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Abstract—We consider adaptive group testing in the linear
regime, where the number of defective items scales linearly
with the number of items. We analyse an algorithm based on
generalized binary splitting. Provided fewer than half the items
are defective, we achieve rates of over 0.9 bits per test for
combinatorial zero-error testing, and over 0.95 bits per test for
probabilistic small-error testing.

I. INTRODUCTION

Group testing is this problem: Given a collection of items

some of which are defective, how many pooled tests are re-

quired to recover the defective set? A pooled test is performed

on some subset of the items: the test is negative if all items in

the test are nondefective, and is positive if at least one item

in the test is defective.

In Dorfman’s original work [1], the application was to

test men enlisting into the U.S. army for syphilis using a

blood test. Dorfman noted that testing pools of mixed blood

samples could use fewer tests than testing each blood sample

individually. The test result from such a pool should be

negative if every blood sample in the pool is free of the disease,

while the test result should be positive if at least one of the

blood samples is contaminated.

Different group testing models are discussed in the recent

surey [2]. The most important distinction between is between:

• Adaptive testing, where the items placed in a test can

depend on the results of previous tests.

• Nonadaptive testing, where all the tests are designed in

advance.

This paper concerns adaptive testing, and will examine some

cases where adaptive group testing provides large improve-

ments over the nonadaptive case.

Another consideration is how many defective items there

are. In this paper, we consider the linear regime, where the

number of defective items k is a constant proportion p ∈ (0, 1)
of the n items. A lot of group testing work has concerned the

very sparse regime where k is constant as n → ∞ [3]–[5]

or the sparse regime k = Θ(nα) as n → ∞ for some α < 1

[6]–[8]. However, we argue that the linear regime is more

appropriate for many applications. For example, in Dorfman’s

original set-up, we might expect each person joining the army

to have a similar prior probability p of having the disease, and

that this probability should remain roughly constant as more

people join, rather than tending towards 0; thus one expects

k ≈ pn to grow linearly with n.

For group testing in the linear regime, two cases have

received most consideration in the literature:

• Combinatorial zero-error testing: The defective set is any

subset of {1, 2, . . . , n} with given size k, and one wishes

to find the defective set with certainty, whichever such set

it is. One assumes that k/n tends to a constant p ∈ (0, 1)
as n → ∞. [9]–[11]

• Probabilistic small-error testing: We assume each item

is defective with probability p, independent of all other

items, where p ∈ (0, 1) stays fixed as n → ∞. We

want to find the defective set with arbitrarily small error

probability (averaged over the random defective set).

[12]–[15]

For group testing in the linear regime, it is easy to see that

the optimal scaling is the number of tests T scaling linearly

with n. A simple counting bound (see, for example, [6]) shows

that we require T ≥ H(p)n for large enough n, where H(p) is

the binary entropy. Meanwhile, testing each item individually

requires T = n tests, and succeeds with certainty. (In the

combinatorial case, T = n−1 suffices, as the status of the final

item can be inferred from whether k or k − 1 defective items

have been already discovered from individual tests.) The goal

of this paper is to analyse algorithms that require a number of

tests very close to the lower bound H(p)n.

In the sparse regime k = Θ(nα) for α ∈ [0, 1), it is known

that adaptive testing achieves the counting bound, for both

small-error and zero-error criteria, using the generalised binary

splitting algorithm of Hwang [6], [16], [17].

For nonadaptive testing in the linear regime, it is well known

that individual testing is optimal for all p ∈ (0, 1) in the

combinatorial zero-error case [3], [11], [17], [18], and it was

recently shown that this is also the case for probabilistic small-

error testing too [15]. Thus, for small p, the benefit provided

by the adaptive algorithms of this paper will be considerable.

Adaptive group testing in the linear regime has received

some attention in the literature. The main point of study has

been the question of when individual testing is optimal or

not. In the combinatorial zero-error case, Riccio and Colburn

[10] showed that individual testing cannot be improved on for

p > 1 − log3 2 ≈ 0.369, and it is conjectured that this holds

for p > 1/3 [9]. In the probabilistic case, if one considers

the average number of tests required, Ungar [12] showed that



individual testing cannot be improved on for

p > p∗ :=
3 −

√
5

2
≈ 0.382.

In the linear regime, we are not aware of any work that has

aimed to get a number of tests close to optimal over the whole

range of p, as we do here. (Zaman and Pippenger [19] do

consider this in the limit as p → 0.) Another novelty of ours

is that we analyse small-error behaviour, not just average-case

behaviour, which allows a direct comparison to nonadaptive

results.

The goal of this paper is to achieve performance that is

close to optimal for adaptive testing under both the zero-error

and small-error criteria. We do this using an algorithm similar

to that of Hwang [16] (see Algorithm 5), and examining

both its worst-case and average-case behaviour. Recall that the

counting bound tells us we require at least T ≥ H(p)n tests.

Our main results are the following, which show very close to

optimal performance:

• In the zero-error case, we give an algorithm that uses

T < 1.11H(p)n tests for all p ≤ 1
2
. (Theorem 2)

• In the small-error case, we give an algorithm that uses

T < 1.05H(p)n tests for all p ≤ 1
2
. (Theorem 3)

II. DEFINITIONS AND MAIN RESULTS

We propose two figures of merit for assessing group testing

in the linear regime.

First we have the aspect ratio A = T/n (as considered by,

for example, [14]). We want the aspect ratio to be as small as

possible. Individual testing achieves A = 1, while the counting

bound tells us that we must have A ≥ H(p).
Second, we have the rate H(K)/T , where H(K) is the

entropy of the defective set (as considered by [6], [7], [20]

and many others). Since H(K) is the number of bits required

to define the defective set, we can think of the rate as the

average number of bits of information learned per test. For

combinatorial testing in the linear regime we have

H(K) = log2

(

n

k

)

∼ nH

(

k

n

)

∼ nH(p)

asymptotically, while for probabilistic testing H(K) = nH(p)
exactly. Hence we can define the rate to be

R =
nH(p)

T
=

H(p)
A
.

We want the rate to be as big as possible. Individual testing

achieves R = H(p), while the counting bound tells us that we

must have R ≤ 1.

As a rule of thumb, we recommend the aspect ratio for

measuring how much better an algorithm is than individual

testing, and recommend the rate for measuring how close an

algorithm is to the counting bound or comparing with results

from the sparse regime.

Definition 1: We say that an aspect ratio A is zero-error

achievable if there is an algorithm with aspect ratio T/n ≥ A

and error probability 0 for n sufficiently large. We say that

A is average-case achievable if there is an algorithm with

average-case aspect ratio T̄/n ≥ A and error probability 0 for

n sufficiently large. We say that A is small-error achievable if,

for any δ > 0, there exists an algorithm with aspect ratio T/n ≥
A and average error probability less than δ for n sufficiently

large.

The equivalent definitions hold for achievable rates, mutatis

mutandis.

We now state our two main results. We write ⌊x⌋ for the

greatest integer less than or equal to x, and ⌊x⌋2 = 2 ⌊log2 x⌋ for

the greatest power of 2 less than or equal to x; so ⌊5.7⌋ = 5

and ⌊5.7⌋2 = 4. We write q = 1 − p.

Theorem 2: Consider nonadaptive group testing in the linear

regime. Using Algorithm 5, all aspect ratios up to

A =
1

m
+

(

1 + log2 m − 1

m

)

p,

and rates up to H(p)/A are zero-error achievable, where

m =

⌊

1

p
− 1

⌋

2

.

Theorem 3: Consider nonadaptive group testing in the linear

regime. Using Algorithm 5, all aspect ratios up to

A =
qm
+ (1 − qm−2b)(a + 1) + (qm−2b − qm)(a + 2)

mqm
+

1
p

(

1 + mqm+1 − (m + 1)qm
)

,

and rates up to H(p)/A are small-error achievable, where

m =

⌈

− log(2 − p)
log(1 − p)

⌉

, a = ⌊log2 m⌋, b = m − ⌊m⌋2.

These aspect ratios and rates are illustrated in Fig. 1. Note

that, for zero-error, we have R > 0.9 for all p ≤ 1/2, and for

small-error, R > 0.95 for all p ≤ 1/2. The ‘bumpy’ behaviour

occurs from when the optimal value of m switches to the next

integer or power of 2.

III. ALGORITHM

Our algorithm is based on the idea of binary splitting.

Binary splitting was first introduced for group testing by

Sobel and Groll [21], and our algorithms here are inspired

by Hwang’s generalized binary splitting [16].

Binary splitting is particularly simple when the size of the

set is known to be a power of 2.

Algorithm 4: Let B be a set of items known to contain at

least one defective item. Suppose |B| = m where m is a power

of 2.

1) If |B| = 1, then that item is defective. Stop.

2) Otherwise, let C consist of the first |B|/2 items of B.

Test C.

a) If the test is positive: Set B := C, and return to

step 1.

b) If the test is negative: All items in C are non-

defective. Set B := B \ C, and return to step 1.

Binary splitting where m is a power of 2 will suffice to

prove the most important claims of this paper, of rates above

0.9 and 0.95 for zero- and small-error respectively. However,



Fig. 1. Achievable aspect ratios (left) and rates (right) for Algorithm 5, according to Theorems 2 and 3.

in the small-error case, for some p < 1/4 it will be possible

to slightly improve the rate by allowing m to be any integer.

We postpone discussion of this until Section V-B.

We now explain our main algorithm.

Algorithm 5: Let A = {1, 2, . . . , n} be the set of items. We

fix an integer parameter m.

1) If |A| < m, test the items individually, then halt.

2) Otherwise, remove the first m items from A, and call

these items B. Test B.

a) If the test is negative: All items in B are non-

defective. Return to step 1.

b) If the test is positive: Perform binary splitting on

B (using Algorithm 4 is m is a power of 2 and

Algorithm 6 otherwise). This will discover 1 de-

fective item and between 0 and m−1 nondefective

items. Return the remaining items whose statuses

are not discovered to A. Return to step 1.

Since we will choose m independently of n and consider

asymptotics as n → ∞, the small number of individual tests

incurred at step 1 (which will happen at the end of the

algorithm) will be negligible for our calculations here, so we

will ignore them in our analysis.

We note that, in the special case m = 1, this algorithm

is equivalent to individual testing; while in the special case

m = 2, we recover an algorithm studied by Fischer, Klasner

and Wegenera [22]. We discuss connections with the work of

Zaman and Pippenger [19] in Section V-B.

IV. WORST-CASE ANALYSIS AND ZERO-ERROR RATE

We will use a worst-case analysis of our algorithm to find

a zero-error achievable aspect ratio.

Proof of Theorem 2: We perform Algorithm 5 with m a

power of 2 to be fixed later.

In each pass through step 2 of Algorithm 5, one of two

things can happen:

a) The set contains no defectives, in which case we dis-

cover m nondefectives with 1 test.

b) The set contains at least one defective, in which case

we discover 1 defective and between 0 and m − 1

nondefectives with 1 + log2 m tests.

For the purposes of worst-case analysis, we assume that in

the second case, we never get lucky, and only ever find the

1 defective with 0 bonus nondefectives. Thus in our T tests

we must discover all n − k nondefectives from case 1 and all

k defectives from case 2. This gives a worst-case number of

tests as

T =
1

m
(n − k) + (1 + log2 m)k .

This has an aspect ratio of

A =
1

m
(1 − p) + (1 + log2 m)p = 1

m
+

(

1 + log2 m − 1

m

)

p.

Choosing m as in the statement of the theorem gives the

result, and this is easily checked to be the optimal choice of

m.

When m = 1, we have individual testing with

T = (n − k) + k = n.

When m = 2, we have

T =
1

2
(n − k) + 2k =

1

2
n +

3

2
k =

(

1

2
+

3

2
p

)

n,

recovering a result of [22]. The m = 2 case beats individual

testing when p < 1/3, recovering a result of Hu, Hwang and

Wang [9], also noted in [22].

V. AVERAGE-CASE ANALYSIS AND SMALL-ERROR RATE

To get a small-error achievability result, we start with an

average-case analysis, and later twin this with a concentration

of measure argument.



A. Powers of 2 algorithm: average-case analysis

We begin with average-case analysis of the simpler case

when m is a power of 2.

Again, we look at the outcomes for a pass through step 2.

1) With probability qm, all items in the test are negative,

and we discover their nondefective statuses with 1 test.

2) With probability 1 − qm there is at least one defective

in the test. Let j be the first-numbered defective in

the set. We discover defective status of item j and the

nondefective statuses of items 1, 2, . . . , j−1 in 1+log2 m

tests.

The expected number of tests in one pass through step 2 is

F = qm · 1 + (1 − qm)(1 + log2 m) = 1 + (1 − qm) log2 m.

The expected number of items whose status we discover is

G = mqm
+

m
∑

j=1

jpq j−1

= mqm
+

1

p

(

1 + mqm+1 − (m + 1)qm
)

.

(The sum here has an explicit form since
∑

j jq j−1
=

d
dj

∑

j q j .)

Since the average aspect ratio A is the ratio of the average

number of tests to the number of items, it seems plausible

that A = F/G. To prove this rigorously, note that the number

of tests the algorithm takes on average is, by considering one

pass through step 2,

An = ET = E # tests performed on one pass

+ E # tests to deal with all remaining items

= F + AE # number of remaining items

= F + A
(

(n − m) + (m − G)
)

,

= F + An − AG,

where n−m is the number of items not considered in the pass,

and m − G is the number of items not classified by the pass.

This is solved by A = F/G. Thus

A =
F

G
=

1 + (1 − qm) log2 m

mqm
+

1
p

(

1 + mqm+1 − (m + 1)qm
)
.

When optimised over m a power of 2, this achieves rates

H(p)/A of over 0.95 for all p ≤ 1/2.

As before, setting m = 1 recovers individual testing, and we

indeed get A = 1. Setting m = 2, we have

A =
1 + (1 − q2)

1
p

(

1 + 2q3 − 3q2
)

+ 2q2
=

2 − q2

1 + q
=

1 + 2p − p2

2 − p
.

We have A < 1, therefore outperforming individual testing,

when p ≤ p∗ = (3 −
√

5)/2, recovering a result of [12].

B. General algorithm: average-case analysis

When considering analysis in the average case, the rate for

some p < 1/4 can be improved by considering m to be any

integer, not just a power of 2 (see the right-hand side of Fig. 1).

We now explain how to perform binary splitting in this general

case. We write 2a = ⌊m⌋2 and b = m − 2a, so that m = 2a + b

for integers a and b with 0 ≤ b < 2a.

Algorithm 6: We wish to binary split a set B of size m that

contains at least one defective. We use a Huffman tree for the

uniform distribution ( 1
m
, 1
m
, . . . , 1

m
). The kth test pool consists

of the remaining items that have kth bit of their Huffman

codeword equal to 0; if the test is positive, the untested items

are removed, while if the test is negative, the tested items are

removed. When one item remains, it is defective.

It is a standard result that Huffman coding for the uniform

distribution results in 2a − b = m − 2b items with wordlength

a and the remaining 2b items with wordlength a + 1. It will

be convenient for the purposes of a later proof for the items

of B in label order to be given Huffman codewords that are

in lexicographic order, and that the shorter words are given to

the first m − 2b of the items. This means that we discover the

status of the first defective item in B and all the preceding

nondefective items.

It can be verified without too much difficulty that using m

that is not a power of 2 does not improve the performance of

Algorithm 5 in the zero-error case, but for reasons of space

we do not give the calculations here.

It appears that Algorithm 5 when used with Algorithm 6 for

binary splitting is equivalent to an algorithm studied by Zaman

and Pippenger [19]. Their algorithm was defined in terms

of optimal prefix-free codes for the geometric and truncated

geometric distributions, and they used known results on such

codes to prove that this algorithm is optimal among a set of

algorithms called ‘nested algorithms’. They also studied the

asymptotics of the quantity limp→0 limn→∞ T̄/k, which, in our

notation, corresponds to limp→0 A/p where A is the average-

case achievable aspect ratio. They did not look at the rate for

all p or consider small-error testing.

We now analyse the average-case number of tests T̄ of

Algorithm 5 for arbitrary m. Again, we look at the outcomes

for a pass through step 2 of Algorithm 5.

a) With probability qm, all items in the test are negative,

and we discover their nondefective statuses with 1 test.

b1) With probability 1−qm−2b there is at least one defective

in the first m − 2b items in the test. Let j be the first-

numbered defective in the set. We discover defective

status of item j and the nondefective statuses of items

1, 2, . . . , j − 1 in a + 1 tests.

b2) With probability qm−2b − qm there are no defectives in

the first m − 2b items in the test, but there is at least

one defective in the test. Let j be the first-numbered

defective in the set. We discover defective status of item

j and the nondefective statuses of items 1, 2, . . . , j − 1

in a + 2 tests.

The expected number of tests in one pass through step 2 is

F = qm · 1 + (1 − qm−2b)(a + 1) + (qm−2b − qm)(a + 2).
The expected number of items whose status we discover is the

same as before,

G = mqm
+

1

p

(

1 + mqm+1 − (m + 1)qm
)

.



The same argument as before shows that A = F/G, and it’s

easy to check, as noted in [19], that

m =

⌈

− log(1 + q)
log q

⌉

=

⌈

− log(2 − p)
log(1 − p)

⌉

(1)

is the optimal value of m. The average number of tests required

is T̄ = An.

C. Small-error rate

We now wish to prove Theorem 3 by converting the above

average-case result into a small-error result. To do this we will

use a concentration of measure argument.

Proof of Theorem 3: Let T̄ be the average number of

tests used, as calculated in the previous section. We will show

that there is concentration of measure of the actual number

of tests required, which, for any δ > 0 is in the interval T ∈
(

(1 − δ)T̄, (1 + δ)T̄
)

with probability tending to 1 as n → ∞.

We then define an algorithm using (1+ δ)T̄ tests as follows.

We run Algorithm 5 with the optimal value of m as in (1).

If the algorithm takes fewer than (1 + δ)T̄ tests, we add extra

arbitrary tests until it does, while if it take more than (1 +
δ)T̄ tests, we stop at that point and guess the defective set

arbitrarily. Clearly we can only make an error in the second

case, and, once we have proved concentration of measure, that

probability can be made arbitrarily small. By picking δ > 0

sufficiently small, we ensure that all aspect ratios up to A as

in Theorem 3 are achievable.

To prove concentration, we use McDiarmid’s inequality

[23], which gives concentration of measure when a bounded

difference property holds. Let T(x1, x2, . . . , xn) be the number

of tests used by Algorithm 5 when xi = 1 denotes that item

i is defective and xi = 0 denotes it is nondefective. The

random variable counting the number of tests used is T =

T(X1, X2, . . . , Xn), where the Xi are independent Bernoulli(p)
random variables.

To see that we have the necessary bounded difference

property, we claim that, for x1, x2, . . . , xi, x
′
i
, . . . , xn ∈ {0, 1},

we have
�

�T(x1, x2, . . . , xi, . . . , xn) − T(x1, x2, . . . , x
′
i, . . . , xn)

�

� ≤ 2m.

Note from Algorithms 4 and 6 that we discover the status

of items is in increasing order of their labels. Thus changing

xi to x ′
i

will only change the number of tests between the

last defective before i and the first defective after i; outside

that interval, the algorithm proceeds exactly the same. Thus

changing xi might effect the number of tests for the first set

B that covers i after the previous defective being discovered

– potentially an increase or decrease of a + 1 tests, which we

can bound by a + 1 ≤ m. The same thing could happen when

reaching the next defective after i, for a potential decrease of

a + 1 ≤ m tests again. This proves the bounded difference

claim. McDiarmid’s inequality then says that

P(|T − T̄ | > δT̄) ≤ exp

(

− 2(δT̄)2
n(2m)2

)

≤ exp

(

−δ
2H(p)2
2m2

n

)

,

where we used the fact that T̄ ≥ H(p)n.

Thus we have the desired concentration, and we are done.
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