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Abstract

This article presents a finite-element analysis (FEA) based study to understand the influence

of cutting parameters (rake angle, relief angle and cutter edge radius) on the machining-induced

damage of unidirectional (UD) composites. Carbon/epoxy (CFRP) and glass/epoxy (GFRP) com-

posites are considered. Onset of damage in composites is modelled using a combination of maxi-

mum stress and Puck’s fracture criteria, while a novel damage propagation algorithm is proposed

to account for the post-damage material softening behaviour. A spring-back phenomenon (partial

elastic recovery of workpiece material after tool passed a cutting surface) often observed in com-

posites machining, is considered in the FE model to allow a better prediction of the thrust force

and induced damage. A validated FE model predicts that with increasing relief angle, the extent

of sub-surface damage is reduced. Rake angle or tool edge radius are not found to have a great

influence on the induced damage. A large dependence is observed between the fibre angle and the

induced damage, as the severity of damage increase when fibre orientations varies from 30◦ to 90◦.

Keywords: Machining, Induced machining damage, Finite element, Modelling, Orthogonal

cutting, Composite

1. Introduction1

In the last decade, the use of polymer matrix composites (PMCs) has become widespread due to2

their superior properties. PMCs are often manufactured to a near-net shape, though require finish3
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cutting operations to remove excess material and achieve strict assembly tolerances. Machining4

PMCs is typically challenging owing to intrinsic properties of its constituents. During machining,5

tougher polymer resins and hard fibres could cause excessive mechanical stress on the cutting6

edge, while low thermal conductivity of resins bypasses the majority of process heat to a cutting7

tool, resulting in accelerated wear. Consequently, blunt cutting tools with unfavourable cutting8

parameters bend fibres ahead of the cutting tool tip rather than shearing them away [1, 2]. This9

thermo-mechanical abuse gives rise to a variety of damage modes in PMCs such as fibre/resin10

pull-out, resin thermal-degradation and delamination [3–5]. The resultant damage sites, in turn,11

could affect the surface quality of a machined component and act as potential crack nucleation12

sites when loaded in service [6].13

A large number of cutting trials are generally needed to fully characterise machining responses14

(typically, cutting forces, cut surface quality, surface and sub-surface damage and tool wear) of15

a particular combination of a fibre/matrix system and cutting tool geometry. This could be a16

cumbersome and very costly venture. Numerical models of machining accounting for appropriate17

material constitutional relationships, underlying physics and validated using experimental data can18

be a great virtual alternative in such cases.19

Analytical models predicting composites machining responses are primarily limited to calcula-20

tions of critical force responsible for delamination initiation in drilling applications [7], and tool21

wear on the simplified tool geometries. Several underpinning complexities such as heterogene-22

ity of thermo-mechanical properties of PMCs, complex cutter geometries and dynamic friction23

changes in high-speed machining, as well as high strain rate-effects limit the use of analytical24

models. FE models on the other hand, though, are not computationally as economical, pose a25

viable option to study all above mentioned parameters in depth.26

Various length-scale approaches (micro-, meso- and macro-scale) are used to model machining27

response of composites depending upon the motivation of the study. For example, micro-scale FE28

models simulating orthogonal cutting of composites [8–12] allow prediction of machining damage29
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to individual fibre/matrix constituents as well as fibre-matrix de-bonding. These computational30

analyses can provide fairly accurate information on localised damage, though are complex and31

computationally expensive for the amount of the information that can be extracted. Macro-scale32

FE models, on the other hand, consider use of homogenised material properties. A variety of33

fibre/matrix damage modes and their interactions can be simulated using advanced mathematical34

criteria accounting for fracture and damage mechanics [13–15]. Cohesive zone modelling (CZM)35

approach is also popular amongst researchers to model interply delamination [16].36

A limited number of studies incorporating a full 3D FE model of composite machining are37

available to date, and mostly focussed at predicting interply delamination in orthogonal cutting38

application [17–20], mainly due to the extent of computational resources needed. Consequently,39

majority of published FE models consider 2D plane stress approximation [21–28] to analyse influ-40

ence of cutting parameters on the subsurface damage. Few interesting studies and their outcomes41

are briefed next. Santiuste et al. [21] developed a 2D FE model of orthogonal cutting to demon-42

strate that the subsurface damage was much reduced in machining brittle (CFRP) composites than43

in ductile (GFRP) composites. They further developed a 3D model of the same process accounting44

for thermal effects [29] the model though accounts for cutting force prediction and chip formation45

successfully, fails to consider interaction of thermal degradation of resin properties and the overall46

workpiece stiffness reduction due to mechanical damage. In another study aimed at understanding47

influence of cutting parameters on the machining response of composites, Zenia et al. [22] iden-48

tified fibre orientation, rake angle and depth of cut as critical factors affecting cutting forces and49

induced damage. It was suggested that increase in the depth of cut could lead to higher cutting50

forces and induced damage, while increase in rake angle reduce the same. Soldani et al. [23] also51

considered the effect of cutting edge radius along with other cutter geometry parameters, and con-52

cluded that the use of a sharper tool edge radius can reduce the subsurface damage significantly.53

A critical review of these state-of-the-art FE models suggests that though these could be used to54

predict machining response terms of induced damage, chip morphology, and cutting forces; data55
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used in their validation is often very limited. For example, most of the published FE models56

studying composites machining are validated by comparing numerically predicted cutting forces57

with the experimental data [30–32], though an extent of machining induced damage is usually not58

measured for a validation purpose.59

In the current work, a 2D FE model of orthogonal cutting of UD CFRP composite is presented.60

It accounts for the effect of various cutting parameters - cutter rake and relief angle, cutting edge61

radius and fibre orientation- on machining induced damage of composites. FE model employ a62

combination of maximum stress and Pucks fracture criteria to model damage initiation based on63

critical stress value, while post-damage material softening is accounted for using an energy-based64

approach. Mechanics for material spring-back is also considered. FE models are validated using65

experimental cutting force data as well as optical measurements of machining induced damage66

[24].67

2. Model characteristics68

Several 2D FEM plane stress quasi-static analysis are performed with the numerical software69

package Abaqus/Explicit. Positive fibre orientations of 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ are as-70

sessed in this work. A standard cutting configuration coherent with parameters used for Bhatnagar71

et al. [24] in their experiments is considered to validate the numerical results. Fig. 1 shows an72

schematic illustration of cutting parameters treated ahead.73
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(a) (b)

Fig. 1. (a) Tool and (b) workpiece cutting parameters.

2.1. Machining configurations and geometric analysis74

To evaluate the induced damage influence of rake angle, relief angles, tool edge radius and75

workpiece material ten cutting configurations are simulated. The desired cutting variable studied76

is changed to keep the rest of cutting variables the same values with the standard configuration. In77

Table 1 a representation of all cutting variables values examined in this work is offered.78

Table 1

Cutting variables employed in this work

Cutting variables Standard configuration Cutting variables values studied

Rake angle (α) 5◦ -5◦, 0◦, 10◦

Relief angle (β) 6◦ 4◦, 8◦, 10◦

Tool edge radius (µm) 50 30, 15

Depth of cut (mm) 0.2 -

Workpiece material GFRP CFRP

Cutting speed (mm/s) 8.33 -

A 5 mm long and 3 mm height workpiece are investigated. As a boundary condition, workpiece79

bottom side is fixed while for lateral sides the horizontal displacement is restricted as shown in80

Fig. 2. Elastic and strength properties of UD-GFRP and UD-CFRP used in this work are extracted81

from the Santiuste et al. [21] and Phadnis et al. [16] publications, respectively. Table 2 and Table 382

collects the elastic and strength properties of the studied UD-GFRP and UD-CFRP composites.83
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Fig. 2. Workpiece boundary conditions.

Table 2

Elastic properties of GFRP and CFRP materials used in this work

Material E11(GPa) E22(GPa) G12(GPa) υ12

GFRP [21] 48 12 6 0.28

CFRP [16] 136.6 9.6 5.2 0.29

Table 3

Strength properties of GFRP and CFRP materials used in this work

Material XT (MPa) XC(MPa) YT (MPa) YC(MPa) S (MPa)

GFRP [21] 1200 800 59 128 25

CFRP [16] 2720 1690 111 214 115

2.2. Meshing parameters84

Quadrilateral elements with linear interpolation and reduced integration (CPS4R) are selected.85

Deletion of elements is not considered in this work. Besides, the low cutting speed applied in86

the simulation make the FEM analysis could be considered as a quasi-static problem. This issue87

allows increasing the composite density while the model kinematic energy stands in low values88

without affecting the final results. In this model, density is increased using an appropriate mass89

scaling factor until achieving an integration time of around 10−8 and 10−9 s.90
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Mesh element size is selected to reach a right time-accuracy combination. A rectangular zone91

next to the cutting tool meshed with a medium element size of 10 µm. The remaining area is more92

coarsely mesh using partitions which increase the element size progressively from the 10 µm in93

the refined mesh vicinity until achieving the value of 100 µm in the outer edges. These partitions94

avoid the excessive element distortion and improve the numerical results quality (refer to Fig. 3).95

(a) (b)

Fig. 3. (a) Mesh distribution and (b) Zoom of the refined mesh area.

2.3. Contact and friction modelling96

The tool is considered as a solid rigid body. The contact between the tool and the workpiece is97

performed with a surface-node surface contact property. A constant Coulomb friction coefficient98

of 0.2 is employed in all simulations. This is not the best method to model the contact, because99

the friction coefficient should vary with the fibre orientation. However, because of the lack of100

information in this matter, other authors have been using this methodology for simulating the101

tool-workpiece friction [21, 22, 25].102

3. FEM damage algorithm basics103

The new proposed damage algorithm was implemented in Abaqus/explicit through a user sub-104

routine VUMAT. Constitutive equations considered in this work are extracted from the damage105

model proposed by Lapczyk and Hurtado [33]. In this formulation, four different damage modes106

7



are present: fibre traction (d f t), fibre compression (d f c), matrix traction (dmt) and matrix compres-107

sion (dmc). Hereafter, the combination of these damage modes inside stiffness matrix is showcased108

in Eq. (1).109
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,where D = 1 − (1 − d f )(1 − dm)ν12ν21 ; ds = 1 − (1 − d f t)(1 − d f c)(1 − dmt)(1 − dmc)

d f = max{d f t, d f c} ; dm = max{dmt, dmc} ; dIǫ[0, 1] and I = ( f t, f c,mt,mc)

Because of composite brittle behaviour matrix plasticity is not taken into account. In addition,110

isothermal conditions are contemplated in this work for simplicity. Composites material behaviour111

is modelled with an initial linear elastic response until damage initiation took place. The maximum112

stress failure criterion is selected to determine the fibre damage initiation, while for the matrix the113

Puck plane stress failure criterion is chosen. Five distinct damage modes are considered, fibre114

traction, fibre compression, matrix mode A, matrix mode B and matrix mode C.115

Equations to reach the fibre traction and fibre compression damage initiation criteria are repre-116

sented in Eqs. (2) and (3).117

• Fibre traction (σ11 > 0)118

F f t =

(

σ11

XT

)

≥ 1 (2)

• Fibre compression (σ11 < 0)119

F f c =|
σ11

XC

|≥ 1 (3)

Where F f t and F f c represents the fibre traction and compression damage activation functions,120

respectively. Henceforth, these damage activation functions are named only activation functions121

for simplicity. Plane stress failure Puck criteria modes are chosen because it offers good matrix122
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failure predictions in comparison with other extended composites failure criteria [34]. In this123

document, the basics of this failure are provided. For completion, a brief explanation of the Puck124

matrix failure modes variables is given. Interested reader is referred to [35] for a more detailed125

information.126

Matrix plane stress Puck failure criteria are composed of three failure modes: (1) Mode A, (2)127

Mode B and (3) Mode C. In Mode A matrix rupture is occasioned under traction conditions, while128

Mode B and Mode C are taken place under normal compressive stresses. Mode A and Mode B129

cut the laminate in parallel with thickness direction while Mode C split the laminate with a certain130

angle. Puck matrix failure modes predictions contain a high level of complexity as appreciated in131

Eqs. (4) to (6).132

Fmma, Fmmb and Fmmc represents the Mode A, Mode B and Mode C damage activation functions,133

respectively. To clarify the analysis of results only a matrix traction activation function (Fmt) and134

matrix compression activation function (Fmc) are analysed. Value of (Fmt) is assigned to be the135

same than Fmma, while (Fmc) is established as the maximum of Fmmb and Fmmc in every element136

(Fmc = max{Fmmb, Fmmc}).137

Matrix traction activation function (Fmt = Fmma)138

• Matrix Mode A (σ22 ≥ 0)139

Fmma =

√

√

√
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Matrix compression activation function (Fmc = max{Fmmb, Fmmc})140

• Matrix Mode B (σ22 < 0 and σ22 > −RA
⊥⊥)141

Fmmb =
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• Matrix Mode C (σ22 ≤ −RA
⊥⊥)142

Fmmc =
1

2
[

1 +
(

p

R

)

RA
⊥⊥

]
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RA
⊥⊥

−σ22

≥ 1 (6)

Here, all terms with R represent the strength components associated with the fracture plane.143

Term R
(+)A
⊥ is equal to the transverse matrix traction strength (YT ), RA

⊥‖
corresponds to the intralam-144

inar shear strength (S 12). Variable RA
⊥⊥ is the transverse/transverse shear strength and generally145

this variable is quite difficult to measure, so the value is normally extracted indirectly from Eq. (7).146

Term p
(+)

⊥‖
is the Puck failure envelope slope when σ22 > 0 at point σ22 = 0. Recommendable val-147

ues for this variable are 0.35 for carbon fibre composites and 0.3 for glass fibre composites [36].148

Expression
(

p

R

)

is calculated using the equation formulated in Eq. (8).149

RA
⊥⊥ =

YC

2
(

1 + p
(−)
⊥⊥

) (7)

(

p

R

)

=
p

(−)

⊥‖

RA
⊥‖

(8)

In the above equations, values recommended for the variables p
(−)
⊥⊥ and p

(−)

⊥‖
are 0.3 for carbon150

fibre composites and 0.25 for glass fibre composites [36].151

After damage onset is achieved, a linear continuum damage mechanics (CDM) approach is152

performed. The expression used to calculate the damage modes quantity in every step is shown in153

Eq. (9).154

dI =
δ

f

I,eq

(

δI,eq − δ
0
I,eq

)

δI,eq

(

δ
f

I,eq
− δ0

I,eq

) (dI ∈ [0, 1] and I = ( f t, f c,mt,mc)) (9)

Final (δ
f

I,eq
) and initial (δ0

I,eq
) equivalent displacements are calculated immediately after the dam-155

age initiation condition of one damage mode is reached. These terms are determined by Eq. (10)156

and Eq. (11), respectively. Fracture toughness values show in Table 4 are employed in the present157

work.158
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Table 4

Critical fracture toughness extracted from [37]

N/mm Gc
f t

Gc
f c

Gc
mt Gc

mc

Critical fracture toughness 10 10 1 1

δ
f

I,eq
=

2Gc
I
FI

σI,eq

(10)

δ0
I,eq =

δI,eq

FI

(11)

In the above equations, coefficient FI with I = ( f t, f c,mt,mc) represents the activation function159

value of the correspondent damage mode. σI,eq and δI,eq are the equivalent stress and displacements160

of a damage mode, respectively. Expressions assigned to obtain the value of these variables are161

explained in detail in Ref. [33].162

Fig. 4. Damage model scheme carried out for every damage mode.

Finally, maximum damage of 0.95 is allowed for the matrix and 0.999 for the fibre damage163

modes. These maximum values are chosen to avoid numerical errors [25] and simulate the re-164

maining stiffness that a total failure ply supply to adjacent laminate plies [36]. After this damage165
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level was achieved a second linear elastic response is introduced with the remaining stiffness. An166

illustration of the material behaviour scheme carried out is represented in Fig. 4.167

4. Model validation168

The standard cutting configuration model is validated by comparison with the experimental169

results obtained by Bhatnagar et al. [24]. The chip is assumed to be formed when the simulated170

cutting force reaches the experimental values obtained. Cutting and thrust forces are registered171

until the chip formation process was accomplished. Maximum cutting and thrust forces simulated172

are chosen as the machining forces to analyse the numerical results.173

This assumption is considered reasonable, because of the non-deletion of elements carried out in174

the simulations avoid the apparition of the natural machining forces fluctuations [25]. An example175

of one simulation records of the cutting and thrust forces is provided in Fig. 5.176

Spring back phenomenon, which consider the partial laminate thickness recovery that always177

takes place after the tool pass away (Fig. 5), is taken to improve the numerical damage predictions.178

This concept is introduced, imposing a linear progressive vertical penetration to the tool, while it179

is advancing horizontally; final vertical displacements for every fibre orientations are chosen in180

the order of the half or one tool edge radius value as studied by Wang et al. [38] and they are181

showcased in Table 5. This approach is developed to avoid the excessive meshed elements distor-182

tion under the tool that take place when only vertical displacement is applied. The real depth of183

cut considered is 0.2 mm, while to calculate the nominal depth of cut the vertical tool penetration184

should be added, see Table 5.185

12



(a) (b)

Fig. 5. (a) Spring back phenomen representation and (b) example of machining forces record for the simulation of the

standard cutting configuration and a fibre orientation of 0◦.

Lasri et al. [25] and Santiuste et al. [21] validated their simulations using the cutting force186

obtained in Bhatnagar et al. [24] experiments. However, thrust force is poorly predicted as a result187

of not including the spring back phenomenon effects on composite machining response. This188

work proves the importance of this phenomenon on thrust force enhancing previous numerical189

predictions, as shown in Fig. 5.190

In addition, the machining sub-surface damage is assessed through the activation functions191

(F f t, F f c, Fmt and Fmc) introduced previously. Sub-surface damage is assumed to be the verti-192

cal distance between the lowest element where it is equalised or exceeded the damage initiation193

condition and the machining trim surface. In this work the damage initiation condition is achieved194

after reaching or exceed Fmt and F f c a value of 0.75 or Fmc and F f t a value of 1. This decision is195

taken because fibre experience buckling problems in compression states and matrix have proper-196

ties degradation problems in traction states [36]. Therefore, it is decided to be conservative with197

fibre compression and matrix traction damage modes.198

Table 5

Vertical speed, cutting tool displacements and simulation time obtained for every fibre orientation simulating the

standard cutting configuration

Fibre orientation 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Vertical penetration (mm) 0.0313 0.0226 0.0411 0.0395 0.0407 0.0439 0.0600

Nominal depth of cut (mm) 0.2313 0.2226 0.2411 0.2395 0.2407 0.2439 0.2600

Horizontal displacement (mm) 0.0521 0.0236 0.0381 0.0366 0.0679 0.1465 0.3202

Simulation time (s) 0.0063 0.0029 0.0046 0.0044 0.0082 0.0176 0.0394
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From the results is obtained that fibre damage initiation criterion is not reached in low laminate199

locations. Hence, the matrix damage modes determine the sub-surface damage in all simulations.200

In Fig. 7 the evolution of matrix damage modes and shear and transverse stresses in different lam-201

inate areas is assessed, see Fig. 7. Three distinct matrix induced damage modes are distinguished202

in different workpiece positions: (1) beneath, (2) behind and (3) in front of the tool.203

Fig. 6. Thrust forces obtained in the proposed numerical simulation and other publications.

As shown in Fig. 7(d), dmt is found behind, while dmc occurs in front positions as illustrated204

in Fig. 7(e). Both matrix damage modes are obtained in low laminate positions (Fig. 7(c)). For205

clarification, failure allocations in Puck’s failure envelope is provided in Fig. 7(f). Main reasons206

to obtain these results are:207

• Zone 1: Shear stresses are predominat, allocating the failure point in the boundary be-208

tween traction and compression failure modes.209

• Zone 2: Important traction transverse stresses are obtained because the pulling effect of210

the tool tip produce a Mode A or matrix traction failure.211

14



• Zone 3: Mode C or matrix compression damage is detected due to the high compressive212

transverse stresses produced by the pushing action of the tool.213

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Detailed illustrations of the matrix damage modes causes at final simulation time with the standard configura-

tion and a fibre orientation of 90◦: (a) Matrix traction damage (dmt), (b) Matrix compression damage dmc, (c), (d), (e)

σ22, σ12, dmt and dmc predicted in position (1), (2) and (3), respectively and (f) Damage modes allocation using the

Puck’s matrix failure criterion in different laminate positions

Finally, the maximum sub-surface damage measured in the simulations achieved a significant214

improvement in comparison with Bhatnagar et al. [24] results, as depicted in Fig. 8. For all fibre215
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orientations excepting 90◦ the predicted values are closer to experimental ones than the Bhatna-216

gar’s predictions achieved.217

This fact could be solved with the inclusion of matrix plastic deformation; it would increase218

the energy required to move the tool and increment the sub-surface damage predictions. Besides,219

the fibre/matrix debonding has a relevant role for high fibre orientations 60-90◦; this fibre bending220

effect would increase appreciably the predicted damage depth, especially for a fibre orientation of221

90◦. This factor is not included in this work, the development of a micro mechanical FE model222

should be required to analyse these particular cases to obtain more accurate predictions. However,223

the influence of cutter geometries on the induced damage is still affordable with this numerical224

model as both numerical and experimental results follow the same trend.225

Fig. 8. Sub-surface damage obtained in the numerical simulation proposed and Bhatnagar et al. [24] numerical and

experimental results

5. Results and discussion226

Main contributions in this article are summarized in this section. For all simulations performed227

only one of the desired cutting parameters is changed, keeping the rest with the standard config-228
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uration values (refer to Table 1). In order to compare the influence of cutting parameters on the229

induced machining damage, ten cutting configurations are assessed. They are performed apply-230

ing the same tool displacement and velocities used for the standard cutting configuration (refer to231

Table 5).232

5.1. Fibre orientation influence233

In this work, the damage activation function is used to reflect the predicted sub-surface dam-234

age area accounting the initial damage conditions exposed in section 3 (Fmt = 1 or Fmc ≥ 0.75).235

Therefore, these variables not only point the damage areas, but also indicate the laminate zones236

where damage is close to occur and residual stresses might be found. Henceforth, for brevity pur-237

pose, only Fmt or Fmc will be shown in every section as both functions predicts similar sub-surface238

damages below the tool, as explained in section 4.239

Fig. 8 shows the induced damage contours for different fiber orientations. It can be seen that240

the induced damage is highly dependant on the fiber orientation. In general, the damage area is241

mainly propagated in parallel and perpendicular fibre direction as represented in Fig. 9.242

Lower induced damages are achieved for 15◦ and 30◦ fibre orientations, while higher values are243

obtained for 75◦ and 90◦. The implication of high tool-workpiece contact stiffness for low fibre244

orientations produced a fragile chip rupture without excessive damage propagation. For a fibre245

orientation of 0◦ the fibre buckling effects are detected, introducing unstable effects on damage246

propagation.247

For higher fibre orientations the tool-workpiece contact stiffness is mainly governed by the248

matrix; thereby it is softer than the contact produces with low fibre orientations. Due to this fact,249

a significant energy increment is required to achieve the chip generation. As a result, the sub-250

surface damage extension is deeper for these unidirectional composite laminates. Lastly, for a251

fibre of 90◦ a fine line of the sub-surface in the thickness direction is appreciated. This finding252

reveals a significant fibre-matrix debonding which increase the damage extension because the tool253

pushed the fibre away.254
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 9. Fmt obtained for fibre orientations (a) 0◦ (b) 15◦, (c) 30◦, (d) 45◦, (e) 60◦, (e) 75◦ and 90◦ at final simulation

time with the standard cutting configuration.

5.2. Workpiece material influence255

UD-CFRP and UD-GFRP composites are simulated to assess the influence of different material256

properties. It is found that levels of induced damage are significantly lower for UD-CFRP in all257

fibre orientations, see Fig. 11. In the case of UD-CFRP composites, a fragile damage behaviour258

is appreciated while UD-GFRP laminates shows a ductile behaviour. This behaviour is explained259

because of the higher contact stiffness properties between the tool and UD-CFRP composites.260
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(a) (b)

Fig. 10. Fmc illustration of (a) UD-CFRP composites and (b) UD-GFRP composites at final simulation time and fibre

orientation of 45◦.

The UD-GFRP composites increased more than 144.83% the machined induced damage simu-261

lated in UD-CFRP composites. For most fibre orientations the UD-GFRP composites sub-surface262

damage exceeded the 200% or even the 300% the damage obtained for UD-CFRP composites;263

reaching the maximum difference of a 375.76% for fibre orientation of 90◦. Hence, it is concluded264

that CFRP composites are better materials to machine than GFRP composites in terms of induced265

machining damage response. An illustration of the matrix compression damage area (Fmc) for266

both materials with a fibre orientation of 45◦ is presented in Fig. 10.267

Fig. 11. Sub-surface damage obtained for all the workpiece materials and fibre orientations studied at the final simu-

lation time.

Note that, because of the high stiffness of CFRP composites the machining peak forces are268
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substantially incremented in comparison with GFRP composites, as show in Fig. 12.269

(a) (b)

Fig. 12. (a) Cutting and (b) thrust forces obtained for all the workpiece materials and fibre orientations studied at the

final simulation time.

5.3. Tool edge radius influence270

In Fig. 13 the induced damages obtained with the 15 µm, 30 µm and 50 µm edge tool radius271

simulated are plotted. This increment of edge tool radius chosen is simulated to observe the effects272

on the laminate damage that tool wears cause. An edge radius of 15 µm represents the geometry273

of a new cutting tool faithfully. Whereas, radius of 30 µm and 50 µm model the increased edge274

radius of the cutting tools after several machining operations.275

Fig. 13. Sub-surface damage obtained for all the tool edge radius and fibre orientations studied at the final simulation

time.
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For fibre orientations of 15◦ and 75◦ tool edge radius 15µm and 30 µm reduce the sub-surface276

damage extension obtained with a tool edge radius of 50 µm. For 30◦, 45◦ and 60◦ fibre orienta-277

tions, the tool edge radius influence on the subsurface damage is observed to be negligible in the278

studied radius range.279

In the case of 0◦, a significant damage reduction is obtained with a tool edge radius of 30 µm.280

This damage reduction is not realistic and it is reached due to the behaviour of laminates with fibre281

orientations of 0 degrees is especially difficult to model; in this case, fibres are parallel to the tool282

movement providing a rigid tool-workpiece contact making the internal damage propagation un-283

stable introducing significant numerical errors. For a fibre orientation of 90◦, the use of a low tool284

edge radius is found to be highly recommended to reduce the laminate damage area significantly,285

see Fig. 14.286

(a) (b)

(c)

Fig. 14. Fmc obtained for tool edge radius of (a) 15 µm (b) 30 µm, (c) 50 µm at final simulation time for a fibre

orientation of 90◦.

It is concluded that lower tool edge radius produce better machining surfaces than cutting tools287
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with higher edges radius. However, the maximum sub-surface damage increment is observed small288

(below the 40%) for fibre orientations between 0◦ and 75◦. Hence, it is determined that the tool289

wear until 50 µm does not increase the sub-surface damage critically for fibre orientations between290

0◦ and 75◦.291

5.4. Relief angle influence292

Machining configurations with 4◦, 6◦, 8◦ and 10◦ are analysed, see Fig. 15. In general terms, the293

use of higher relief angles is beneficial to minimise the sub-surface damage as shown in Fig. 15(a).294

Same tendency is appreciated for thrust forces due to the tool-workpiece contact area reduction295

behind the tool tip (refer to Fig. 15(b)). Therefore, it is concluded that thrust force and induced296

damage are intimate related; the less thrust force is achieved, the less induced damage is obtained.297

Relief angle 10◦ is found to reduce the damage for fibre orientations of 15◦, 30◦ and 75◦ con-298

siderably. Besides, it is observed that relief angles of 8◦ and 10◦ minimised the induced damage299

in comparison with the rest of angles for 0◦ and 45◦ fibre orientations. For 60◦ fibre orientation,300

the relief angle effects are observed to be negligible and for 90◦ the relief angle of 6◦ a significant301

induce damage is achieved in comparison with the rest of angles simulated.302

(a) (b)

Fig. 15. (a)Sub-surface damage and (b) thrust forces obtained for all the relief angles and fibre orientations studied at

the final simulation time.
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(a) (b)

(c) (d)

Fig. 16. Fmt obtained for relief angles (a) 4◦ (b) 6◦, (c) 8◦ and (d) 10◦ at final simulation time for a fibre orientation of

75◦.

It is appreciated that in the case of fibre orientations with 90◦ the results trend is not logic. For303

this particular case, the inclusion of an analysis of the fibre/matrix debonding could reflect better304

the tendency appreciated. This failure mechanism is not included in the current FE model and305

takes a relevant role for 90◦ and higher fibre orientations. The development of micro mechanical306

FE models with the implementation of cohesive properties between fibre and matrix are required307

to analyse this issue.308

From the simulation results, it is observed that highest sub-surface damage exceeds more than309

50% the lowest sub-surface damage for fibre orientations of 15◦, 30◦, 75◦ and 90◦. Thus, it is310

concluded that the election of correct high relief angles is essential for not affecting the structural311

integrity of the laminate considerably. The factor Fmt is depicted in Fig. 16 for 75◦ fibre orientation312

to show the reduction of sub-surface damage with higher relief angles.313
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5.5. Rake angle influence314

From the numerical results obtained in this work, not a clear rake angle tendency is observed315

to reduce the sub-surface damage. It is found that the rake angle which produced less sub-surface316

damage is fluctuating with the fibre orientation, see Fig. 17. Therefore, the best rake angle to317

reduce the level of damage in composite laminates should be analysed for each fibre orientation.318

Fig. 17. Sub-surface damage obtained for all the rake angles and fibre orientations studied at the final simulation time.

Fig. 17 reveals that the rake angle of 0◦ obtains a low laminate induced damage for all fibre319

orientations. This rake angle is found to be the best machining option for fibre orientations of 0◦,320

15◦, 60◦ and 90◦. However, significant induced damage increments is not seen for fibre orientations321

between 0◦ and 75◦ which the maximum differences are around the 40%. Therefore, rake angle322

is considered not essential to reduce the remaining laminate damage in comparison with other323

cutting factors such us workpiece material or relief angle.324

As shown in Fig. 17, rake angles of 5◦ and 10◦ are not a suitable solution for machining lam-325

inates with 90◦ as it produces higher damage levels. Finally, Fig. 18 represents the matrix com-326

pression activation function Fmc calculated at the final of the simulation for a fibre orientation of327

30◦ as a mode of example.328
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(a) (b)

(c) (d)

Fig. 18. Fmc obtained for rake angles (a) -5◦ (b) 0◦, (c) 5◦ and (d) 10◦ at final simulation time for a fibre orientation of

30◦.

6. Concluding remarks329

This paper offers a novel orthogonal cutting FEM study of the effect of cutter parameters on330

machining induced damage. Spring back effect has been included adding a cutting tool verti-331

cal movement during the simulation improving the thrust force predictions. The use of a new332

damage algorithm composed of a linear stiffness degradation and a maximum damage limit for333

fibres and matrix has been demonstrated to improve previous sub-surface damage predictions. It334

has been demonstrated that matrix damage modes delimit the induced damage machining depth,335

distinguishing three main areas: (1) beneath, (2) behind and (3) in front of the cutting tool.336

• Zone 1: Shear stress are predominant and as a result both matrix damages, cracking and337

crushing are developed.338

• Zone 2: Cracking matrix mode is produced because of the tool-workpiece friction effect339

pull the material in this area.340
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• Zone 3: Crushing mode occurs due to the high compressive loads produce by the pushing341

action of the cutter tool.342

Ten cutting configurations in relation to fibre orientation, material properties, edge radius, relief343

angle and rake angle, are simulated, concluding in the below statements.344

• The low fibre orientations, i.e., 15◦ and 30◦, show less induced damage than the higher345

fibre orientations, i.e., 75◦ and 90◦. The low fibre orientations experiencing fragile chip346

ruptures, while higher orientations show more ductile chip rupture.347

• The UD-CFRP composites experience more fragile chip fractures and provide much348

lower induced damages than the UD-GFRP composites for all fibre orientations. Machin-349

ing forces are considerably higher for CFRP composites because its superior stiffness.350

• In general, the tool wear effects do not generate high induced damage, with the exception351

of edge radius higher than 15 µm for 90◦ fibre orientation.352

• High relief angles produce low sub-surface damages for all fibre orientations. It is noted353

that thrust forces are intimate related to the sub-surface damage observing that the less354

thrust force is achieved, the less induced damage is obtain.355

• The rake angles studied does not affect considerably into the machining induced damage.356

The use of a rake angle of 0◦ is recommended to obtain lower induced damage levels on357

the laminate for every fibre orientation.358
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[36] F. Paris, J. Cañas, and J. Marin, Introduccion al analisis y diseño con materiales compuestos. Sevilla: Universi-455

dad de Sevilla, Escuela Tecnica Superior de Ingenieros, 2008.456

[37] C. Zhang, E. A. Duodu, and J. Gu, “Finite element modeling of damage development in cross-ply composite457

laminates subjected to low velocity impact,” Composite Structures, vol. 173, no. 9, pp. 219–227, 2017.458

[38] X. M. Wang and L. C. Zhang, “An experimental investigation into the orthogonal cutting of unidirectional fibre459

reinforced plastics,” International Journal of Machine Tools and Manufacture, vol. 43, no. 10, pp. 1015–1022,460

2003.461

30


	Introduction
	Model characteristics
	Machining configurations and geometric analysis
	Meshing parameters
	Contact and friction modelling

	FEM damage algorithm basics
	Model validation
	Results and discussion
	Fibre orientation influence
	Workpiece material influence
	Tool edge radius influence
	Relief angle influence
	Rake angle influence

	Concluding remarks

