingly, the proposed weighted transfer learning al-

gorithms yielded a remarkable increase in the classification

accuracy for most of the subjects that initially performed

BCI with poor or medium accuracy. However, the observed

improvement for a few subjects with initially low BCI perfor-

mance was not pronounced. It was shown that changing the

parameters of classifiers for these subjects was not effective

since their feature spaces for different classes were not sepa-

rable. These findings suggest that to increase the accuracy of

these subjects with poor subject-specific BCI, transfer learning

approaches should be applied in a different domain before the

classification domain.

The proposed transfer learning approach is not limited to the

logistic regression classifier. It can be applied on any classifier

with a mathematically defined objective function. Moreover,

in this paper similarity weights were calculated using KL-

divergence as a similarity measurement. It is good to note that

in the future other similarity measures could be used and their

performance could be compared to what we proposed.
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[25] S. Fazli, F. Popescu, M. Danóczy, B. Blankertz, K.-R. Müller, and
C. Grozea, “Subject-independent mental state classification in single
trials,” Neural networks, vol. 22, no. 9, pp. 1305–1312, 2009.

[26] M. Alamgir, M. Grosse-Wentrup, and Y. Altun, “Multitask learning for
brain-computer interfaces,” Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (AISTATS-10), vol. 9,
pp. 17–24, 2010.

[27] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and M. Grosse-
Wentrup, “Transfer learning in brain-computer interfaces,” IEEE Com-

putational Intelligence Magazine, vol. 11, no. 1, pp. 20–31, 2016.
[28] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal

of Electronic Imaging, vol. 16, no. 4, p. 049901, 2007.
[29] S. Shalev-Shwartz and A. Tewari, “Stochastic methods for l1-regularized

loss minimization,” Journal of Machine Learning Research, vol. 12, no.
Jun, pp. 1865–1892, 2011.

[30] C. Robert, “Machine learning, a probabilistic perspective,” 2014.
[31] J. Shore and R. Johnson, “Axiomatic derivation of the principle of

maximum entropy and the principle of minimum cross-entropy,” IEEE

Transactions on Information Theory, vol. 26, no. 1, pp. 26–37, 1980.
[32] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for

solving linear systems, 1952, vol. 49, no. 1.
[33] I. Iturrate, L. Montesano, and J. Minguez, “Task-dependent signal

variations in EEG error-related potentials for brain–computer interfaces,”
Journal of Neural Engineering, vol. 10, no. 2, p. 026024, 2013.

[34] B.-C. Kuo and D. A. Landgrebe, “Nonparametric weighted feature
extraction for classification,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 42, no. 5, pp. 1096–1105, 2004.
[35] M. Arvaneh, C. Guan, K. K. Ang, T. E. Ward, K. S. Chua, C. W. K.

Kuah, G. J. E. Joseph, K. S. Phua, and C. Wang, “Facilitating motor
imagery-based brain–computer interface for stroke patients using passive
movement,” Neural Computing and Applications, vol. 28, no. 11, pp.
3259–3272, 2017.

[36] M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller,
“Seperability of four-class motor imagery data using independent com-
ponents analysis,” Journal of neural engineering, vol. 3, no. 3, p. 208,
2006.

[37] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller,
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