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Extremes of α(t)-locally Stationary Gaussian Random Fields

Enkelejd Hashorva and Lanpeng Ji1

April 13, 2017

Abstract: The main result of this contribution is the derivation of the exact asymptotic behaviour of the supremum

of a class of α(t)-locally stationary Gaussian random fields. We present two applications of our result; the first

one deals with the extremes of aggregate multifractional Brownian motions, whereas the second one establishes the

exact asymptotics of the supremum of χ-process generated by multifractional Brownian motions.

1 Introduction and Main Result

The classical Central Limit Theorem and its ramifications show that the Gaussian model is a natural and correct

paradigm for building an approximate solution to many otherwise unsolvable problems encountered in various

research fields. While the theory of Gaussian processes and Gaussian random fields (GRF’s) is well-developed and

mature, the range of their applications is constantly growing. Recently, applications in brain mapping, cosmology,

quantum chaos, queueing theory, insurance mathematics, number theory and some other fields have been added to its

palmares, see e.g., [2, 5, 6, 9, 3, 4, 22, 23, 18]. In applications related to extremes of non-smooth Gaussian processes

the fractional Brownian motion (fBm) appears in the definition of the Pickands constant, see e.g., [28, 10, 29, 20, 16].

Numerous research articles have shown the importance of fBm in both theoretical models and applications. For

certain applications, the stationarity of increments, which together with the self-similarity property characterizes

fBm in the class of Gaussian processes, can be a severe restriction. A natural way to relax the stationarity of

increments assumption is to introduce the multifractional Brownian motion (mfBm), see e.g., [7, 8, 31]. By definition,

a centered Gaussian process {Bα(t)(t), t ≥ 0} is called a mfBm with parameter α(t), t ≥ 0, if

E
(
Bα(t)(t)Bα(s)(s)

)
=

1

2
D(α(s, t))

(
sα(s,t) + tα(s,t) − |t− s|α(s,t)

)
, α(s, t) := α(s)/2 + α(t)/2, s, t ≥ 0, (1.1)

where D(x) = 2π
Γ(x+1) sin(πx/2) and α(·) is a Hölder function of exponent γ > 0 such that 0 < α(t) < 2min(1, γ), t ≥ 0.

For α(t) = α ∈ (0, 2), t ≥ 0, the mfBm Bα reduces to a (non-standard) fBm.

Inspired by the structure of the mfBm, the recent paper [12] introduced a class of α(t)-locally stationary Gaussian

processes. Therein the exact asymptotics of the tail behavior of the supremum of the α(t)-locally stationary Gaussian

process are derived, which can be applied, for instance, in the analysis of the extremes of standardized mfBm.

It is worth noting that this new class of Gaussian processes includes the locally stationary ones discussed in [11, 25,

29]. Let {Xi(t), t ∈ [0, T ]}, i ≤ k ∈ N, be independent real-valued Gaussian processes, with T > 0. A natural GRF
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associated with these processes is the aggregate random field

Z(t) =
k∑

i=1

θi(t)Xi(ti), t = (t1, . . . , tk) ∈ [0, T ]k,

with θi(·), 1 ≤ i ≤ k some deterministic real-valued functions defined on [0, T ]k.

Extremes of this GRF can not be analyzed in general by aggregating the corresponding results for processes. More-

over, the analysis of it leads to technical difficulties, see e.g., the excellent monographs [5, 29, 30]. Recently, [1] dealt

with multivariate piece-wise linear interpolation of locally stationary random fields, whereas [24] investigated the

piece-wise approximation of α(t)-locally stationary processes. With motivation from the aforementioned papers and

[12], we consider, in this paper, extremes of α(t)-locally stationary GRF {X(t), t ∈ [0, T ]k} (to be defined below).

Specifically, we are interested in the exact asymptotic behavior of

P

(
sup

t∈[0,T ]k
X(t) > u

)
, u → ∞, (1.2)

with T > 0 a given constant and k ∈ N a positive integer.

Let C(D) denote the set of all continuous functions on D ⊂ R
k. Next, we give a formal definition of the GRF’s of

interest.

Definition. A real-valued almost surely (a.s.) continuous GRF {X(t), t ∈ [0, T ]k} is said to be α(t)-locally

stationary if the following conditions are satisfied:

D1. E (X(t)) = 0 and V ar(X(t)) = 1 for all t ∈ [0, T ]k;

D2. αi(t) ∈ C([0, T ]) and αi(t) ∈ (0, 2] for all t ∈ [0, T ], i = 1, · · · , k;

D3. Ci(t) ∈ C([0, T ]k) and 0 < inf{Ci(t) : t ∈ [0, T ]k} ≤ sup{Ci(t) : t ∈ [0, T ]k} := Ci
U < ∞, i = 1, · · · , k;

D4. uniformly with respect to t ∈ [0, T ]k

1− Cov(X(t), X(t+ s)) =

k∑

i=1

Ci(t)|si|αi(ti) + o

(
k∑

i=1

Ci(t)|si|αi(ti)

)
(1.3)

as s → 0 := (0, · · · , 0) ∈ R
k.

A canonical example of α(t)-locally stationary GRF’s is the aggregate mfBm defined by aggregating independent

standardized mfBm’s, see Section 2.

Similarly to [12] we impose the following conditions on the functions αi(·), i = 1, · · · , k. Suppose there exists some

integer 1 ≤ k1 ≤ k such that:

A1. each of αi(t), i = 1, · · · , k1, attains its global minimum on [0, T ] at a unique point t0i (set qk1
:= #{i ∈ N :

1 ≤ i ≤ k1, t
0
i ∈ (0, T )}), and further for any i = k1 + 1, · · · , k, there is some interval [ai, bi] ⊂ (0, T ) such that

αi(ti) ≡ αi in [ai, bi] which is the global minimum of αi(ti) on [0, T ];

A2. there exist Mi, βi > 0, and δi > 1, i = 1, · · · , k1, such that

αi(t+ t0i ) = αi(t
0
i ) +Mi|t|βi + o(|t|βi |ln|t||−δi), t → 0, (1.4)
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and there exist Mi, βi, M̃i, β̃i > 0, and δ̃, δi > 1, i = k1 + 1, · · · , k, such that

αi(bi + t) = αi(bi) +Mit
βi + o(tβi |ln t|−δi), t ↓ 0, (1.5)

αi(ai − t) = αi(ai) + M̃it
β̃i + o(tβ̃i |ln t|−δ̃i), t ↓ 0. (1.6)

The assumption A1 is initially suggested in [12], whereas assumption A2 is a weaker version of a similar condition

given therein which assumes (1.4-1.6) with |ln|t||−δi (or |ln t|−δ̃i) replaced by |t|δi (or tδ̃i).

For notational simplicity, set

αi := αi(t
0
i ), i = 1, · · · , k1,

and ∫

x∈{x0}×D1

C(x)dx :=

∫

x∈D1

C(x0,x)dx

for all integrable functions C(·). Further, denote by Ψ(·) the survival function of an N(0, 1) random variable, and

by Γ(·) the Euler’s Gamma function.

The proof of our main result (Theorem 1.1) relies on the so-called double-sum method that was mainly developed

by Pickands [28] and Piterbarg [29, 30]. As expected, the Pickands constant defined by

Hα = lim
T →∞

T −1
E

{
sup

t∈[0,T ]

e
√
2Bα(t)−tα

}
∈ (0,∞), α ∈ (0, 2],

appears in the asymptotic expansion, where {Bα(t), t ≥ 0} is an fBm with Hurst index α/2. See also [15, 13, 20, 17]

for the basic properties of Pickands constant and its generalizations.

Theorem 1.1. Let {X(t), t ∈ [0, T ]k} be an α(t)-locally stationary GRF that satisfies

Cov(X(t), X(s)) < 1, ∀t, s ∈ [0, T ]k, t 6= s. (1.7)

If both conditions A1 and A2 are satisfied, then we have

P

(
sup

t∈[0,T ]k
X(t) > u

)
= Cuα(lnu)βΨ(u)(1 + o(1)), u → ∞, (1.8)

where where α = 2
∑k

i=1 1/αi, β = −∑k1

i=1 1/βi and

C = 2qk1

( k1∏

i=1

( α2
i

2Mi

)1/βi

Γ(1/βi + 1)

)( k∏

i=1

Hαi

)∫

x∈O

k∏

i=1

(Ci(x))
1/αidx ∈ (0,∞), (1.9)

with O =
∏k1

i=1{t0i } ×
∏k

i=k1+1[ai, bi].

Remarks: a) Under the conditions of Theorem 1.1, if, for the chosen k1 < k, αi(ti) ≡ αi, i = k1 + 1, · · · , k, on
some compact set O2 ⊂ R

k−k1
+ , with positive Lebesgue measure, then (1.8) holds for {X(t), t ∈ [0, T ]k1 ×O2} with

O =
∏k1

i=1{t0i }×O2. In addition, with the convention that
∑0

i=1 = 0,
∏0

i=1 = 1, we have that (1.8) still holds when

k1 = 0; see Theorem 7.1 in [29].

b) We see from the proof of Lemma 3.5 that if k1 = k, then case (3) in Lemma 3.5 does not appear and thus

condition (1.7) can be removed. That is the reason why a similar condition was not assumed in [12].

Brief outline of the paper: We give two applications of our main result in Section 2. In Section 3 we present some

preliminary results. All the proofs are relegated to Section 4 and Appendix.
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2 Applications

In this section we apply our result to two interesting examples of α(t)-locally stationary GRF’s, namely, the aggregate

mfBm’s and the χ-process generated by mfBm’s defined below.

Let {Bα(t)(t), t ≥ 0} be a mfBm with parameter α(t) ∈ (0, 2], t ≥ 0. We define the standardized mfBm by

Bα(t)(t) =
Bα(t)(t)√

V ar(Bα(t)(t))
, t ∈ [T1, T2], with 0 < T1 < T2 < ∞.

As shown in [12]

1− Cor
(
Bα(t)(t), Bα(s+t)(s+ t)

)
=

1

2
t−α(t)|s|α(t) + o(|s|α(t))

uniformly with respect to t ∈ [T1, T2], as s → 0.

Aggregate multifractional Brownian motions: Let {Bαi(t)(t), t ∈ [T1, T2]}, i = 1, · · · , k, be independent stan-

dardized mfBm’s, with parameters αi(t) ∈ (0, 2], t ≥ 0, i = 1, · · · , k, respectively. Assume, for any fixed i = 1, · · · , k,
that αi(t) attains its minimum at the unique point t0i ∈ (T1, T2), and that there exist some positive Mi, βi, and

δi > 1, i = 1, · · · , k, such that condition A2 is satisfied. Set X(t) = 1√
k

(
Bα1(t1)(t1) + · · ·+Bαk(tk)(tk)

)
, t ∈ [T1, T2]

k

and recall that we set αi := αi(t
0
i ). It follows that as s → 0

1− Cov(X(t), X(t+ s)) =
1

2k

k∑

i=1

t
−αi(ti)
i |si|αi(ti)(1 + o(1))

uniformly with respect to t ∈ [T1, T2]
k. Thus, the conditions in Theorem 1.1 are satisfied by X. Then

P

(
sup

t∈[T1,T2]k
X(t) > u

)

= 2k(2k)
−∑k

i=1
1
αi

(
k∏

i=1

HαiΓ(1/βi + 1)

t0i

(
αi√
2Mi

)2/βi
)

u
∑k

i=1
2
αi

(lnu)
∑k

i=1 1/βi
Ψ(u)(1 + o(1)) (2.10)

as u → ∞. We note in passing that in view of the fact

P

(
sup

t∈[T1,T2]k
X(t) > u

)
= P

(
k∑

i=1

sup
t∈[T1,T2]

Bαi(t)(t) >
√
ku

)

the claim in (2.10) also follows from Theorem 2.1 in [12] and Theorem 2.2 in [21].

χ-process: Let {Bi,α(t)(t), t ∈ [T1, T2]}, i = 1, · · · , k, be independent copies of {Bα(t)(t), t ∈ [T1, T2]}. Assume that

α(t) attains its minimum at the unique point t0 ∈ (T1, T2), and that there exist some positive M,β, and δ > 1, such

that

α(t+ t0) = α(t0) +M |t|β + o(|t|β |ln|t||−δ), as t → 0.

Consider a χ-process defined by

χ(t) =

√
B

2

1,α(t)(t) + · · ·+B
2

k,α(t)(t), t ∈ [T1, T2].

Further, we introduce a GRF

Y (t,u) = B1,α(t)(t)u1 + · · ·+Bk,α(t)(t)uk, u = (u1, · · · , uk)
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defined on the cylinder GT = [T1, T2]× Sk−1, with Sk−1 being the unit sphere in R
k (with respect to L2-norm). In

the light of [29]

sup
t∈[T1,T2]

χ(t) = sup
(t,u)∈GT

Y (t,u).

Further we have as (s,v) → (0,0)

1− Cov(Y (t,u), Y (t+ s,u + v)) =
1

2
t−α(t)|s|α(t) + 1

2

k−1∑

i=1

|vi|2 + o

(
|s|α(t) +

k−1∑

i=1

|vi|2
)

uniformly with respect to (t,u) ∈ GT . Therefore, the conditions in Theorem 1.1 are satisfied by Y , and thus we

have as u → ∞ (set α0 := α(t0))

P

(
sup

t∈[T1,T2]

χ(t) > u

)
= 2

5
2− k

2− 1
β− 1

α0

Hα0
α

2
β

0 Γ( 1β + 1)

M1/βt0Γ((k − 1)/2)

uk−1+ 2
α0

(lnu)1/β
Ψ(u)(1 + o(1)).

3 Preliminary Lemmas

This section is concerned with some preliminary lemmas used for the proof of Theorem 1.1. We assume, without

loss of generality, that 1 ≤ k1 < k and Mi = 1, i = 1, · · · , k1. As pointed out in [12], for the asymptotics

of the original process, we have to replace Ci(·) with (Mi)
−αi/βiCi(·), i = 1, · · · , k1. We may further assume

that t0i = 0, i = 1, · · · , k1, and thus the final general result should be multiplied by 2qk1 . Hereafter, consider

{X(t), t ∈ [0, T ]k} to be an α(t)-locally stationary GRF with the above simplification (called simplified α(t)-locally

stationary GRF). Set next (recall αi = αi(t
0
i ))

tiu =

(
α2
i

βi

ln lnu

lnu

) 1
βi

, i = 1, · · · , k1.

Clearly

P


 sup

t∈∏k1
i=1[0,t

i
u]×

∏k
i=k1+1[ai,bi]

X(t) > u


 ≤ P

(
sup

t∈[0,T ]k
X(t) > u

)

≤ P


 sup

t∈
∏k1

i=1[0,t
i
u]×

∏k
i=k1+1[ai,bi]

X(t) > u


+ P


 sup

t∈
(
[0,T ]k\

∏k1
i=1[0,t

i
u]×

∏k
i=k1+1[ai,bi]

)X(t) > u


 . (3.11)

There are two steps in the proof of Theorem 1.1. In step 1, we focus on the asymptotics of

π(u) := P


 sup

t∈
∏k1

i=1[0,t
i
u]×

∏k
i=k1+1[ai,bi]

X(t) > u


 , u → ∞, (3.12)

which is the main part of our proof. In step 2, we shall show that (see Lemma 3.7 below)

P


 sup

t∈
(
[0,T ]k\

∏k1
i=1[0,t

i
u]×

∏k
i=k1+1[ai,bi]

)X(t) > u


 = o(π(u)), u → ∞. (3.13)

The idea of finding the asymptotics of π(u) is based on the so-called double-sum method; see e.g., [28] or [29]. Before

going to the detail of the proof, let us recall the brief outline of the double-sum method. First of all, we need to
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find a suitable partition, say with cubes {W i
u}, of the set

∏k1

i=1[0, t
i
u] ×

∏k
i=k1+1[ai, bi]. Then using the well-known

Bonferroni’s inequality we find upper and lower bounds for π(u), i.e.,

∑

i

P

(
sup
t∈W i

u

X(t) > u

)
≥ π(u) ≥

∑

i

P

(
sup
t∈W i

u

X(t) > u

)
−
∑∑

i<j

P

(
sup
t∈W i

u

X(t) > u, sup
t∈W j

u

X(t) > u

)
.

Finally, we show that the single-sum terms on both sides are asymptotically equivalent and the double-sum term is

relatively asymptotically negligible. In what follows, we shall first introduce the cubes that are used as the partition,

followed then by some preliminary results (Lemmas 3.1-3.5) concerning the estimation for the summands of both

single-sum and double-sum terms in the above formula. For any pi ∈ Z+, i = 1, · · · , k1, define

cipi
= cipi

(u) :=

(
pi

lnu(ln lnu)1/βi

)1/βi

, Ai
pi

= Ai
pi
(u) := [cipi

, cipi+1],

and let mi = mi(u) := ⌊ (αi)
2

βi
(ln lnu)1+1/βi⌋, where ⌊x⌋ denotes the integer part of x. Further, let S > 1 be any fixed

integer; by dividing each Ai
pi

into subintervals of length S/u2/(αi(c
i
pi+1)) (recall functions αi() in (1.3)), we define

Bi
ji,pi

= Bi
ji,pi

(u) :=

[
cipi

+
jiS

u2/(αi(cipi+1))
, cipi

+
(ji + 1)S

u2/(αi(cipi+1))

]

for ji = 0, 1, · · · , ni,pi = ni,pi(u) := ⌊ cipi+1−cipi
S u2/(αi(c

i
pi+1))⌋.

Moreover, let k2 := k−k1, a = (ak1+1, · · · , ak), and letIk = (K1, · · · ,Kk2
) ∈ Z

k2 be a vector with integer coordinates.

For δ > 0, we denote

δIk = (a+ δIk + [0, δ]k) ∩
k∏

i=k1+1

[ai, bi],

where Ik ∈ B with

B = {Ik ∈ Z
k2 : δIk 6= ∅}.

Define an operator gu on R
k2 as in [29], i.e., for t = (tk1+1, · · · , tk) ∈ R

k2

gut =

(
u
− 2

αk1+1 tk1+1, · · · , u− 2
αk tk

)
. (3.14)

Denote △0 = gu[0, 1]
k2 , and, for fixed Ik ∈ B, △IIIk = △IIIk(u) := guSIIIk +△0S with IIIk = (IIk1 , · · · , IIkk2

) ∈ Z
k2 being a

vector with integer coordinates. Further, let VIIIk,Ik := a+ δIk +△IIIk , where IIIk ∈ AIk with

AIk = {IIIk ∈ Z
k2 : VIIIk,Ik ∩ δIk 6= ∅}.

Denote

N+
Ik = #{IIIk ∈ Z

k2 : VIIIk,Ik ∩ δIk 6= ∅} and Ni =

⌊
δ

S
u2/αk1+i

⌋
, i = 1, · · · , k2.

Moreover, let, for i = 1, · · · , k1,

Li
1 = {(ji, pi) : ji, pi ∈ Z, 0 ≤ pi ≤ mi − 1, 0 ≤ ji ≤ ni,pi − 1},

U i
1 = {(ji, pi) : ji, pi ∈ Z, 0 ≤ pi ≤ mi, 0 ≤ ji ≤ ni,pi},
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and

L2 = {(IIIk,Ik) :Ik ∈ B, VIIIk,Ik ⊂ δIk}, U2 = {(IIIk,Ik) :Ik ∈ B,IIIk ∈ AIk}.

We have

⋃

(ji,pi)∈Li
1,i=1,··· ,k1

(IIIk,Ik)∈L2

k1∏

i=1

Bi
ji,pi

× VIIIk,Ik ⊂
k1∏

i=1

[0, tiu]×
k∏

i=k1+1

[ai, bi] ⊂
⋃

(ji,pi)∈Ui
1,i=1,··· ,k1

(IIIk,Ik)∈U2

k1∏

i=1

Bi
ji,pi

× VIIIk,Ik.

In order to specify the ’distance’ between cubes of the type
∏k1

i=1 B
i
ji,pi

× VIIIk,Ik, we introduce the following order

relation: for any (j, p), (j′, p′) ∈ Z
2, we write

(j, p) ≺ (j′, p′) iff {p < p′} or {p = p′ and j < j′}.

Further, for j,p, j′,p′ ∈ Z
k1 with (ji, pi), (j

′
i, p

′
i) ∈ Li

1, i = 1, · · · , k1,

(j,p) ≺ (j′,p′) iff (ji, pi) ≺ (j′i, p
′
i) for some i = 1, · · · , k1, and (jl, pl) = (j′l , p

′
l) for l = 1, · · · , i− 1,

and, for (IIIk,Ik), (II
′
Ik′ ,Ik′) ∈ L2,

(IIIk,Ik) ≺ (II ′Ik′ ,Ik′) iff (IIki ,Ki) ≺ (I ′Ik
′

i ,K ′
i) for some i = 1, · · · , k2, and (IIkl ,Kl) = (I ′Ik

′

l ,K ′
l) for l = 1, · · · , i− 1.

Moreover, define, for j, p, j′, p′ ∈ Z,

N j′,p′

j,p := #{(j′′, p′′) ∈ Z
2 : (j, p) ≺ (j′′, p′′) ≺ (j′, p′)}.

In the sequel, for fixed ji, pi,IIIk,Ik such that (ji, pi) ∈ U i
1, i = 1, 2, · · · , k1 and (IIIk,Ik) ∈ U2, we consider the GRF

X(v) := X(v1, · · · , vk) on

AIIIk,Ik
j,p :=

k1∏

i=1

Bi
ji,pi

× VIIIk,Ik.

In order to obtain the estimates of the tail probabilities of the supremum of X on AIIIk,Ik
j,p (see Lemmas 3.1 and 3.3

below), we introduce the following stationary GRF’s, for a fixed (marked) point v0 = (v01 , · · · , v0k) := v0
j,p,IIIk,Ik

in

AIIIk,Ik
j,p :

—- {Y v0

ε,u(ν),ν ∈ [0, S]k} is a family of centered stationary GRF’s with

Cov(Y v0

ε,u(ν), Y
v0

ε,u(ν + x)) = e
−(1−ε)

(∑k1
i=1 Ci(v

0)u−2|xi|αi+2(tiu)βi
+
∑k

i=k1+1 Ci(v
0)u−2|xi|αi

)

for ε ∈ (0, 1), u > 0 such that αi + 2(tiu)
βi ≤ 2, i = 1, · · · , k1, and ν, ν + x ∈ [0, S]k.

—- {Zv0

ε,u(ν),ν ∈ [0, S]k} is a family of centered stationary GRF’s with

Cov(Zv0

ε,u(ν), Z
v0

ε,u(ν + x)) = e−(1+ε)(
∑k

i=1 Ci(v
0)u−2|xi|αi) (3.15)

for ε > 0, u > 0 and ν, ν + x ∈ [0, S]k.
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Lemma 3.1. For any ε ∈ (0, 1), there exists uε > 0 such that for u > uε,

(i) P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u


 ≥ P

(
sup

ν∈[0,S]k
Y v0

ε,u(ν) > u

)
,

(ii) P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u


 ≤ P

(
sup

ν∈[0,S]k
Zv0

ε,u(ν) > u

)
. (3.16)

Remark: Due to continuity of the functions Ci(·), i = 1, · · · , k, the point v0 can also be chosen as a fixed (marked)

point in
∏k1

i=1 A
i
pi
× δIk when δ is sufficiently small and u is sufficiently large. In the sequel, we chose v0 in this way.

Actually v0 depends on p,Ik, but, if no confusion is caused, for notational simplicity we still write v0.

Next we introduce a structural modulus on R
k by

|s|α =
k∑

i=1

|si|αi , s ∈ R
k, with αi ∈ (0, 2], 1 ≤ i ≤ k.

The following result inspired by Lemma 7 of [26] is crucial for our investigation; its proof is relegated to Appendix.

Lemma 3.2. For any compact set D ⊂ R
k
+ with 0 ∈ D, let {Xu(t), t ∈ D}, u > 0, be a family of a.s. continuous

GRF’s , with E (Xu(t)) ≡ 0, E
(
(Xu(t))

2
)
≡ 1 for all u, and with correlation function ru(t, s) = E (Xu(t)Xu(s)) . If

lim
u→∞

u2(1− ru(t, s)) = |t− s|α (3.17)

uniformly with respect to t, s ∈ D, then

P

(
sup
t∈D

Xu(t) > u

)
= H(k,α)[D]Ψ(u)(1 + o(1))

as u → ∞, where

H(k,α)[D] = E

(
sup
t∈D

eB̃α(t)−|t|α
)

∈ (0,∞) (3.18)

as defined in [29], with B̃α(t) =
√
2
∑k

i=1 B
(i)
αi (ti) and B

(i)
αi , 1 ≤ i ≤ k, being independent fBm’s with Hurst indexes

αi/2 ∈ (0, 1], respectively.

Lemma 3.3. For any S > 1 and ε ∈ (0, 1), we have, as u → ∞

(i) P

(
sup

ν∈[0,S]k
Y v0

ε,u(ν) > u

)
=

k∏

i=1

Hαi

[
0, (Ci(v

0)(1− ε))1/αiS
]
Ψ(u)(1 + o(1)),

(ii) P

(
sup

ν∈[0,S]k
Zv0

ε,u(ν) > u

)
=

k∏

i=1

Hαi

[
0, (Ci(v

0)(1 + ε))1/αiS
]
Ψ(u)(1 + o(1)),

where (recall (3.18)) we set Hαi [0, S] := H(1,αi)[[0, S]], i = 1, 2, · · · , k.

In order to estimate the double-sum term in the derivation of (3.12), we need the following two lemmas.

Lemma 3.4. Let GRF {Z̃w0

ε,u(ν);ν ∈ [0, S]k}, having covariance structure (3.15) with v0 replaced by w0, be inde-

pendent of {Zv0

ε,u(ν);ν ∈ [0, S]k}, with ε > 0. Then there exists some positive constant Fε, for u large enough, we

have

P

(
sup

ν,µ∈[0,S]k

1√
2

(
Zv0

ε,u(ν) + Z̃w0

ε,u(µ)
)
> u

)
≤ FεS

2kΨ(u).
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Next, we introduce a distance of two sets D1,D2 ⊂ R
k
+ by

dist(D1,D2) = inf
t∈D1,s∈D2

|t− s|α.

Further, we fix some sufficiently small γ0 > 0 in the following way: uniformly with respect to t ∈ [0, T ]k,

1− Cov(X(t), X(t+ s)) < η0 ∈ [0, 1/2) (3.19)

for |s|α < γ0 (recall (1.3)).

Lemma 3.5. There exist positive constants C,C1 such that for sufficiently large u we have:

(1) For (ji, pi), (j
′
i, p

′
i) ∈ Li

1, i = 1, · · · , k1, (IIIk,Ik), (II ′Ik′ ,Ik′) ∈ L2 satisfying

dist
(
AIIIk,Ik

j,p , A
II′
Ik′ ,Ik

′

j′,p′

)
< γ0 (3.20)

and

N
j′i,p

′
i

ji,pi
> 0 for some i = 1, · · · , k1, or N

I′Ik′
i ,K′

i

IIki ,Ki
> 0 for some i = 1, · · · , k2,

we have

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u




≤ CS2k exp

(
−C1

(
k1∑

i=1

(√
N

j′i,p
′
i

ji,pi
S

)αi

+

k2∑

i=1

(
N

I′Ik′
i ,K′

i

IIki ,Ki
S

)αk1+i
))

Ψ(u). (3.21)

(2) Let (ji, pi), (j
′
i, p

′
i) ∈ Li

1, i = 1, · · · , k1, (IIIk,Ik), (II ′Ik′ ,Ik′) ∈ L2 satisfy

N
j′i,p

′
i

ji,pi
= 0 for all i = 1, · · · , k1, and N

I′Ik′
i ,K′

i

IIki ,Ki
= 0 for all i = 1, · · · , k2.

If (j,p) ≺ (j′,p′), then the following number κ can be defined:

κ =





i11 := inf{1 ≤ i ≤ k1 : pi = p′i, j
′
i = ji + 1}, if the defining set is nonempty,

i12 := inf{1 ≤ i ≤ k1 : p′i = pi + 1, ji = ni,pi , j
′
i = 0}, if i11 does not exist.

Similarly, if (j,p) = (j′,p′) and (IIIk,Ik) ≺ (II ′Ik,Ik
′), then we can define κ as

κ =





i21 := k1 + inf{1 ≤ i ≤ k2 : Ki = K ′
i, I

′Ik′

i = IIki + 1}, if the defining set is nonempty,

i22 := k1 + inf{1 ≤ i ≤ k2 : K ′
i = Ki + 1, IIki = Ni, I

′Ik′

i = 0}, if i21 does not exist.

Assume, without loss of generality, that κ = i11 exists. We have

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup
v′∈A′′

κ

X(v′) > u


 ≤ CS2k exp

(
−C1S

ακ/2
)
Ψ(u), (3.22)

where

A′′
κ =

κ−1∏

i=1

Bi
j′i,p

′
i
×
[
cκpκ

+
(jκ + 1)S +

√
S

u2/(ακ(cκpκ+1))
, cκpκ

+
(jκ + 2)S

u2/(ακ(cκpκ+1))

]
×

k1∏

i=κ+1

Bi
j′i,p

′
i
× VII′

Ik,Ik
′ .
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(3) If (ji, pi), (j
′
i, p

′
i) ∈ Li

1, i = 1, · · · , k1, (IIIk,Ik), (II ′Ik′ ,Ik′) ∈ L2 satisfy

dist
(
AIIIk,Ik

j,p , A
II′
Ik′ ,Ik

′

j′,p′

)
≥ γ0, (3.23)

then there exist some constants (independent of u) h > 0 and λ ∈ (0, 1) such that

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u


 ≤ 2Ψ

(
u− h/2√
1− λ/2

)
. (3.24)

The next lemma gives the asymptotics of (3.12), which is the main part of the proof of Theorem 1.1.

Lemma 3.6. If {X(t), t ∈ [0, T ]k} is a simplified α(t)-locally stationary GRF, then we have

π(u) =

( k1∏

i=1

(α2
i

2

)1/βi

Γ(1/βi + 1)

)( k∏

i=1

Hαi

)∫

x∈∏k1
i=1{t0i }×

∏k
i=k1+1[ai,bi]

k∏

i=1

(Ci(x))
1/αidx

×uα(lnu)βΨ(u)(1 + o(1)), u → ∞,

where α, β are the same as in Theorem 1.1.

Lemma 3.7. Under the assumptions of Lemma 3.6 the claim in (3.13) holds.

4 Proofs

Proof of Theorem 1.1: Taking into account of the (simplification) statement in the beginning of Section 3, we

conclude that the claim follows directly from (3.11) and Lemmas 3.6 and 3.7. 2

Proof of Lemma 3.1: Set

XIIIk,Ik
j,p,,u(ν) = X

(
c1p1

+
j1S + ν1

u2/(α1(c1p1+1))
, · · · , ck1

pk1
+

jk1
S + νk1

u
2/(αk1

(c
k1
pk1

+1))
,a+ δIk + guSIIIk +△ν

0

)
,

with △ν
0 = gu

∏k
i=k1+1[0, νi]. It follows that

sup
v∈A

IIIk,Ik

j,p

X(v)
d
= sup

ν∈[0,S]k
XIIIk,Ik

j,p,,u(ν). (4.25)

Furthermore, we derive, for the fixed point v0 in AIIIk,Ik
j,p , and u sufficiently large

1− Cov
(
XIIIk,Ik

j,p,,u(ν), X
IIIk,Ik
j,p,,u(ν + x)

)

≥ (1− ε/4)1/3




k1∑

i=1

Ci(v)|u−2/(αi(c
i
pi+1))xi|

αi

(
cipi

+
jiS+νi

u
2/(αi(c

i
pi+1

))

)

+

k∑

i=k1+1

Ci(v)u
−2|xi|αi




≥ (1− ε/2)1/3




k1∑

i=1

Ci(v
0)|u−2/(αi(c

i
pi+1))xi|

αi

(
cipi

+
jiS+νi

u
2/(αi(c

i
pi+1

))

)

+

k∑

i=k1+1

Ci(v
0)u−2|xi|αi




uniformly with respect to ν, ν + x ∈ [0, S]k, where we used the fact that Ci(·), i = 1, · · · , k, are continuous functions.
In view of the proof of Lemma 4.1 of [12] for sufficiently large u we obtain

1− Cov
(
XIIIk,Ik

j,p,,u(ν), X
IIIk,Ik
j,p,,u(ν + x)

)
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≥ (1− ε/2)

(
k1∑

i=1

Ci(v
0)u−2|xi|αi+2(tiu)

βi
+

k∑

i=k1+1

Ci(v
0)u−2|xi|αi

)
(4.26)

uniformly with respect to ν, ν + x ∈ [0, S]k. Similarly, for sufficiently large u

1− Cov
(
XIIIk,Ik

j,p,,u(ν), X
IIIk,Ik
j,p,,u(ν + x)

)
≤ (1 + ε/2)

(
k∑

i=1

Ci(v
0)u−2|xi|αi

)
, (4.27)

uniformly with respect to ν, ν + x ∈ [0, S]k. The claim follows now by the Slepian’s inequality (see e.g., Theorem

C.1 of [29]). 2

Proof of Lemma 3.3: Since the proofs of (i) and (ii) are similar, we present below only the proof of (i). Note that

lim
u→∞

u2(1− Cov(Y v0

ε,u(t), Y
v0

ε,u(s))) = (1− ε)
k∑

i=1

Ci(v
0)|ti − si|αi

uniformly with respect to s, t ∈ [0, S]k. Hence (i) follows from Lemma 3.2. 2

Proof of Lemma 3.4: Let

Wε,u(ν, ν
′) :=

1√
2

(
Zv0

ε,u(ν) + Z̃w0

ε,u(ν
′)
)
, ν, ν′ ∈ [0, S]k.

Since Wε,u is a centered GRF with unit variance and uniformly with respect to ν, µ, ν′, µ′ ∈ [0, S]k

lim
u→∞

u2(1− Cov(Wε,u(ν, ν
′),Wε,u(µ, µ

′))) = (1 + ε)

(
k∑

i=1

Ci(v
0)|νi − µi|αi +

k∑

i=1

Ci(w
0)|ν′i − µ′

i|αi

)
,

then by Lemma 3.2

P

(
sup

ν,µ∈[0,S]k

1√
2

(
Zv0

ε,u(ν) + Z̃w0

ε,u(µ)
)
> u

)

=

(
k∏

i=1

Hαi

[
0, (Ci(v

0)(1 + ε))1/αiS
])( k∏

i=1

Hαi

[
0, Ci(w

0)(1 + ε))1/αiS
])

Ψ(u)(1 + o(1))

≤
(

k∏

i=1

Hαi
[0, 1](⌊(Ci

U (1 + ε))1/αi⌋+ 1)

)2

S2kΨ(u)(1 + o(1)),

where in the last inequality we used the fact that Hαi [0, R] ≤ Hαi [0, 1](⌊R⌋+1) (cf. [29]), hence the proof is complete.

2

Proof of Lemma 3.5: Since the proof of (1) and (2) are similar, we present next only the proof of (1). Let

Yu(ν, ν
′) = X1,u(ν) +X2,u(ν

′),

where

X1,u(ν) = X

(
c1p1

+
j1S + ν1

u2/(α1(c1p1+1))
, · · · , ck1

pk1
+

jk1
S + νk1

u
2/(αk1

(c
k1
pk1

+1))
,a+ δIk + guSIIIk +△ν

0

)

and

X2,u(ν
′) = X


c1p′

1
+

j′1S + ν′1

u
2/(α1(c1p′1+1

))
, · · · , ck1

p′
k1

+
j′k1

S + ν′k1

u
2/(αk1

(c
k1
p′
k1

+1
))
,a+ δIk′ + guSII

′
Ik′ +△ν′

0


 ,
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with △ν′

0 = gu
∏k

i=k1+1[0, ν
′
i]. For any u > 0, we have

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u


 ≤ P

(
sup

ν,ν′∈[0,S]k
Yu(ν, ν

′) > 2u

)
.

We see from (3.19) and (3.20) that, for sufficiently large u

V ar(Yu(ν, ν
′)) = 4− 2(1− Cov(X1,u(ν), X2,u(ν

′))) > 2.

It follows, for fixed i = 1, · · · , k1, and vi ∈ Bi
ji,pi

, v′i ∈ Bi
j′i,p

′
i
, that |vi − v′i| ≥ N

j′i,p
′
i

ji,pi

S

u
2/(αi(c

i
pi+1

))
. Further, we have,

for fixed i = 1, · · · , k2, vk1+i ∈
[
Kiδ +

IIki S

u
2/αk1+i

,Kiδ +
(IIki +1)S

u
2/αk1+i

]
and v′k1+i ∈

[
K ′

iδ +
I′Ik′
i S

u
2/αk1+i

,K ′
iδ +

(I′Ik′
i +1)S

u
2/αk1+i

]
that

|vk1+i − v′k1+i| ≥ N
I′Ik′
i ,K′

i

IIki ,Ki

S

u
2/αk1+i

. Therefore, there exists some C2 > 0 such that for sufficiently large u

V ar(Yu(ν, ν
′)) ≤ 4− C2

(
k1∑

i=1

(
N

j′i,p
′
i

ji,pi

S

u2/αi(cipi+1)

)αi(c
i
p′
i
+1

)

+

k2∑

i=1

(
N

I′Ik′
i ,K′

i

IIki ,Ki

S

u2/αk1+i

)αk1+i
)
.

In view of Lemma 4.4 in [12] for some C3 > 0

V ar(Yu(ν, ν
′)) ≤ 4− C3

(
k1∑

i=1

(√
N

j′i,p
′
i

ji,pi
S

)αi

+

k2∑

i=1

(
N

I′Ik′
i ,K′

i

IIki ,Ki
S

)αk1+i
)
u−2 =: H(S, u).

Consequently,

P

(
sup

ν,ν′∈[0,S]k
Yu(ν, ν

′) > 2u

)
≤ P

(
sup

ν,ν′∈[0,S]k
Y u(ν, ν

′) >
2u√

H(S, u)

)
,

where Y u(ν, ν
′) = Yu(ν, ν

′)/
√
V ar(Yu(ν, ν

′)). Furthermore, borrowing the arguments of the proof of Lemma 6.3

in [29] (see alternatively the proof of Lemma 4.5 in [12]), for ν, ν′, µ, µ′ ∈ [0, S]k

V ar(Y u(ν, ν
′)− Y u(µ, µ

′)) ≤ 4 (V ar(X1,u(ν)−X1,u(µ)) + V ar(X2,u(ν
′)−X2,u(µ

′)))

≤ 1

2

(
V ar(Zv0

8,u(ν)− Zv0

8,u(µ)) + V ar(Z̃v′0

8,u (ν
′)− Z̃v′0

8,u (µ
′))
)
,

where the GRF Z̃v′0

8,u is independent of Zv0

8,u, and has covariance structure (3.15) with v0 replaced by v′0 (chosen

similarly as v0). Next, by Slepian’s inequality and Lemma 3.4, we obtain

P

(
sup

ν,ν′∈[0,S]k
Y u(ν, ν

′) >
2u√

H(S, u)

)
≤ P

(
sup

ν,ν′∈[0,S]k

1√
2

(
Zv0

8,u(ν) + Z̃v′0

8,u (ν
′)
)
>

2u√
H(S, u)

)

≤ F8S
2kΨ

(
2u√

H(S, u)

)

≤ CS2k exp

(
−C1

(
k1∑

i=1

(√
N

j′i,p
′
i

ji,pi
S

)αi

+

k2∑

i=1

(
N

I′Ik′
i ,K′

i

IIki ,Ki
S

)αk1+i
))

Ψ(u)

for u sufficiently large. In order to prove (3) we apply the Borell theorem (e.g., [29]). By (1.7) and (3.23), we see

that

sup

v∈A
IIIk,Ik

j,p
,v′∈A

II′
Ik′ ,Ik′

j′,p′

V ar(X(v) +X(v′)) = 4− 2 inf
v∈A

IIIk,Ik

j,p
,v′∈A

II′
Ik′ ,Ik′

j′,p′

(1− Cov(X(v), X(v′))) < 4− 2λ,
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with some λ ∈ (0, 1). Further, there exists some h > 0, such that

P


 sup

v∈A
IIIk,Ik

j,p
,v′∈A

II′
Ik′ ,Ik′

j′,p′

(X(v) +X(v′)) > h


 ≤ 2P

(
sup

v∈[0,T ]k
X(v) > h/2

)
<

1

2
.

Consequently, utilising Borell theorem, we obtain, for u sufficiently large

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u




≤ P


 sup

v∈A
IIIk,Ik

j,p
,v′∈A

II′
Ik′ ,Ik′

j′,p′

(X(v) +X(v′)) > 2u


 ≤ 2Ψ

(
u− h/2√
1− λ/2

)

establishing thus the claim. 2

Proof of Lemma 3.6: Let ε ∈ (0, 1) be an arbitrarily chosen constant, and set ε := 1 + ε. We derive next the

upper bound. Since ni,pi
= ⌊ cipi+1−cipi

S u2/αi(c
i
pi+1)⌋, we have as u → ∞

π(u) ≤
∑

(ji,pi)∈Ui
1,1≤i≤k1,

(IIIk,Ik)∈U2

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u


 ≤

∑

(ji,pi)∈Ui
1,1≤i≤k1

∑

Ik∈B

∑

IIIk∈AIk

P

(
sup

ν∈[0,S]k
Zv0

ε,u(ν) > u

)

≤
∑

pi≤mi,1≤i≤k1

∑

Ik∈B

(
k1∏

i=1

(
cipi+1 − cipi

S
u2/(αi(c

i
pi+1))

)
N+
Ik

(
k∏

i=1

Hαi
[0, Ci(v

0)ε)1/αiS]

)
Ψ(u)(1 + o(1))

)

=
∑

pi≤mi,1≤i≤k1

∑

Ik∈B

(∏k
i=1 Hαi

[0, Ci(v
0)ε)1/αiS]

∏k
i=1(Ci(v0)ε)1/αiS)

(
k∏

i=1

(Ci(v
0)ε)1/αiS)

)
1

Sk1

(
k1∏

i=1

u2/αi

(lnu)1/βi

)

×
N+
Ik

(∏k
i=k1+1(Su

−2/αi)
)

∏k
i=k1+1(Su

−2/αi)
Ψ(u)(1 + o(1))

k1∏

i=1


(lnu)1/βi(cipi+1 − cipi

)e

2(αi−αi(c
i
pi+1))

αiαi(c
i
pi+1

)
lnu



)

≤
∑

pi≤mi,1≤i≤k1

∑

Ik∈B

(∏k
i=1 Hαi [0, Ci(v

0)ε)1/αiS]
∏k

i=1(Ci(v0)ε)1/αiS)

(
k∏

i=1

(Ci(v
0)ε)1/αi)

)(
N+
Ik

k∏

i=k1+1

(Su−2/αi)

)

×
k1∏

i=1

(
(lnu)1/βi(cipi+1 − cipi

)e
− 2(1−ε)

α2
i

((lnu)1/βicipi+1)
βi

e
2(1−ε)

α2
i

(lnu)(cimi+1)
βi |ln(cimi+1)|−δi

))

×η(u, k1,α,β)Ψ(u)(1 + o(1)),

where

η(u, k1,α,β) :=

∏k
i=1 u

2/αi

∏k1

i=1(lnu)
1/βi

,

with
∏m

i=m+1(·) := 1,m ∈ N. Since

lim
u→∞

k1∏

i=1

(lnu)1/βi(cipi+1 − cipi
) = 0, lim

u→∞
(lnu)1/βicimi+1 = ∞,

it follows that (see also [12])

lim
S→∞

∏k
i=1 Hαi [0, Ci(v

0)ε)1/αiS]
∏k

i=1(Ci(v0)ε)1/αiS)
=

k∏

i=1

Hαi , lim
u→∞

e
2(1−ε)

α2
i

(lnu)(cimi+1)
βi |ln(cimi+1)|−δi

= 1,
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lim
u→∞
δ→0

∑

Ik∈B

k∏

i=1

(Ci(v
0)ε)1/αi

(
N+
Ik

k∏

i=k1+1

(Su−2/αi)

)
=

∫

x∈∏k1
i=1{t0i }×

∏k
i=k1+1[ai,bi]

k∏

i=1

(Ci(x)ε)
1/αidx

and

lim
u→∞

∑

pi≤mi,1≤i≤k1

k1∏

i=1

(
(lnu)1/βi(cipi+1 − cipi

)e
− 2(1−ε)

α2
i

((lnu)1/βicipi+1)
βi
)

=

∫

R
k1
+

e
−∑k1

i=1
2(1−ε)

α2
i

x
βi
i
dx

=

k1∏

i=1

(
α2
i

2(1− ε)

)1/βi Γ(1/βi)

βi
.

Consequently, the upper bound is given by

π(u) ≤ ε
∑k

i=1
1
αi

(
k∏

i=1

Hαi

)(∫

x∈∏k1
i=1{t0i }×

∏k
i=k1+1[ai,bi]

k∏

i=1

(Ci(x))
1/αidx

)

×
k1∏

i=1

(
α2
i

2(1− ε)

)1/βi Γ(1/βi)

βi
η(u, k1,α,β)Ψ(u)(1 + o(1))

as u → ∞. Next we derive the lower bound: using Bonferroni’s inequality, we have

π(u) ≥
∑

(ji,pi)∈Li
1,1≤i≤k1,

(IIIk,Ik)∈L2

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u




−2
∑

(ji,pi),(j′i,p
′
i)∈Li

1,1≤i≤k1,(IIIk,Ik),(II′
Ik,Ik

′)∈L2

(j,p)≺(j′,p′),or

(j,p)=(j′,p′) and (IIIk,Ik)≺(II′
Ik,Ik

′)

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u




Similar arguments as in the derivation of the upper bound yield, as u → ∞,

lim
δ→0,S→∞

∑

(ji,pi)∈Li
1,1≤i≤k1,

(IIIk,Ik)∈L2

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u




≥ lim
δ→0,S→∞

∑

(ji,pi)∈Li
1,1≤i≤k1

∑

(IIIk,Ik)∈L2

P

(
sup

ν∈[0,S]k
Y v0

ε,u(ν) > u

)

≥ (1− ε)
∑k

i=1
1
αi

(
k∏

i=1

Hαi

)(∫

x∈
∏k1

i=1{t0i }×
∏k

i=k1+1[ai,bi]

k∏

i=1

(Ci(x))
1/αidx

)

×
k1∏

i=1

(
α2
i

2ε

)1/βi Γ(1/βi)

βi
η(u, k1,α,β)Ψ(u)(1 + o(1)).

Therefore, by letting ε → 0, in order to complete the proof, it is sufficient to show that

lim
δ→0,S→∞

lim
u→∞

∑
(ji,pi),(j′i,p

′
i)∈Li

1,1≤i≤k1,(IIIk,Ik),(II′
Ik,Ik

′)∈L2

(j,p)≺(j′,p′),or

(j,p)=(j′,p′) and (IIIk,Ik)≺(II′
Ik,Ik

′)

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u




η(u, k1,α,β)Ψ(u)

=

3∑

i=1

lim
δ→0,S→∞

lim
u→∞

Σi
u

η(u, k1,α,β)Ψ(u)
= 0, (4.28)
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where

Σi
u :=

∑

((j,p),(j′,p′),(IIIk,Ik),(II′
Ik,Ik

′))∈Ei

P


 sup

v∈A
IIIk,Ik

j,p

X(v) > u, sup

v′∈A
II′
Ik′ ,Ik′

j′,p′

X(v′) > u


 , i = 1, 2, 3,

with

Eı =
{
((j, p), (j′, p′), (IIIk,Ik), (II

′
Ik,Ik

′)) : conditions of (ı) in Lemma 3.6 are satisfied, and

(j,p) ≺ (j′,p′), or (j,p) = (j′,p′) and (IIIk,Ik) ≺ (II ′Ik,Ik
′)
}
, ı = 1, 2, 3.

The calim in (4.28), which follows from Lemma 3.5 is shown in Appendix. 2

Proof of Lemma 3.7: It is easy to see that the set [0, T ]k \∏k1

i=1[0, t
i
u]×

∏k
i=k1+1[ai, bi] is the union of 2k13k2 − 1

sets of the form
∏k1

i=1 Λi,u ×∏k
i=k1+1 Θi, with

Λi,u = [0, tiu] or [t
i
u, T ], i = 1, · · · , k1, and Θi = [0, ai] or [ai, bi] or [bi, T ], i = k1 + 1, · · · , k,

where at least one of {[tiu, T ], i = 1, · · · , k1, [0, ai], [bi, T ], i = k1+1, · · · , k} appears. Since the other cases are similar,

without loss of generality, it suffices to prove that

P


 sup

t∈∏k1−1
i=1 [0,tiu]×[t

k1
u ,T ]×∏k−1

i=k1+1[ai,bi]×[bk,T ]

X(t) > u


 = o(π(u)).

We see that

P


 sup

t∈
∏k1−1

i=1 [0,tiu]×[t
k1
u ,T ]×∏k−1

i=k1+1[ai,bi]×[bk,T ]

X(t) > u




≤ P


 sup

t∈∏k1−1
i=1 [0,tiu]×[t

k1
u ,T ]×∏k−1

i=k1+1[ai,bi]×[bk,bk+tku]

X(t) > u




+P


 sup

t∈
∏k1−1

i=1 [0,tiu]×[t
k1
u ,T ]×

∏k−1
i=k1+1[ai,bi]×[bk+tku,T ]

X(t) > u




It is sufficient to analyze the first probability on the right-hand side of the last inequality since the analysis of the

second one is similar. It is derived that

θ(u) := P


 sup

t∈∏k1−1
i=1 [0,tiu]×[t

k1
u ,T ]×∏k−1

i=k1+1[ai,bi]×[bk,bk+tku]

X(t) > u




≤
∑

(ji,pi)∈Ui
1,i=1,··· ,k1−1,k,(IIIk,Ik)∈U ′

2

P


 sup

v∈∏k1−1
i=1 Bi

ji,pi
×[t

k1
u ,T ]×WIIIk,Ik×

(
bk+Bk

jk,pk

)X(v) > u


 , (4.29)

where Ik = (K1, · · · ,Kk2−1) ∈ Z
k2−1, IIIk = (IIk1 , · · · , IIkk2−1) ∈ Z

k2−1, and Bk
jk,pk

, U ′
2 and WIIIk,Ik are defined similarly

as Bk1
jk1

,pk1
, U2 and VIIIk,Ik, respectively.

For any fixed ji, pi, i = 1, · · · , k1, k,IIIk,Ik such that (ji, pi) ∈ U i
1, i = 1, 2, · · · , k1 − 1, k and (IIIk,Ik) ∈ U ′

2, consider the

GRF X(v) := X(v1, · · · , vk) on the set

Ajp,IIIk,Ik :=

k1−1∏

i=1

Bi
ji,pi

× [tk1
u , T ]×WIIIk,Ik ×

(
bk +Bk

jk,pk

)
.
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For notational simplicity write next Xk1,u(ν) instead of

X

(
c1p1

+
j1S + ν1

u2/(α1(c1p1+1))
, · · · , ck1−1

pk1−1
+

jk1−1S + νk1−1

u
2/(αk1−1(c

k1−1
pk1−1+1))

, νk1
,a′ + δIk + g′uSIIIk +△′ν

0 , bk + ckpk
+

jkS + νk

u
2/(αk(ckpk+1))

)
,

where △′ν
0 = g′u

∏k−1
i=k1+1[0, νi], a

′ = (ak1+1, · · · , ak−1) and g′u is defined in a similar way as gu (see (3.14)). It follows

that

sup
v∈Ajp,IIIk,Ik

X(v)
d
= sup

ν∈[0,S]k1−1×[t
k1
u ,T ]×[0,S]k2

Xk1,u(ν). (4.30)

Let bk1,u = u
−2/

(
αk1

+ 3
4 (t

k1
u )

βk1

)

, and fix v0 ∈ ∏k1−1
i=1 Ai

pi
× [0, T ]× δIk × (bk + Ak

pk
) with Ai

pi
, δIk defined similarly as

before (the only difference is the dimension). In view of the proof of (3.16), there exists a constant C0 such that,

for sufficiently large u

1− Cov(Xk1,u(ν), Xk1,u(ν + x)) ≤ 1− e−
3
2

∑k
i=1,i 6=k1

Ci(v
0)u−2|xi|αi−C0|xk1

|αk1
+ 3

4
(t

k1
u )

βk1

uniformly with respect to ν, ν + x ∈ [0, S]k1−1 × [tk1
u , T ] × [0, S]k2 such that |xk1 | ≤ bk1,u. Let {Z̃v0

u (t), t ∈
[0, S]k1−1 × [tk1

u , T ]× [0, S]k2}, u > 0, be a family of centered stationary GRF’s such that

Cov(Z̃v0

u (ν), Z̃v0

u (ν + x)) = e−
3
2

∑k
i=1,i 6=k1

Ci(v
0)u−2|xi|αi−C0|xk1

|αk1
+ 3

4
(t

k1
u )

βk1

for u such that αk1 +
3
4 (t

k1
u )βk1 ≤ 2, and ν, ν +x ∈ [0, S]k1−1 × [tk1

u , T ]× [0, S]k2 . In view of the Slepian’s inequality,

continuing (4.29) we get, as u → ∞

θ(u) ≤
∑

(ji,pi)∈Ui
1,i=1,··· ,k1−1,k,(IIIk,Ik)∈U ′

2

P

(
sup

v∈Ajp,IIIk,Ik

X(v) > u

)

≤
∑

(ji,pi)∈Ui
1,i=1,··· ,k1−1,k

∑

(IIIk,Ik)∈U ′
2

⌊T (bk1,u)
−1⌋+1∑

l=0

P

(
sup

ν∈[0,S]k1−1×[lbk1,u,(l+1)bk1,u]×[0,S]k2

Xk1,u(ν) > u

)

≤ (⌊T (bk1,u)
−1⌋+ 2)

∑

(ji,pi)∈Ui
1,i=1,··· ,k1−1,k

∑

(IIIk,Ik)∈U ′
2

P

(
sup

ν∈[0,S]k1−1×[0,bk1,u]×[0,S]k2

Z̃v0

u (ν) > u

)

≤
(
u2/αk1 (lnu)

− 4
3βk1 T + 2

) ∑

(ji,pi)∈Ui
1,i=1,··· ,k1−1,k

∑

(IIIk,Ik)∈U ′
2

P

(
sup

ν∈[0,S]k1−1×[0,bk1,u]×[0,S]k2

Z̃v0

u (ν) > u

)
,

where in the last inequality we used that (bk1,u)
−1 ≤ u2/αk1 (lnu)

− 4
3βk1 given in [12]. Furthermore, it follows from

Lemma 3.2 that, as u → ∞

P

(
sup

ν∈[0,S]k1−1×[0,bk1,u]×[0,S]k2

Z̃v0

u (ν) > u

)

=

(
k1−1∏

i=1

Hαi

[
0,

(
3

2
Ci(v

0)

)1/αi

S

]
×Hαk1

[0,C
1/αk1
0 ]×

k∏

i=k1+1

Hαi

[
0,

(
3

2
Ci(v

0)

)1/αi

S

])
Ψ(u)(1 + o(1))

≤ C3

k∏

i=1

Hαi [0, 1]S
k−1Ψ(u)(1 + o(1))
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for some positive constant C3. Consequently, similar arguments as in the proof of the upper bound in Theorem 1.1

imply

θ(u) ≤ C4T

(
k−1∏

i=k1+1

(bi − ai)

)(
k1−1∏

i=1

(αi)
2/βiΓ(1/βi)

βi

(αk)
2/βkΓ(1/βk)

βk

)( ∏k
i=1 u

2/αi

∏k1−1
i=1 (lnu)1/βi

)
(lnu)

− 4
3βk1

− 1
βk Ψ(u)

= o(π(u))

as u → ∞, and thus the proof is complete. 2

5 Appendix

Proof of Lemma 3.2: Borrowing Piterbarg’s idea to utilise continuous mapping theorem for the conditional

Gaussian random field (see [29] for details) we write for any u > 0

P

(
sup
t∈D

Xu(t) > u

)
=

1√
2πu

e−
u2

2

∫ ∞

−∞
ez−

z2

2u2 P

(
sup
t∈D

Xu(t) > u|Xu(0) = u− z

u

)
dz. (5.31)

Clearly, for any u > 0

{
Xu(t)|Xu(0) = u− z

u
, t ∈ D

}
and

{
Xu(t)− ru(t,0)Xu(0) + ru(t,0)

(
u− z

u

)
, t ∈ D

}

have the same finite-dimension distribution, which implies

P

(
sup
t∈D

Xu(t) > u|Xu(0) = u− z

u

)
= P

(
sup
t∈D

(
ζu(t)− u2(1− ru(t,0)) + z(1− ru(t,0))

)
> z

)
,

with {ζu(t) = u(Xu(t)− ru(t,0)Xu(0)), t ∈ D}. By (3.17)

lim
u→∞

(u2(1− ru(t,0))− z(1− ru(t,0))) = |t|α

uniformly with respect to t ∈ D for any z ∈ R.

Next we prove that ζu, u > 0 converges weakly to B̃α in C(D) as u → ∞. To this end, we need to show (e.g.,

[27, 32]):

i) finite-dimensional distributions of ζu converge to those of B̃α as u → ∞

ii) tightness, i.e., for any η > 0

lim
δ→0

lim sup
u→∞

P


 sup

s,t∈D

max1≤i≤k |si−ti|<δ

|ζu(t)− ζu(s)| > η


 = 0.

First note that the increments of the centered GRF {ζu(t), t ∈ D} have the following property

lim
u→∞

V ar(ζu(t)− ζu(s)) = lim
u→∞

(2u2(1− ru(t, s))− u2(ru(t,0)− ru(s,0))
2)

= 2|t− s|α = V ar(B̃α(t)− B̃α(s)) (5.32)
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establishing i). Furthermore, the above holds uniformly with respect to t, s ∈ D. In order to prove the tightness,

we use a similar approach as in [19, 14]. We start by defining, for fixed u > 0, a semi-metric du on R
k
+ as

du(s, t) =
√
V ar(ζu(t)− ζu(s)).

Further write

Bdu
(t, u, ϑ) := {s ∈ R

k
+ : du(s, t) ≤ ϑ}

for the du-ball centered at t ∈ R
k
+ and of radius ϑ, and let

Hdu(D
′, u, ϑ) := ln(N ′(D′, u, ϑ)),

with N ′(D′, u, ϑ) being the smallest number of such balls that cover D′, a compact set in R
k
+. Here Hdu(D

′, u, ϑ)

is called (metric) entropy for D′ induced by du. We refer to [5] for more details on entropy.

We see from (5.32) that, for u sufficiently large, there exists some constant C0 such that

du(s, t) ≤ C0

√
|s− t|α ≤ kC0δ

α
2 , (5.33)

if max1≤i≤k |si − ti| < δ < 1, where α := min1≤i≤k αi. By Corollary 1.3.4 in [5] there exists some constant Q0 > 0

such that for any 0 < δ < 1

P


 sup

s,t∈D

max1≤i≤k |si−ti|<δ

|ζu(t)− ζu(s)| > η


 ≤ P


 sup

s,t∈D

du(s,t)<kC0δ
α
2

|ζu(t)− ζu(s)| > η




≤ Q0

η

∫ kC0δ
α
2

0

√
Hdu

([0, R]k, u, ϑ)dϑ,

with R < ∞ being a sufficiently large. Define, for t, s ∈ R
k
+, a semi-metric

d̃(t, s) = C0

√
|s− t|α.

By (5.33) for sufficiently large u and small ϑ

Hdu([0, R]k, u, ϑ) ≤ Hd̃([0, R]k, u, ϑ) ≤ k ln




R
(

ϑ2

kC2
0

) 1
α

+ 1


 ≤ C1 ln

(
1

ϑ

)
,

for some positive constant C1, with Hd̃([0, R]k, u, ϑ) being the entropy induced by d̃. Consequently,

lim
δ→0

lim sup
u→∞

P


 sup

s,t∈D

max1≤i≤k |si−ti|<δ

|ζu(t)− ζu(s)| > η


 ≤ lim

δ→0

Q0

√
C1

η

∫ ∞

1
kC0

δ−
α
2

√
lnϑ

ϑ2
dϑ = 0,

establishing ii). Moreover, since the functional supt∈D f(t) is continuous on C(D) for any z ∈ R

lim
u→∞

P

(
sup
t∈D

Xu(t) > u|Xu(0) = u− z

u

)
= P

(
sup
t∈D

(B̃α(t)− |t|α) > z

)
.
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In order to apply the dominated convergence theorem to the integral in (5.31) when taking limit in u, we need a

uniform (in u large enough) upper bound of

Pu(z) := P

(
sup
t∈D

(
ζu(t)− u2(1− ru(t,0)) + z(1− ru(t,0))

)
> z

)

for z > 0 sufficiently large. It follows that, for u sufficiently large,

Pu(z) ≤ P

(
sup
t∈D

ζu(t) + sup
t∈D

(1− ru(t,0))z > z

)

≤ P

(
sup
t∈D

ζu(t) > (1− ̺0)z

)
(5.34)

for some ̺0 ∈ (0, 1). Further, we see from (5.32) that, for sufficiently large u, there exists some positive constant C2

such that

V ar(ζu(t)− ζu(s)) ≤ C2V ar(B̃α(t)− B̃α(s))

for all s, t ∈ D. Hence by Sudakov-Fernique inequality (e.g., [5])

E

(
sup
t∈D

ζu(t)

)
≤
√
C2E

(
sup
t∈D

B̃α(t)

)
:= U0. (5.35)

The constant U0 is finite, which follows from Theorem 2.1.1 in [5]. Moreover,

sup
t∈D

V ar(ζu(t)) ≤ σ2
D := C2 sup

t∈D

V ar(B̃α(t)) = 2C2 sup
t∈D

|t|α < ∞. (5.36)

With the help of (5.34), (5.35) and (5.36), Borell-TIS inequality (Theorem 2.1.1 in [5]) gives, for any z > U0

1−̺0
and

u sufficiently large,

Pu(z) ≤ P

(
sup
t∈D

ζu(t) > (1− ̺0)z

)
≤ exp

(
− ((1− ̺0)z − U0)

2

2σ2
D

)
.

Applying the dominated convergence theorem to the integral in (5.31), we conclude that

lim
u→∞

∫ ∞

−∞
ez−

z2

2u2 Pu(z)dz = E

(
sup
t∈D

eB̃α(t)−|t|α
)
,

thus the proof is complete. 2

Proof of Eq. (4.28): According to Lemma 3.5, the three parts of the double-sum in (4.28) can be estimated in

different ways. It follows from (3.24) that

lim
u→∞

Σ3
u

η(u, k1,α,β)Ψ(u)
≤ lim

u→∞

2Ψ

(
u−h/2√
1−λ/2

)( ∑
(IIIk,Ik)∈L2,(ji,pi)∈Li

1,1≤i≤k1

1

)2

η(u, k1,α,β)Ψ(u)
= 0,

where the sum in the middle term can be estimated using the same arguments as the upper bound in Theorem 1.1.

Next, for sake of simplicity, we only give the estimates of the first two sums for k1 = k2 = 1, since the general cases

(k1, k2 are arbitrary integers) follow from similar arguments. For the first sum, we derive, using (3.21) that, for u

sufficiently large

Σ1
u ≤

∑

(IIk1 ,K1)∈L2,(j1,p1)∈L1
1

(
4

∑

(j′1,p
′
1)∈L1

1

(j1,p1)≺(j′1,p
′
1) and N

j′1,p′1
j1,p1

>0

∑

(I′Ik′
1 ,K′

1)∈L2

N
I′Ik′
1 ,K′

1

IIk1 ,K1
≥0

CS4 exp
(
− C1

(
(N

j′1,p
′
1

j1,p1
)α1/2Sα1
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+

(
N

I′Ik′
1 ,K′

1

IIk1 ,K1

)α2

Sα2

))
+ 2

∑

(I′Ik′
1 ,K′

1)∈L2

N
I′Ik′
1 ,K′

1

IIk1 ,K1
>0

CS4 exp

(
−C1

(
N

I′Ik′
1 ,K′

1

IIk1 ,K1

)α2

Sα2

))
Ψ(u)

≤ 4CS4
∑

(IIk1 ,K1)∈L2,(j1,p1)∈L1
1





∑

n1≥1

e−C1(
√
n1S)α1





∑

n2≥0

e−C1(n2S)α2


+



∑

n3≥1

e−C1(n3S)α2




Ψ(u)

≤ C
′S4

∑

(IIk1 ,K1)∈L2,(j1,p1)∈L1
1

(
e−C

′
1S

α1
(
1 + e−C

′′
1 S

α1
)
+ e−C

′′′
1 Sα1

)
Ψ(u),

for suitably chosen positive constants C′,C′
1,C

′′
1 ,C

′′′
1 . This, combined with the estimate of the last sum in the above

formula, yields that

lim
S→∞

lim
u→∞

Σ1
u

η(u, k1,α,β)Ψ(u)
= 0. (5.37)

Next, we focus on the second sum. According to (2) of Lemma 3.5, the sum Σ2
u can be divided into four parts,

denoted by Σ2
i11,u

,Σ2
i12,u

,Σ2
i21,u

and Σ2
i22,u

, respectively. Applying (3.22), Lemma 3.1 and Lemma 3.3 we find that, for

u large enough,

Σ1
i11,u

≤ 8
∑

(IIk1 ,K1)∈L2,(j1,p1)∈L1
1

[
P

(
sup[

c1p1+
j1S

u
2/α1(cp1+1)

,c1p1
+

(j1+1)S

u
2/α1cp1+1

]
×V

IIk1 ,K1

X(u) > u,

sup[
c1p1+

(j1+1)S+
√

S

u
2/α1(cp1+1)

,c1p1
+

(j1+2)S

u
2/α1cp1+1

]
×V

I′Ik′
1 ,K′

1

X(u) > u

)
+ P

(
sup[

c1p1+
(j1+1)S

u
2/α1(cp1+1)

,c1p1
+

(j1+1)S+
√

S

u
2/α1cp1+1

]
×V

I′Ik′
1 ,K′

1

X(u) > u

)]

≤ C̃

∑

(IIk1 ,K1)∈L2,(j1,p1)∈L1
1

(
CS4e−C1S

α1/2

+

2∏

i=1

Hαi [0, 1](CU )
1/αiS3/2

)
Ψ(u)

for suitably chosen constant C̃. Note that in the last formula VI′Ik′
1 ,K′

1
is one of the adjacent sets of VIIk1 ,K1

, and the

number of it is at most 8. Using the same arguments we can obtain similar upper bounds for Σ2
i21,u

,Σ2
i12,u

and Σ2
i22,u

.

Consequently, the same reasoning as (5.37) yields

lim
S→∞

lim
u→∞

Σ2
u

η(u, k1,α,β)Ψ(u)
= 0,

hence the claim follows. 2
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