
This is a repository copy of Reflection from a multi-species material and its transmitted 
effective wavenumber.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/147119/

Version: Published Version

Article:

Gower, A.L. orcid.org/0000-0002-3229-5451, Smith, M.J.A., Parnell, W.J. et al. (1 more 
author) (2018) Reflection from a multi-species material and its transmitted effective 
wavenumber. Proceedings of the Royal Society A: Mathematical, Physical and 
Engineering Sciences, 474 (2212). 20170864. ISSN 1364-5021 

https://doi.org/10.1098/rspa.2017.0864

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


rspa.royalsocietypublishing.org

Research

Cite this article: Gower AL, Smith MJA,

Parnell WJ, Abrahams ID. 2018 Relection from

a multi-species material and its transmitted

efective wavenumber. Proc. R. Soc. A 474:

20170864.

http://dx.doi.org/10.1098/rspa.2017.0864

Received: 11 December 2017

Accepted: 7 March 2018

Subject Areas:

acoustics, wave motion, mathematical physics

Keywords:

multiple scattering, polydisperse, ensemble

average, randommedia, size distribution,

homogenization

Author for correspondence:

Artur L. Gower

e-mail: arturgower@gmail.com

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

igshare.c.4052399.

Relection from amulti-species
material and its transmitted
efective wavenumber
Artur L. Gower1, Michael J. A. Smith1, William

J. Parnell1 and I. David Abrahams2

1School of Mathematics, University of Manchester, Oxford Road,

Manchester M13 9PL, UK
2Isaac Newton Institute for Mathematical Sciences, 20 Clarkson

Road, Cambridge CB3 0EH, UK

ALG, 0000-0002-3229-5451; MJAS, 0000-0001-9514-9438

We formally deduce closed-form expressions for

the transmitted effective wavenumber of a material

comprising multiple types of inclusions or particles

(multi-species), dispersed in a uniform background

medium. The expressions, derived here for the first

time, are valid for moderate volume fractions and

without restriction on the frequency. We show that

the multi-species effective wavenumber is not a

straightforward extension of expressions for a single

species. Comparisons are drawn with state-of-the-art

models in acoustics by presenting numerical results

for a concrete and a water–oil emulsion in two

dimensions. The limit of when one species is much

smaller than the other is also discussed and we

determine the background medium felt by the larger

species in this limit. Surprisingly, we show that the

answer is not the intuitive result predicted by self-

consistent multiple scattering theories. The derivation

presented here applies to the scalar wave equation

with cylindrical or spherical inclusions, with any

distribution of sizes, densities and wave speeds. The

reflection coefficient associated with a halfspace of

multi-species cylindrical inclusions is also formally

derived.

1. Summary
Materials comprising mixtures of diverse particles,

inclusions, defects or inhomogeneities dispersed inside
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a background medium arise in a wide range of applications, including composite materials,

emulsions, gases, polymers, foods and paints. We will refer to these as multi-species materials.

Of great importance is the ability to characterize these materials and their microstructure, such

as particle size distribution and volume fractions. One approach to do this is to employ waves,

including electromagnetic, acoustic and elastodynamic waves. If either the receivers are much

larger than the inclusions, or the wavelength is much longer than the inclusions, then the receivers

will measure the ensemble-averaged properties of the wave [1]. This includes the wave speed,

attenuation and reflection. Even methods that estimate fluctuations of the wave on smaller

scales, such as the averaged intensity, often require the ensemble-averaged wave properties as

a first step [2–4]. So in order to improve material characterization, or to design materials with

tailored properties, a crucial step is to rigorously calculate the sound speed and attenuation for

multi-species materials.

In this paper, we present and formally deduce the effective wavenumber and reflected field

of a plane wave scattered by a material comprising different families, or species, of particles with

distributions of sizes and properties. The work here differs from the existing literature as our

results are not limited to low frequencies and are valid for moderate number density. This is

achieved by extending the methods introduced in [5] for calculating the effective transmission

into a halfspace of a single-species material.

Our approach does not rely on an extinction theorem or the manipulation of divergent

integrals or series. The one assumption that is employed is the quasi-crystalline approximation [6].

For a single species, this approximation is supported by theoretical [7,8], numerical [9] and

experimental [10] evidence; however, the authors are unaware of any rigorous bounds for the

error introduced by this approximation. We remark that the quasi-crystalline approximation

(QCA) makes no assumption on the material properties, so in principal it is consistent for weak

scattering, low or high frequency, or in dense or sparse mixtures. It is also exact when there is

only one possible configuration for the particles, for example when the particle centres lie on

the coordinates of a crystal lattice (Lax [11], where QCA is discussed under (4.3)). For simplicity,

we also restrict attention to the case of circular cylindrical or spherical particles, although our

methods can be extended to the case of general-shaped particles by using Waterman’s T-matrix

approach, e.g. [12–14].

In the context of electromagnetic wave scattering, methods for predicting wave propagation

and reflection for multi-species material have previously been developed [3,4,15]. These models

have been useful for interpreting data from remote sensing, although it appears that such

models cannot systematically reproduce experimental results [16]. In numerous contexts, but

particularly in the context of electromagnetics, the standard approach is to employ the Lippman–

Schwinger formulation [17,18]. However, such a formulation is restrictive as it is not valid

for magnetic media in the electromagnetism context or for scatterers with varying density

in acoustics, as identified in [19]. Although it is possible to extend the Lippman–Schwinger

formulation to account for this effect [19], we found it simpler to extend the multiple scattering

theory [2,20,21].

Our approach is also in contrast to coupled-phase theory where the first step is to estimate

the ensemble average of the governing equations [22], without explicitly considering multiple

scattering. Although this method can accommodate hydrodynamic interactions and has been

extended to polydisperse inclusions (multi-species) it does not completely capture multiple

scattering [23,24].

A suggestion for calculating the multi-species effective wavenumber came from Waterman &

Truell, eqn (3.25a) in the conclusion of [25]. Their suggested formula has been extensively

employed in acoustics, e.g. [26–28]. However, their formula is only valid for low frequency and

dilute distributions of particles [21], so it does not properly account for multiple scattering. The

approach in [25] combined with [29] led eventually to the state-of-the-art models for the effective

acoustic wavenumber in colloidal dispersions [28]. We numerically compare our results with

these authors.
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Given an overall particle number density n and background wavenumber k, our main

results for a multi-species material comprising circular cylinders are the effective transmitted

wavenumber:

k2
∗ = k2 − 4in 〈 f◦〉(0) − 4in2〈 f◦◦〉(0) + O(n3) (1.1)

and for an incident wave uin = eiαx+iβy, with (α, β) = k(cos θin, sin θin), the averaged reflected wave

from the inhomogeneous halfspace,

〈uref〉 =
n

α2
[R1 + nR2] e−iαx+iβy + O(n3), (1.2)

where

R1 = i〈 f◦〉(θref), θref = π − 2θin, (1.3)

R2 =
2〈 f◦〉(0)

α2

[

αβ

k2
〈 f◦〉′(θref) − 〈 f◦〉(θref)

]

+ i〈 f◦◦〉(θref) (1.4)

and the functions 〈 f◦〉 and 〈 f◦◦〉 are defined in (4.12) and (4.13). The formula (1.2) is briefly

deduced in §7a, and in figure 7 we give a pictorial representation, although we stress that the

choice θref = π − 2θin is not due to a simple geometric argument, but appears from rigorous

derivations. From the reflection coefficient (1.2), it is possible to choose effective material

properties [30]. However, because the reflection coefficient depends on the angle of incidence via

〈 f◦〉(θref) and 〈 f◦◦〉(θref), it is likely that these effective material properties change with the angle

of incidence.

In the electronic supplementary material, we provide a brief self-contained version of these

formulae, and the corresponding result for spherical particles, both for a finite number of species.

We also provide open source code that implements these formulae [31]. For spherical inclusions,

the effective transmitted acoustic wavenumber becomes

k2
∗ = k2 − n

4π i

k
〈F◦〉(0) + n

2 (4π )2

k4
〈F◦◦〉 + O(n3), (1.5)

where 〈F◦〉 and 〈F◦◦〉 are functions associated with scattering from the spherical particle and

are defined in (A 2). Note that 〈F◦◦〉 has no θ dependency. For a longer discussion of multiple

scattering from spheres, see [30].

By developing multi-species formulae valid for higher number densities and frequencies, we

open up the possibility of characterizing and designing a wide range of advanced materials. The

effects of multiple scattering appear only for moderate number density, i.e. in the term 〈 f◦◦〉(0)

in (1.1) and 〈F◦◦〉 in (1.5). One important consequence of this multiple scattering term is that a

multi-species material can exhibit properties not exhibited by that of the background medium

with only one constituent species. We stress that even for just two types of circular cylindrical

particles, the effects of multiple scattering are neither intuitive nor easily deduced from the single-

species case. This becomes apparent in the simple example of a multi-species material where

one species is much smaller than the other. In this scenario, we compare our expression for the

multi-species effective wavenumber with the state-of-the-art models from acoustics [28] and a self-

consistent type approximation [32–34], which can be calculated from the single-species formula

via an iterative approach: first one homogenizes the small particle and background mixture before

considering the multiple scattering of the larger particles in the new (homogenized) background

medium. We show analytically that this naive self-consistent methodology is not even correct

in the low-frequency limit. This is then demonstrated numerically for the cases of an emulsion

and concrete. Our results are in in-line with [35], who discuss an effective medium model of a

three-phased material in the low-frequency limit.

The outline of this paper is as follows. In §2, we describe the exact theory of multiple scattering

for N cylinders of any radius, density and sound speed. From there we calculate the effective

(ensemble-averaged) equations and apply statistical approximations in §3. In §4, we deduce

the governing system for the effective wavenumbers at arbitrary total number density and

arbitrary frequency, before specializing the result to the case of moderate number fraction and
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low frequency. In §5, we investigate the specific, representative case of two types of circular

cylindrical species and compare different approximations graphically. To calculate the reflected

or transmitted wave we also need the effective amplitude, which we calculate in §7 followed by

the effective reflected wave. We close in §8, where we discuss avenues for improvement of the

techniques and more general further work.

2. Multipole method for cylinders
In this section, we describe the exact theory for scalar multiple wave scattering from a finite

number N of circular cylinders possessing different densities, wave speeds and radii. Parameters

associated with the medium are summarized in table 1. Naturally, the system of equations

describing this problem bears strong similarities to that obtained by Záviška (see references

in [36] and in [5] for the single species circular cylindrical particle context). Assuming time-

harmonic dependence of the form e−iωt, the pressure u outside all the cylinders satisfies the scalar

Helmholtz equation

∇2u + k2u = 0 (2.1a)

and inside the jth cylinder the pressure uj satisfies

∇2uj + k2
j uj = 0, for j = 1, 2, . . . , N, (2.1b)

where ∇2 is the two-dimensional Laplacian and

k =
ω

c
and kj =

ω

cj
. (2.2)

We consider an incident plane wave

uin(x, y) = ei(αx+βy), with (α, β) = k(cos θin, sin θin)

and use for each cylinder the polar coordinates

Rj = ‖x − xj‖, Θj = arctan

(

y − yj

x − xj

)

, (2.3)

where xj is the centre of the jth cylinder and x = (x, y) is an arbitrary point with origin O. (See

figure 1 for a schematic of the material properties and coordinate systems.) Then we can define uj

as the scattered pressure field from the jth cylinder,

uj(Rj, Θj) =
∞
∑

m=−∞
Am

j Zm
j Hm(kRj) eimΘj , for Rj > aj, (2.4)

where Hm are Hankel functions of the first kind, Am
j are arbitrary coefficients and Zm

j characterizes

the type of scatterer:

Zm
j =

qjJ
′
m(kaj)Jm(kjaj) − Jm(kaj)J

′
m(kjaj)

qjH
′
m(kaj)Jm(kjaj) − Hm(kaj)J

′
m(kjaj)

= Z−m
j , (2.5)

with qj = (ρjcj)/(ρc). In the limits qj → 0 or qj → ∞, the coefficients for Dirichlet or Neumann

boundary conditions are recovered, respectively.

The pressure outside all cylinders is the sum of the incident wave uin and all scattered waves,

u(x, y) = uin(x, y) +
N

∑

j=1

uj(Rj, Θj) (2.6)

and the total field inside the jth cylinder is

uI
j (Rj, Θj) =

∞
∑

m=−∞
Bm

j Jm(kjRj) eimΘj , for Rj < aj. (2.7)
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Figure 1. Represents a multi-species material comprising diferent species of cylinders to the right of the origin O= (0, 0).

The vector xj points to the centre of the jth cylinder, with a local polar coordinate system (Rj ,Θj). Each cylinder has a radius

aj , density ρj and wave speed cj , while the background has density ρ and wave speed c. The vector k is the direction of the

incident plane wave. (Online version in colour.)

Table 1. Summary of material properties and notation. The index j refers to properties of the jth species, see igure 1 for an

illustration.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

background properties: densityρ sound speed c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

species properties: number densitynj densityρj sound speed cj radius aj
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the above, Jm are Bessel functions of the first kind. The arbitrary constants Am
j and Bm

j in

(2.4) and (2.7) will be determined from the boundary conditions of the jth cylinder Rj = aj. The

boundary conditions of continuity of pressure and normal velocity on the cylinder boundaries

are given, respectively, by

u = uI
j and

1

ρ

∂u

∂Rj
=

1

ρj

∂uI
j

∂Rj
, on Rj = aj for j = 1, . . . , N, (2.8)

recalling that ρ and ρj denote the material densities of the background and of the jth cylinder

respectively. To impose the boundary conditions, we now express the relevant fields in terms of

the (Rj, Θj) coordinate system. For the incident wave

uin(x, y) = Ij eikrj cos(θj−θin) = Ij

∞
∑

n=−∞
ein(π/2−Θj+θin)Jn(kRj), (2.9)

where Ij = uin(xj, yj) following the Jacobi–Anger expansion [37]. For the scattered waves (2.4), we

use Graf’s addition theorem (9.1.79) in [38],

Hn(kRℓ) einΘℓ =
∞
∑

m=−∞
Hn−m(kRℓj) ei(n−m)Θℓj Jm(kRj) eimΘj , for Rj < Rℓj, (2.10)
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where (Rℓj, Θℓj) is the polar form of the vector xj − xℓ. Using the above and (2.9) we can impose

the boundary conditions (2.8) to arrive at the following system of equations

Am
j + Ij eim(π/2−θin) +

∞
∑

n=−∞

N
∑

ℓ=1

ℓ �=j

An
ℓZn

ℓ ei(n−m)Θℓj Hn−m(kRℓj) = 0, (2.11)

for j = 1, . . . , N and all integers m. Furthermore, the coefficients associated with the pressure inside

the cylinder (2.7) are then given by

Bm
j =

Am
j

Jm(kjaj)
[Zm

j Hm(kaj) − Jm(kaj)] (2.12)

and subsequently, the field u(x, y) is entirely prescribed.

In any given material, it is impossible to know the exact position and properties of all

constituent particles. Our goal is, therefore, to solve (2.11) not for one particular configuration

of scatterers, but instead to calculate the average value of the coefficients Am
j , denoted by 〈Am

j 〉,
from which we can calculate an effective wavenumber and reflection. Note that the effective field

describes the ensemble-averaged field that is usually measured in an acoustic experiment, as the

receiver face is typically much larger than the particles and the distance between them [1,39]. In

our case, we obtain an ensemble average by averaging over all particle configurations and all

the material properties of the particles. This approach is general and can be tailored to different

scenarios, e.g. when detailed information is known about the particle material properties.

3. Averaged multiple scattering
For an introduction to ensemble averaging of multiple scattering, see [2,40], where the result

for a classical dilute isotropic mixture was determined. Here we present a brief self-contained

explanation tailored to multi-species.

Consider a configuration of N circular cylinders centred at x1, x2, . . . , xN with the scattering

properties s1, s2, . . . , sN , where sj denotes the properties of the jth cylinder, i.e. here these are

sj = (aj, ρj, cj). Each xj is in the region RN , where n = N/|RN| is the total number density and

|RN| is the area of RN . The properties sj are taken from the set S. For example, we could have

S = [0, 1] × [1, 2] × [100, 200], so that aj ∈ [0, 1], ρj ∈ [1, 2] and cj ∈ [100, 200].

The probability of the cylinders being in a specific configuration is given by the probability

density function p({x1, s1}, {x2, s2}, . . . , {xN , sN}). Using the compact notation Λi = {xi, si} to denote

the properties of the i-th cylinder, it follows that
∫

p(Λ1) dΛ1 =
∫∫

p(Λ1, Λ2) dΛ1 dΛ2 = · · · = 1, (3.1)

where each integral is taken over both RN (for xj) and S (for sj) with dΛj = dxi dsi. Note that

p(Λ1, Λ2) is the probability of one cylinder having the properties Λ1 and another having the

properties Λ2, when the properties of all the remaining N − 2 cylinders are unknown. And as

the cylinders are indistinguishable: p(Λ1, Λ2) = p(Λ2, Λ1). Furthermore, we have

p(Λ1, . . . , ΛN) = p(Λj)p(Λ1, . . . , ΛN | Λj) (3.2a)

and

p(Λ1, . . . , ΛN | Λj) = p(Λℓ | Λj)p(Λ1, . . . , ΛN | Λℓ, Λj), (3.2b)

where p(Λ1, . . . , ΛN | Λj) is the conditional probability of having cylinders with the properties

Λ1, . . . , ΛN (not including Λj), given that the jth cylinder has the properties Λj. Likewise,

p(Λ1, . . . , ΛN | Λℓ, Λj) is the conditional probability of having cylinders with the properties

Λ1, . . . , ΛN (not including Λℓ and Λj) given that there are already two cylinders present, with

properties Λℓ and Λj.
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Given some function F(Λ1, . . . , ΛN), we denote its average, or expected value, by

〈F〉 =
∫

· · ·
∫

F(Λ1, . . . , ΛN)p(Λ1, . . . , ΛN) dΛ1 . . . dΛN . (3.3)

If we fix the location and properties of the jth cylinder, Λj and average over all the properties of

the other cylinders, we obtain a conditional average of F given by

〈F〉Λj
=

∫
. . .

∫
F(Λ1, . . . , ΛN)p(Λ1, . . . , ΛN | Λj) dΛ1 . . . ΛN , (3.4)

where we do not integrate over Λj. The average and conditional averages are related by

〈F〉 =
∫
〈F〉Λj

p(Λj) dΛj and 〈F〉Λj
=

∫
〈F〉ΛjΛℓ

p(Λℓ) dΛℓ, (3.5)

where 〈F〉ΛℓΛj
is the conditional average when fixing both Λj and Λℓ, and 〈F〉ΛℓΛj

= 〈F〉ΛjΛℓ
.

Returning to the task of obtaining effective properties for a multi-species medium, we multiply

the system (2.11) by p(Λ2, . . . , ΛN|Λ1) and average over Λ2, . . . , ΛN , to reach

∞
∑

n=−∞

N
∑

ℓ=2

∫
〈An

ℓ 〉ΛℓΛ1
Zn(sℓ) ei(n−m)Θℓ1 Hn−m(kRℓ1)p(Λℓ|Λ1) dΛℓ

+ 〈Am
1 〉Λ1

+ I1 eim(π/2−θin) = 0,

where, without loss of generality, we have chosen j = 1, used the conditional average

definition (3.2b) and defined Zn(sℓ) := Zn
ℓ to make the dependency on sℓ explicit. To further

simplify the above, note that all terms in the sum over ℓ give the same value. That is, the

terms in the integrand depend on ℓ solely through the dummy variable Λℓ. In particular, the

probability distribution is the same for each cylinder, and if Λ2 = Λl, then 〈An
ℓ 〉ΛℓΛ1

= 〈An
2〉Λ2Λ1

,

because equation (2.11) uniquely determines the coefficients An
ℓ from the position and scattering

properties Λℓ. We use this to obtain

∞
∑

n=−∞
(N − 1)

∫
〈An

2〉Λ2Λ1
Zn(s2) ei(n−m)Θ21 Hn−m(kR21)p(Λ2 | Λ1) dΛ2

+ 〈Am
1 〉Λ1

+ I1 eim(π/2−θin) = 0. (3.6)

Our aim is to solve the system above for 〈Am
1 〉Λ1

; however, this requires that we make assumptions

about p(Λ2 | Λ1) and 〈An
2〉Λ2,Λ1

. These approximations are discussed in §3a; however, for the

moment, we assume that an appropriate substitution has been imposed.

With 〈Am
1 〉Λ1

, we can calculate the average total pressure (incident plus scattered), measured at

some position x outside RN , by averaging (2.6) to obtain

〈u(x, y)〉 = uin(x, y) +
N

∑

j=1

∫
. . .

∫
uj(Rj, Θj)p(Λ1, . . . , ΛN) dΛ1 . . . dΛN , (3.7)

where 〈uin(x, y)〉 = uin(x, y) because the incident field is independent of the scattering

configuration. We can then rewrite the average outgoing wave uj by fixing the properties of the

jth cylinder Λj and using equation (3.2a) to reach

〈u(x, y)〉 − uin(x, y) =
N

∑

j=1

∫
〈uj(Rj, Θj)〉Λj

p(Λj) dΛj = N

∫
〈u1(R1, Θ1)〉Λ1

p(Λ1) dΛ1. (3.8)

Likewise, for the conditionally averaged scattered field (2.4) measured at x, we obtain

〈u1(R1, Θ1)〉Λ1
=

∞
∑

m=−∞
〈Am

1 〉Λ1
Zm(s1)H

(1)
m (kR1) eimΘ1 . (3.9)



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20170864
...................................................

We use the above to calculate the reflection from a halfspace in §7a and to obtain (1.2). To proceed

we need to solve the system (3.6) and, in line with existing approaches, we do this by making

statistical approximations.

(a) Statistical approximations

In order to solve (3.6) for 〈An
1〉Λ1

, we need an approximation for 〈An
2〉Λ2,Λ1

and the pair distribution

p(Λ2 | Λ1). In this work, we adopt the standard closure approximation for single species, but

extended to multi-species, the QCA [5,6]:

〈An
2〉Λ2Λ1

≈ 〈An
2〉Λ2

. (3.10)

This approximation still makes sense for multi-species because it replaces the dependence of

〈An
2〉Λ2,Λ1

in Λ1 by its expected value in Λ1. Note also that the expected difference in Λ2:

∫
[〈An

2〉Λ2Λ1
− 〈An

2〉Λ2
]p(Λ2) dΛ2 = 〈An

2〉Λ1
− 〈An

2〉 ≈ 0,

for a large number of scatterers.

Using QCA, we introduce the notation

An(xj, sj) = 〈An
j 〉Λj

and An(xj, sj) = 〈An
j 〉ΛjΛk

, for k �= j. (3.11)

Next, we determine a suitable approximation for the pair distribution p(Λ2|Λ1), beginning

with (3.2a) to write

p(Λ2 | Λ1) = [p(Λ1)]−1p(Λ1, Λ2). (3.12)

For clarity, we introduce the spatial random variables X1, X1, . . . , XN and the scattering property

random variables S1, S1, . . . , SN , and write probability density functions in the form, e.g.

p(Λ1, . . . , ΛN) = P(X1 = x1, . . . , XN = xN , S1 = s1, . . . , SN = sN). (3.13)

In the first instance, we assume the random uniform distribution

p(Λ1) =
1

|RN|
P(S1 = s1), (3.14)

where P(S1 = s1) is the probability density in S that the particle will have scattering property s1.

The above assumes that P(X1 = x1 | S1 = s1) = |RN|−1, i.e. that the position x1 of the cylinder is

independent of the scattering property s1. This is not always the case, for example, depending

on the size of the cylinder, some positions near the boundary of RN may be infeasible. However,

these boundary effects are negligible when taking the limit |RN| → ∞.

For the remaining distribution in (3.12), we use

p(Λ1, Λ2) = P(S1 = s1, S2 = s2)P(X1 = x1, X2 = x2 | S1 = s1, S2 = s2), (3.15)

followed by

P(S1 = s1, S2 = s2) = P(S1 = s1)P(S2 = s2), (3.16)

which assumes that the scattering properties are statistically independent. Next, we assume

that the cylinders are equally likely to be anywhere but do not overlap (a hole correction

correlation [20]), to write

P(X1 = x1, X2 = x2 | S1 = s1, S2 = s2) =

{

0 if R21 ≤ a21,

|RN|−2 if R21 > a21,
(3.17)

where R21 := ‖x1 − x2‖, a21 = b1 + b2 for some b1 ≥ a1 and some b2 ≥ a2, and b1 is the radius of

exclusion around x1 which is usually chosen to be proportional to the radius a1. Note that when

integrating (3.17) above in x1 and x2, we obtain |RN|−2(|RN|2 − πa2
21) ≈ 1 for RN ≫ a2

21.
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Ultimately, substituting (3.16) and (3.17) into (3.15) in tandem with (3.14) leads to the pair

distribution

p(Λ2 | Λ1) =
1

|RN|
p(s2)H(R21 − a21), (3.18)

where H(x) denotes the Heaviside function, under the assumption |RN| ≫ a2
21. In the next section,

we will the approximations (3.11) and (3.18) to solve the system in (3.6) for 〈An
1〉Λ1

.

We now include a discussion of other commonly used pair distributions. We remark that for

densely packed scatterers, other pair distributions [41] are preferred and take the form

P(X1 = x1, X2 = x2 | S1 = s1, S2 = s2) =

⎧

⎨

⎩

0 if R21 ≤ a21,
1 + χ (R21 | s1, s2)

|RN|2
if R21 > a21,

(3.19)

where ∫
RN

∫
RN

χ (R21 | s1, s2) dx1 dx2 = 0. (3.20)

To calculate the effective wavenumber for the pair-correlation (3.19), a common choice is to

assume that the scatterers are uniformly randomly distributed, which leads to

χ (R21 | s1, s2) ≈ 0 for R21 > ā21 > 2a21, (3.21)

used by Linton & Martin [5, Section D], [42], [43, eqn (27)], where ā21 is some distance large

enough for the scatterers at x1 and x2 to no longer effect each other. One popular choice for χ is

the Percus–Yevick function, which assumes all scatterers are uniformly randomly distributed [44],

though χ can also be used to specify if some species are more likely to be closer or further apart.

In this work, we set χ = 0 for simplicity (unless otherwise stated), but also because it is not

clear that the error introduced by using χ = 0 is in any way greater than the error committed

due to QCA (3.10). Both the hole correction (3.17) and QCA (3.10) make similar assumptions: for

R21 > a21, the hole correction replaces p(Λ2 | Λ1) with its expected value in Λ1:

p(Λ2 | Λ1) ≈
∫

p(Λ2 | Λ1)p(Λ1) dΛ1 = p(Λ2),

just as QCA (3.10) assumes that 〈An
2〉Λ2Λ1

≈ 〈An
2〉Λ2

. Similarly for R21 ≤ a21 we would set both

p(Λ2 | Λ1) = 0 and 〈An
2〉Λ2Λ1

= 0 for QCA and hole correction. Another reason to set χ = 0 is

because we are interested in the limit for small n. In this limit, it is expected that χ → 0 when

n → 0 for uniformly distributed scatterers, which in turn indicates that the contribution of χ to

the effective wave is smaller than n
2 [5,45].

(b) Ininitely many cylinders in the halfspace

In preceding sections, we considered a finite number of scatterers in a bounded domain RN .

Now we consider the limit N → ∞ and where the region RN tends to the halfspace x > 0. We

will follow [5] and limit the cylinders to the halfspace x > 0, as it allows us to avoid divergent

integrals, such as those in [46], e.g. between their eqn (32) and (33).

Substituting the approximations (3.18) and (3.11) into the governing system (3.6) leads to

N − 1

|RN|

∞
∑

n=−∞

∫
S

∫
RN

R21>a21

An(x2, s2) ei(n−m)Θ21 Hn−m(kR21) dx2 ds
n
2

+ Am(x1, s1) + I1 eim(π/2−θin) = 0, for x1 > 0, (3.22)

where for brevity, we write

ds
n
2 = Zn(s2)p(s2) ds2, (3.23)
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with p(s2) = P(S2 = s2). By taking the limits N → ∞ and lim
N→∞

RN = {(x1, x2) : x2 > 0}, while fixing

the number density n = N/|RN|, equation (3.22) takes the form

n

∞
∑

n=−∞

∫
S

∫
x2>0

R21>a21

An(x2, s2) ei(n−m)Θ21 Hn−m(kR21) dx2 ds
n
2

+ Am(x1, s1) + I1 eim(π/2−θin) = 0, for x1 > 0, (3.24)

which represents the governing system for our semi-infinite multiple-species problem.

Incidentally, when all cylinders are identical this system reduces to eqn (54) in [5], that is when

p(s2) = δ(a2 − a)δ(c2 − c)δ(ρ2 − ρ) in (3.23), where δ(x) represents Dirac’s delta function.

4. Efective wavenumber
To solve the system (3.24), first we use the symmetry of the problem to rewrite

Am(x, y, s) =Am(x, 0, s) eiβy, (4.1)

that is, if Am is a solution to (3.24), then so is Am
0 defined by Am

0 (x, y, s) =Am(x, y − y′, s) eiβy′
for

every y′, then taking y′ = y we see that (4.1) is also a solution, recalling that I1 = eiαx+iβy and

α = k cos θin and β = k sin θin. (4.2)

Sufficiently far away from the boundary, say x > x̄, we assume a plane wave ansatz

Am(x, y, s) = im e−imθ∗Am
∗ (s) eik∗·x, for x > x̄, (4.3)

where the factor im e−imθ∗ is introduced for later convenience. We could have for generality

considered a sum of plane waves, but for low number density this is unnecessary, as we would

find a unique k∗ for a halfspace.

Equating (4.1) and (4.3), for x > x̄, we obtain Snell’s Law

k∗ sin θ∗ = k sin θin with k∗ = (α∗, β) := k∗(cos θ∗, sin θ∗), (4.4)

noting that both θ∗ and k∗ are complex numbers. We also require that Im α∗ > 0, so that the integral

over x2 in (3.24) converges.

In appendix B, we present the derivation for the system below, which is obtained by

substituting (4.1) and (4.3) into (3.24). In the process we establish that k∗ �= k, and find that there is

no restriction on the length x̄, a fact we use to calculate the reflected wave. The result is that (3.24)

reduces to the system

Am
∗ (s1) + 2nπ

∞
∑

n=−∞

∫
S

An
∗(s2)

[

Nn−m(ka12, k∗a12)

k2 − k2
∗

+ X∗

]

ds
n
2 = 0 (4.5)

and
∞
∑

n=−∞
ein(θin−θ∗)

∫
S

An
∗(s2) ds

n
2 = ei(α−α∗)x̄(α∗ − α)

[

αi

2n

+ b(x̄)

]

, (4.6)

in terms of the unknown parameters An
∗(s2) and k∗, where

b(x̄) = (−i)n−1
∞
∑

n=−∞
einθin

∫
S

∫ x̄

0
An(x2, 0, s2) e−iαx2 dx2 ds

n
2 , (4.7)

Nn(x, y) = xH′
n(x)Jn(y) − yHn(x)J′n(y) (4.8)

and X∗ = 0, as we have assumed hole correction (3.17). For a more general pair distribution (3.19),

we obtain

X∗ =
∫

a21<R<ā21

Hn−m(kR)Jn−m(k∗R)χ (R | s1, s2)R dR, (4.9)
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where further details may be found in appendix Ba. We also remark that equation (4.5) reduces to

([5], eqn (87), [46], eqn (33)) for a single particle species.

To determine the effective wavenumber k∗ we need only use (4.5). That is, the solution k∗ is

the one that leads to non-trivial solutions for the function Am
∗ . On the other hand, if Am

∗ (s1) is a

solution to (4.5), then so is cAm
∗ (s1) for any constant c. To completely determine Am

∗ (s1), we need

to use (4.5) and (4.6).

Next, we determine closed-form estimates for k∗ from (4.5) and determine the corresponding

coefficients Am
∗ (s1) for low number density in §7.

(a) Explicit expressions for k∗ via expansions in the number density
We now consider the expansions

k2
∗ ∼ K∗0 + K∗1n + K∗2n

2 and Am
∗ ∼Am

∗0 + Am
∗1n + Am

∗2n
2, (4.10)

where we use ∼ to denote an asymptotic expansion in n, which is formally equivalent to

an expansion in volume fraction. We show in appendix Bb how substituting the above into

equation (4.5) leads to

k2
∗ = k2 − 4ni〈 f◦〉(0) − 4n

2i〈 f◦◦〉(0) + O(n3), (4.11)

where we assumed K∗0 = k2 , though we deduce this in §7. Here we have

f◦(θ , s1) = −
∞
∑

n=−∞
einθ Zn(s1) and 〈 f◦〉(θ ) = −

∞
∑

n=−∞
einθ

∫
S

ds
n
1 (4.12)

and we introduce the multiple scattering pattern

〈 f◦◦〉(θ ) = −π

∞
∑

n,m=−∞

∫
S

einθ a2
12dn−m(ka12) ds

n
1 ds

m
2 , (4.13)

where ds
n
1 = Zn(s1)p(s1) ds1 and for convenience we define

dm(x) = J′m(x)H′
m(x) +

(

1 −
(m

x

)2
)

Jm(x)Hm(x). (4.14)

We remark that f◦ corresponds to the far-field scattering pattern for a single circular cylinder. This

is evident by taking N = 1 in (2.11), which leads to

Am
1 = −im e−imθin eix1·k (4.15)

and from (2.4) gives

lim
R1→∞

u1 ∼

√

2

πkR1
f◦(Θ1 − θin, s1) eikR1−iπ/4.

We can interpret the terms on the right-hand side of (4.11) in the following way: the first k2

corresponds to the incident wave, the second 4ni〈 f◦〉(0) is the contribution from the incident

wave scattered once from every cylinder (so-called ‘single scattering’) and the last 4n
2i〈 f◦◦〉(0)

is the contribution of this scattered wave being re-scattered by every cylinder (so-called ‘multiple

scattering’).

We can further specialize the wavenumber (4.11) by considering wavelengths 2π/k larger than

the largest cylinder radius, or more precisely

ka∗ := max
s1

{ka11p2(s1)} ≪ 1, (4.16)

which leads to

k2
∗ ∼ k2 − 4ni〈 f◦〉(0) +

8n
2

πk2

∫π

0
cot

(

θ

2

)

d

dθ
[〈 f◦〉(θ )]2 dθ + O(k4a4

∗ log(ka∗)), (4.17)

where the integral converges because 〈 f◦〉′(0) = 0. This expression and the derivation is analogous

to that given in ([5], eqn (86)) for a single species. Although the sums in (4.11) converge quickly
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for small ka∗, the form (4.17) is convenient as it is written in terms of the far-field scattering

pattern 〈 f◦〉.
An alternative approach [47] that is very useful in the context of low-frequency propagation is

to take the quasi-static limit of the system (4.5). For small ka, the monopole and dipole scattering

coefficients are both O((ka)2), which are the only contributions to the effective bulk modulus and

density, respectively. Following the approach in [47], it is straightforward to show that for the

N-species case, where the nth species has volume fraction φn, bulk modulus Kn and density ρn,

the effective bulk modulus K∗ and density ρ∗ take the form

K−1
∗ = K−1(1−φ) +

N
∑

n=1

K−1
n φn and ρ∗ = ρ

(

1 +
∑N

n=1 Dnφn

1 −
∑N

n=1 Dnφn

)

, (4.18)

where φ =
∑

n φn and Dn = (ρn − ρ)/(ρn + ρ).

Next, we explore how the expression (4.11) compares with other approaches by evaluating it

numerically. In §7, we develop analytical expressions for the average scattering coefficient An and

expressions for the reflection coefficient from the inhomogeneous halfspace.

5. Two species of cylinders
In this section, we analytically compare two approaches to calculating the effective wavenumber

of a multi-species material. The first self-consistent type method homogenizes the small cylinder

distribution and then determines effective properties for a large cylinder distribution embedded

in the homogenized background, as shown in figure 2. The second determines the multi-species

result using the approach outlined in previous sections.

(a) One small and one large species

We begin by assuming that there are only two species, S and L, that have constant wave speeds

cS and cL, densities ρS and ρL, and number fractions nS and nL, respectively. We assume that both

types of cylinders have low volume fractions φS = πa2
SnS and φL = πa2

LnL and are proportional to

one another φS ∝ φL, so we will discard O(φ3) terms, where φ = φS + φL denotes the total volume

filling fraction. Note that it is more precise to assume small φ, rather than a small number density,

since φ is non-dimensional.

First, the effective wavenumber k∗S of a material at long wavelengths with only a single species

of S-cylinders is obtained by simplifying (4.17), where the far-field pattern (4.12) is, therefore, just

the S cylinder species, i.e. there is no integral over s1 and p(s1) = 1. Assuming cS �= 0 and ρS �= 0,

we use ([8], eqn (24)) for small cylinder radius, which in our notation (recall Zn(sℓ) := Zn
ℓ , where

Zn
ℓ is given in (2.5))

Z0(sS) = iπ
a2

Sk2

4
P + O(a4

S) and Z1(sS) = Z−1(sS) = iπ
a2

Sk2

4
Q + O(a4

S), (5.1)

where

P = 1 −
k2

Sρ

k2ρS
and Q =

ρ − ρS

ρ + ρS
. (5.2)

Substituting the above into the simplified (4.17) leads to

k∗S

k
= 1 −

φS

2
(P + 2Q) −

φ2
S

8
(2P2 − (P + 2Q)2) + O(a2

S) + O(φ3), (5.3)

after taking a Taylor series for small n for the square root. We also calculate the effective density

([8], eqn (1)) or refer to (4.18) with N = 1, given by

ρ∗S

ρ
=

ρ + ρS − φS(ρ − ρS)

ρ + ρS + φS(ρ − ρS)
= 1 − 2φSQ + O(a2

S) + O(φ3), (5.4)

which is appropriate for the approximation (5.3), see [8] for more details.
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k

(a)

k

(b)

k*

(c)

Figure 2. (a) Two-speciesmaterial comprising large (blue) and small (green) inclusions in a backgroundmaterial (yellow)with

incidentwavenumber k, (b) one-speciesmaterial comprising the small inclusions alone, and (c) one-speciesmaterial with large

cylinders alone in a background with incident wavenumber k∗, which is the efective wavenumber of (b). (Online version in

colour.)

Next, we determine the effective wavenumber for large scatterers embedded in a background

described by k∗S and ρ∗S. For this step, we introduce the notation f◦(0, s1) = f◦(0, s1, ρ, k), which

expresses the problem in terms of density and wavenumber in place of density and wave speed.

Consequently, from (5.4), we have

f◦(0, sL, ρ∗S, k∗S) = f◦L(0) − φSδfLS + O(a2
S) + O(φ2) (5.5)

with

δfLS := 2ρQ∂ρ f◦(0, sL, ρ, k) +
k

2
(P + 2Q)∂kf◦(0, sL, ρ, k), (5.6)

where we set f◦L(0) := f◦(0, sL, ρ, k).

To calculate the wavenumber k∗LS for the L-cylinders in a material with a wavenumber k∗S,

we use the formula (4.11) with k replaced by k∗S, 〈 f◦〉 replaced with f◦(0, sL, ρ∗
S , k∗S) above and

keeping only the integrands, that is, removing the integrals over the multi-species s1 and s2, to

arrive at

k2
∗LS = k2

∗S + 4i
φ2

L

πa4
L

∞
∑

n,p=−∞
a2

LLdp−n(k∗SaLL)Zn(sL, ρ∗S, k∗S)Zp(sL, ρ∗S, kTS)

−
4iφL

πa2
L

f◦(0, sL, ρ∗S, k∗S) + O(φ3) (5.7)

= k2
∗S + 4i

φ2
L

πa4
L

∞
∑

n,p=−∞
a2

LLdp−n(kaLL)Zn(sL, ρ, k)Zp(sL, ρ, k)

−
4iφL

πa2
L

(f◦L(0) − φSδfLS) + O(a2
S) + O(φ3), (5.8)

where we used ds
m
j = Zm(sj)p(sj) dsj. The above is an attempt to calculate the multi-species

wavenumber by using only the single-species formula. However, the term of order O(φLφS) in

the above does not agree with (4.11), even in the limit aS → 0, as we show next.

For only two species of cylinders, and assuming the cylinders are uniformly distributed, the

probability density function for the scattering properties becomes

p(s) =
nS

n

δ(a − aS)δ(c − cS)δ(ρ − ρS) +
nL

n

δ(a − aL)δ(c − cL)δ(ρ − ρL), (5.9)
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which when substituted into (4.11) leads to the multi-species result

k2
∗ = k2 − 4i(nSf◦S(0) + nLf◦L(0)) + 4n

2
Sa2

SSπ i
∞
∑

n,p=−∞
dp−n(kaSS)Zp(sS)Zn(sS)

+ 8nSnLa2
SLπ i

∞
∑

n,p=−∞
dp−n(kaSL)Zp(sS)Zn(sL)

+ 4n
2
La2

LLπ i
∞
∑

n,p=−∞
dp−n(kaLL)Zp(sL)Zn(sL) + O(φ3), (5.10)

where we used aLS = aSL. Assuming that aS ≪ 1 and using aLS = bS + bL, with bS ≥ aS and bL ≥ aL,

we expand dm (4.14) as

dm(kaSL) = dm(kbL) +
2bS

bL
[Jm(kbL)Hm(kbL) − dm(kbL)] + O(a2

S), (5.11)

where we use bS ∝ aS. Substituting the above, (5.1), (5.3) and (5.8), into (5.10) we obtain

k2
∗ = k2

∗LS + φLφS

[

−
4i

πa2
L

δfLS + H0 +
aS

aL
H1

]

+ O(a2
S) + O(φ3), (5.12)

where

G0 =
8i

π

b2
L

a2
L

∞
∑

n=−∞

1
∑

p=−1

dp−n(kbL)
Zp(sS)

a2
S

Zn(sL) (5.13)

and

G1 =
16i

π

bLbS

aLaS

∞
∑

n=−∞

1
∑

p=−1

Jp−n(kbL)Hp−n(kbL)
Zp(sS)

a2
S

Zn(sL). (5.14)

Note that Zp(sS)/a2
S converges when aS → 0, see (5.1).

The terms in the brackets in (5.12) account for the interaction between the two types of

cylinders, which is where the wavenumbers k∗LS (5.8) and k∗ (5.12) differ. The leading-order error

is non-vanishing even as the radius of the small species vanishes and is given by

lim
aS→0

{k∗ − k∗LS} ≈

(

G0 −
4i

πa2
L

δfLS

)

φSφL.

A numerical investigation of this limit is conducted in §6. The physical meaning of these two

terms are quite different: δfLS is the change in the far-field scattering pattern of the L-cylinders

due to changing the background wavenumber from k to k∗S, while G0 accounts for the multiple

scattering between the L and S-cylinders, which becomes significant when both φS are φL are

large. Ultimately, this means that k∗ ≈ k∗LS if either the S or L-cylinders are very dilute.

For comparison, we also give the two-dimensional version of eqn (23) of [28] given by

k2
∗C = k2 − 4inSfS(0) − 4inLfL(0) +

8n
2
S

πk2

∫π

0
cot(θ/2)

d

dθ
[fS(θ )]2 dθ

+
8n

2
L

πk2

∫π

0
cot(θ/2)

d

dθ
[fL(θ )]2 dθ (5.15)

and another commonly used approximation [48]

k2
∗0 = k2 − 4inSfS(0) − 4inLfL(0), (5.16)

describing the effective wavenumber for two species. However, the expression (5.15) is missing

the interaction between the nS and nL species (the term O(nSnL)) and is only valid for low

frequency. Additionally, the estimate (5.16) ignores terms of the order O(φ2).
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6. Numerical examples
In this section, we consider a selection of numerical examples to demonstrate the efficacy of

(5.10) and other expressions. For k∗LS, we use the exact formula (4.11) for one species and then

equation (5.7). This way, k∗LS is valid for S-cylinders with approximately zero density such as air.

In the graphs that follow we use

sound speed =
ω

Re k∗
and attenuation = Im k∗, (6.1)

where k∗ will be replaced with k∗LS and k∗0 depending on the context.

For reference, we provide Julia [49] code to calculate the effective wavenumbers.

(a) Two-dimensional emulsion

Here we consider an emulsion composed of hexadecane (oil) and glycerol in water [50], table 2,

where the glycerol forms very small inclusions. The graphs of figure 3a show how k∗, k∗LS and k∗C

differ when varying only aS the radius of the glycerol inclusions, for a fixed angular frequency

ω = c/k0 ≈ 3 × 106 Hz. We observe that the difference between k∗ and k∗LS persists even as aS → 0,

as expected according to (5.12). Meaning that, no matter how small the S-cylinders become, the

larger cylinders L do not perceive the S-cylinders as a homogeneous material, in the naive way

described in §5a.

In fig. 21 of [28], they observed that experimentally measured wave speeds were shifted in

comparison to the k∗C predictions, even for low-frequency. We can see this same discrepancy in

figure 3b, where the angular frequency is varied between 1 KHz < ω < 12 MHz while the radius

aS = 25 µm is fixed. This discrepancy is due to the terms of order O(nLnS) which are missing from

k∗C (5.15) and k∗LS (5.10). Although all three wavenumbers are similar in figure 3b. The same is

not true when we increase the frequency.

In figure 3c, we show how k∗C, valid only for low-frequency, strays from the more accurate k∗
as the frequency increases,1 where we did not include k∗LS as it is only valid for low frequency.

There we can see that k∗C performs well up to about kaS = 0.3, at which point kaL = 3.0.

All the approximations k∗0 (5.16), k∗LS (5.10) and k∗C (5.15) are missing second-order terms in

the number density. In figure 4, we see the effect of these missing terms by varying the volume

fraction while fixing ω = 3 × 106, or equivalently kaS = 0.5. In the limit of low volume fraction, all

three effective wavenumbers agree, as expected. For the largest volume fraction 40%, the expected

error2 of k∗ is 6%. However, the relative difference between the attenuations of k∗LS and k∗0 and

the multi-species attenuation of k∗ reaches 30%.

Summarizing figures 3 and 4, all the approximations are similar for either low frequency or

low volume fraction. This is because the three phases in table 2 have similar properties. In our

next example one of the phases, air, will be very different from the others, which will lead to more

dramatic differences.

(b) Two-dimensional concrete

When there is a high contrast in the properties of the inclusions, multiple scattering can have a

dramatic effect. To demonstrate this we consider a concrete-like material made from a limestone

possessing cylinders of brick and air, given in table 3.

Figure 5 shows that it is only in the low-frequency limit, kaS < 0.05, that the wavenumbers k∗C

and k∗LS agree with the more exact k∗, which has a maximum expected relative error of only φ3 =
0.163 ≈ 0.4%. And in figure 5b, the wavenumber k∗LS appears to hit a resonance which should not

1In this case, we did not exactly use the two-dimensional version of eqn (23) from [28], but instead used a more accurate
version where we summed enough terms for the far-field patterns to converge.

2If we disregard the error due to the low-frequency assumptions, we can estimate the expected errors φ2 = 0.42 = 16% for k∗0

and 2φLφS = 2 ∗ 0.22 = 8% for both k∗LS and k∗C.
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Figure 3. Comparison of sound speeds and attenuation using wavenumbers k∗C (5.15), k∗LS (5.7), and k∗ (5.10) for the

water and oil emulsion from table 2. Code to generate igure: https://github.com/arturgower/EfectiveWaves.jl/tree/master/

examples/emulsion. (a) Fixed wavenumber k = k0 while changing the radius aS , (b) ixed radius aS while changing the

wavenumber k and (c) ixed radius aS while changing the wavenumber k. (Online version in colour.)

Table 2. Material properties used to approximate an emulsion.

density (kg m−3) speed (m s−1) radius (µm) volume%

distilled water ρ = 998 c = 1496 — 84%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hexadecane ρL = 773 cL = 1338 aL = 250 φL = 11%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

glycerol ρS = 1260 cS = 1904 aS = 25 φS = 11%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://github.com/arturgower/EffectiveWaves.jl/tree/master/examples/emulsion
https://github.com/arturgower/EffectiveWaves.jl/tree/master/examples/emulsion
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Figure 4. Comparison of sound speeds and attenuation calculated from the efective wavenumbers k∗C (5.15), k∗0 (5.16),

k∗LS (5.7) and the more accurate k∗ (5.10), as the total volume fraction of the inclusions increases (for the emulsion shown

in table 2 with kaS = 0.5). Code: https://github.com/arturgower/EfectiveWaves.jl/tree/master/examples/emulsion. (Online

version in colour.)

Table 3. Material properties for our concrete-likematerial. Note thatwe used compacted limestonewith very low porosity [51].

density (kg m−3) speed (m s−1) radius (mm) volume%

limestone ρ = 2460 c = 4855 — 84%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

brick ρL = 1800 cL = 3650 aL = 2.0 φL = 10%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dry air ρS = 1.293 cS = 331.4 aS = 0.2 φS = 6%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

be present. This, and the dramatic changes in attenuation at low frequency, are expected because

for an inclusion with low density, the effective wavenumber diverges for fixed volume fraction

when k tends to zero [8]. Figure 5c shows the limitations of k∗C as the frequency increases. Even

though k∗C is only valid for low frequencies, its results are quite close to k∗, having a relative

difference of around 25%.

Again as expected, all the wavenumbers converge as the volume fraction decreases (figure 6),

yet the differences in the wave speed are significant, reaching 100% in this example, when the

total volume fraction φ = 40%.

7. The average ield and relection
In this section, we determine the reflected field from a halfspace, which is achieved by deducing

the averaged scattering coefficient An, for low number density shown in (4.10)2.

In order to calculate An we first use (4.6) and (4.11), except here we can deduce that K∗0 = k2.

As θ∗ appears in (4.6), we expand

θ∗ = θ∗0 + θ∗1n + θ∗2n
2 + O(n2), (7.1)

which combined with Snell’s equation (4.4) and the number density expansions (4.10) gives for

the first two orders:

K∗0 sin(θ∗0)2 = k2 sin(θin)2, k2θ∗1 cos(θ∗0) = 2i〈 f◦〉(0)
sin(θ∗0)3

sin(θin)2
. (7.2)

https://github.com/arturgower/EffectiveWaves.jl/tree/master/examples/emulsion
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Figure 5. Sound speed and attenuation from the approximate wavenumbers k∗C (5.15) and k∗LS (5.7) with the more

accurate k∗ (5.10) for the concrete-like mixture shown in table 3. Code: https://github.com/arturgower/EfectiveWaves.jl/

tree/master/examples/concrete. (a) Fixed wavenumber k = k0 while changing the radius aS , (b) same as (a) but for smaller

aSk and (c) ixed radius aS while changing the wavenumber k. (Online version in colour.)

For x̄, which appears in equation (4.6), we assume that, as n → 0, x̄ is a fixed width large enough

for the effective wave ansatz (4.3) to hold, meaning that

x̄ =O(1),

∫ x̄

0
An(x2, s) e−iαx2 dx2 =O(1). (7.3)

Using the above in (4.6) we conclude that K∗0 = k2, to ensure that n
−1 appears on the left-hand

side. Subsequently, using K∗0 = k2 in (7.2) leads to

θ∗0 = θin, θ∗1 =
2i〈 f◦〉(0)

k2
tan θin (7.4)

https://github.com/arturgower/EffectiveWaves.jl/tree/master/examples/concrete
https://github.com/arturgower/EffectiveWaves.jl/tree/master/examples/concrete
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Figure 6. Sound speed and attenuation from the three efective wavenumbers k∗C (5.15), k∗0 (5.16) and k∗LS (5.7), with the

more accurate k∗ (5.10), against the total volume fraction of the inclusions for the concrete shown in table 3. (Online version in

colour.)

and

θ∗2 = θ2
∗1

[

cos θin

sin θin
+

1

sin(2θin)

]

+ 2i
〈 f◦◦〉(0)

k2
tan θin, (7.5)

where θ∗2 is given for completeness. We use the above to expand

ei(α∗−α)x̄

α∗ − α
= ix̄ +

[

1

n

−
〈 f◦◦〉(0)

〈 f◦〉(0)

]

ik

2〈 f◦〉(0)
cos θin +

1

2k
sec θin + O(n), (7.6)

then we substitute the leading order term in the above into (4.6) leading to: 〈 f◦〉(0) =
∑∞

n=−∞
∫
S
An

∗0 ds
n
2 . However, from (B 13) we found that An

∗0 is independent of n and s2, therefore,

An
∗0 = −1. This means that An

∗ tends, in the limit n → 0, to the scattering coefficient of one lone

cylinder:

Am(x1, s1) → imAm
∗0(s1) e−imθ∗0 eix1·

√
K∗0 = −im e−imθin eix1·k = Am

1 , (7.7)

where we used K∗0 = k2 and θ∗0 = θin, and the last equation is from (4.15).

To calculate the next order in n of equation (4.6) we need to calculate b(x̄). To do so, we assume

that An(x2, s2) → An
2 as n → 0 for every x2 > 0. That is, in the limit where there are no cylinders,

except one fixed at x2, the averaged scattering coefficient An tends to the scattering coefficient of

one lone cylinder, even for 0 < x2 < x̄. As a result

An(x2, 0, s2) = −in e−inθin eiαx2 + O(n), for x2 > 0,

which when substituted in b(x̄) from (4.6), together with (4.12), leads to b(x̄) = ix̄〈 f◦〉(0) + O(n).

Substituting this, (7.6), and (7.5) into (4.6), and then ignoring second-order terms O(n2) we obtain

−i〈 f◦◦〉(0)k cos θin

2〈 f◦〉(0)
+

ik cos θin

2〈 f◦〉(0)

∞
∑

n=−∞

∫
S

An
∗1(s2) ds

n
2 = −

〈 f◦〉(0)

2k cos θin
+ O(n2), (7.8)

where we also used
∑∞

n=−∞
∫
S

n ds
n
2 = 0, which is a result of the property Zn

2 = Z−n
2 , see (2.5),

implying that ds
n
2 = ds

−n
2 . In appendix Bb, we showed that the quantity F∗, given by (B 16), is

independent of n and s2. So if we substitute An
∗1(s2) for F∗, we can then take F∗ outside the sum

and integral in (7.8), and then substitute back An
∗1(s2) to arrive at

An
∗1(s2) = −

i〈 f◦〉(0)

k2 cos2 θin
− π

∞
∑

m=−∞

∫
S

a2
12dm−n(ka12) ds

m
1 + O(n2), (7.9)

where we used (4.12)2. The above reduces to the one-species case given in ([52], eqn (27)). With

An
∗1 and An

∗0, we can now calculate reflection from a halfspace.
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Figure 7. The far-ield relected angle θref , where k= (α,β) and k∗ is the efective transmitted wavenumber deined in §4.

The wavenumber k∗ results from ensemble averaging all scattered waves originating from x > 0 (to the right of the dashed

vertical line). The relected ieldmeasured at x can be understood as the scattering (the grey circles) of the transmitted wave by

an efective particle (grey particle). In the igure,θref equalsπ − θ∗ − θin, but for small number densityθ∗ = θin + O(n),

which is why θref = π − 2θin appears in (1.3) and (1.4).

(a) Relection from a halfspace

Here we calculate the reflected wave measured at (x, y), where x < 0. To achieve this, we assume

that the boundary layer around x = 0 has little effect on the reflected wave, that is, we assume

most of the scatterers behave as if they are in an infinite medium. This is the same as taking x̄ = 0,

which was also used in [52], where they showed that this approach matches other homogenization

results in the low-frequency limit. We note, however, that Felbacq et al. [53] discuss the possibility

of a boundary layer effect even in the low-frequency limit.

Substituting (3.9) into the total effective wave (3.8), and using the form (4.3) reveals

〈u(x, y)〉 = eik·x + n e−imθ∗

∞
∑

m=−∞
im

∫
S

Am
∗ (s1)

∫
0<x1<∞

eiβy1+iα∗x1Φm(kR1, Θ1) dx1 ds
m
1 , (7.10)

where we used uin(x, y) = eik·x, ds
m
1 = Zm

1 p(s1) ds1, Φm(kR1, Θ1) = H
(1)
m (kR1) eimΘ1 , substituted

(3.14), used N = |RN|n and took the limit N → ∞. Then using (B 5) and (B 7), we obtain

∫
0<x1<∞

eiβy1+iα∗x1Φm(kR1, Θ1) dx1 = e−iαx+iβy 2

α

(−i)−mi

α + α∗
e−imθin , (7.11)

noting that x1 − x > 0. Using the above in (7.10), we reach

〈u(x, y)〉 = eik·x +
2n

α

i e−iαx+iβy

α + α∗

∞
∑

m=−∞
eimθref

∫
S

Am
∗ (s1) ds

m
1 , (7.12)

where θref = π − θ∗ − θin. The reflected wave shown by (1.2) is calculated by expanding for small

n, including θref = π − 2θin + O(n), and then substituting the results from §7. For a single-species

this formula reduces to ([52], eqn (41) and (42)). Figure 7 gives a pictorial representation of the

reflection coefficient in (7.12).
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8. Conclusion
We have deduced the effective wavenumbers (1.1) and (1.5), and reflection coefficient (1.2), for a

multi-species material up to moderate number density and over a broad range of frequencies.

This will enable experimental researchers to extract more information about the makeup of

inhomogeneous media (see the electronic supplementary material for self-contained expressions

for the wavenumbers and reflection coefficients in the case of a finite number of species). We also

remark that the results may be extended straightforwardly to multiple scattering from cylinders

in a number of contexts, including two-dimensional electromagnetism.

Characterization is not the only application; this theory can also be employed to design

novel materials. We have shown that multiple scattering between different species can lead to

effective properties that are not exhibited by single-species media. That is, using our multi-

species formulae it is now possible to choose species so as to design impedance matched, highly

dispersive and broad band attenuating materials.

We also saw that the multi-species effective wavenumbers derived in the acoustics literature

were accurate for low frequency and low volume fraction. But to go beyond these limitations,

our more precise effective wavenumber was needed. We also illustrated that a ‘self-consistent’

approach to calculating the effective wavenumber is not even accurate at low frequencies.

Two main issues of our method deserve further investigation: the effects of the boundary layer

near the surface of the halfspace and the QCA. To calculate the reflection coefficient up to second

order in the number density, we neglected the effects of the boundary layer. It is not clear how to

theoretically make progress without these two approximations, nor what errors they introduce.

We believe that these issues represent important future work.
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Appendix A. Efective wavenumber for multi-species spherical inclusions
In this section, we apply our multi-species theory to the results in [21] for spherical inclusions

to reach the effective wavenumber (1.5). Details are omitted when the results follow by direct

analogy. For spheres we define the ensemble-average far-field pattern and multiple scattering

pattern,

〈F◦〉(θ ) = −
∞
∑

n=0

Pn(cos θ )

∫
S

(2n + 1) ds
n
1 (A 1)

and

〈F◦◦〉 =
i(4π )2

2

∞
∑

n=0

∞
∑

p=0

∑

q

∫
S

∫
S

√

(2n + 1)(2p + 1)

(4π )3/2

√

2q + 1G(n, 0; p, 0; q)ka12Dq(ka12) ds
n
1 ds

p
2, (A 2)

where q takes the values

|n − p|, |n − p| + 2, |n − p| + 4, . . . , n + p,
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ds
n
i = ζ n(si)p(si) dsi, Dm(x) = xj′m(x)(xh′

m(x) + hm(x)) + (x2 − m(m + 1))jm(x)jm(x), Pn are Legendre

polynomials, jm are spherical Bessel functions, hm are spherical Hankel functions of the first kind

and

ζm(sj) =
qjj

′
m(kaj)jm(kjaj) − jm(kaj)j

′
m(kjaj)

qjh
′
m(kaj)jm(kjaj) − hm(kaj)j

′
m(kjaj)

= ζ−m(sj), (A 3)

with qj = (ρjcj)/(ρc), where G is a Gaunt coefficient ([21], eqn (A.5)) defined here as

G(n, 0; p, 0; q) =
√

(2n + 1)(2p + 1)(2q + 1)

2
√

4π

∫π

0
Pn(cos θ )Pp(cos θ )Pq(cos θ ) sin θ dθ . (A 4)

Appendix B. Calculating the efective equations (4.6) and (4.5)
In this appendix, we provide an in-depth outline of the derivation for (4.6) and (4.5), which are

given in terms of the unknowns An(x2, s) and k∗. The approach here is similar to Section IV in [5].

We begin by substituting (4.1) and (4.3) into the integral in the governing equation (3.24) which

for x1 > x̄ + a21 takes the form

∫
x2>0

R21>a21

An(x2, s)Φn−m(kR21, Θ21) dx2

= eiβy1 e−i(n−m)π
∫ x̄

0
An(x2, 0, s)Ln−m(x2 − x1) dx2

+ in e−inθ∗ e−i(n−m)πAn
∗ eik∗·x1

∫
X>x̄−x1
R>a21

eik∗·XΦn−m(kR, Θ) dX, (B 1)

where X = x2 − x1 and Y = y2 − y1, so that (R, Θ) are the polar coordinates of X = (X, Y), where

R = R21 and Θ = Θ21 − π , and we define

Φn−m(kR, Θ) := ei(n−m)ΘHn−m(kR), Ln−m(X) :=
∫∞

−∞
eiβYΦn−m(kR, Θ) dY. (B 2)

From eqn (37) of [52], we have

Ln(X) =

⎧

⎪

⎨

⎪

⎩

2

α
(−i)n e−inθin eiαX, for X > 0,

2

α
in einθin e−iαX, for X < 0.

(B 3)

To calculate the last integral in (B 1), it is necessary that k∗ �= k, as k∗ = k leads to a divergent

integrand. Assuming k∗ �= k, we observe that

eik∗·XΦn−m(kR, Θ) =
1

k2 − k2
∗

[Φn−m(kR, Θ)∇2 eik∗·X − eik∗·X∇2Φn−m(kR, Θ)]

because ∇2Φn−m(kR, Θ) = −k2Φn−m(kR, Θ) and ∇2 eik∗·X = −k2
∗ eik∗·X. Then by Green’s second

identity, we obtain

∫
X>x̄−x1
R>a21

[Φn−m(kR, Θ)∇2 eik∗·X − eik∗·X∇2Φn−m(kR, Θ)] dX

=
∫
∂B

[

Φn−m(kR, Θ)
∂ eik∗·X

∂n
− eik∗·X ∂Φn−m(kR, Θ)

∂n

]

ds, (B 4)



23

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20170864
...................................................

where n is the outwards pointing unit normal. For x1 > a21, the region B is given by X > x̄ − x1

and R > a21, so that the boundary ∂B is the circle R = a21 and the line X = x̄ − x1. The integral on

the left-hand side of (B 4) reduces to the form∫
B

eik∗·XΦn−m(kR, Θ) dX =
1

α2 − α2
∗

(M◦ + M−), (B 5)

where k2 − k2
∗ = α2 − α2

∗ . Here, we have [5, eqn (68)]:

M◦ = 2π in−m ei(n−m)θ∗Nn−m(ka12, k∗a12), (B 6)

where Nn−m is defined by (4.8), and

M− = −
∫∞

−∞

[

Φn−m(kR, Θ)
∂ eik∗·X

∂X
− eik∗·X ∂Φn−m(kR, Θ)

∂X

]

dY

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
α∗ + α

α
in−m−1 ei(α∗−α)X ei(n−m)θin , for X < 0,

2
α∗ − α

α
i−(n−m)−1 ei(α∗+α)X e−i(n−m)θin , for X > 0,

(B 7)

for X = x̄ − x1 < 0, which is identical to ([5], eqn (67)) (with the replacements ℓ �→ x̄ and λ �→ α∗,

and where we have included the case X > 0 for future reference).

From (B 5), it follows that (B 1) now becomes∫
x2>0

R21>a21

An(x2, s)Φn−m(kR21, Θ21) dx2 = im eiβy1 [e−imθ∗ eiα∗x1Bn,m + eiαx1 ei(n−m)θinCn,m],

where

Bn,m =An
∗

2π

k2 − k2
∗
Nn−m(ka12, k∗a12) (B 8)

and

Cn,m =
2

α

∫ x̄

0
(−i)nAn(x2, 0, s) e−iαx2 dx2 +

2

α
iAn

∗ e−inθ∗
ei(α∗−α)x̄

α∗ − α
. (B 9)

Substituting the above into (3.24), assuming x1 > x̄ + a21, and cancelling common factors, we

arrive at

eiα∗x1 e−imθ∗

[

Am
∗ + n

∞
∑

n=−∞

∫
S

Bn,m ds
n
2

]

+ eiαx1 e−imθin

[

n

∞
∑

n=−∞
einθin

∫
S

Cn,mds
n
2 + 1

]

= 0, (B 10)

having also used I1 = ei(α∗x1+βy1). As the above must hold for all x1, we can equate the terms in

the brackets to zero, which leads to (4.6) and (4.5).

(a) Efective wave for any pair distribution

To calculate the effective wave for any pair distribution function χ satisfying (3.21), we

substitute (3.19) into (3.24), which leads to an extra integral appearing on the left side of (B 1):∫
R∞

R21>a21

An(x2, s2)Φn−m(kR21, Θ21)χ (R21|s1, s2) dx2

= inAn
∗(s2) e−inθ∗ e−i(n−m)π eik∗·x1

∫
X>x̄−x1

a21<R<ā21

eik∗·XΦn−m(kR, Θ)χ (R|s1, s2) dX

+ e−i(n−m)π
∫

−x1≤X≤x̄−x1
a21<R<ā21

An(x2, s2)Φn−m(kR, Θ)χ (R|s1, s2) dx2,

where X = x2 − x1 and Y = y2 − y1, so that (R, Θ) are the polar coordinates of X = (X, Y), where

R = R21, Θ = Θ21 − π . The second integral on the right is zero when x1 > x̄ + ā21 because then

−x1 ≤ X ≤ x̄ − x1 < −ā21

and X can not satisfy both X < −ā21 and a21 < R < ā21.
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For x1 > x̄ + ā21, the integral over the regions X > x̄ − x1 and a21 < R < ā21 reduces to the just

a21 < R < ā21, so leaving out the factors on the left, and using eik∗·X = eik∗R cos(Θ−θ∗), the integral

becomes ∫
a21<R<ā21

∫ 2π

0
eik∗R cos(Θ−θ∗) ei(n−m)ΘHn−m(kR)χ (R | s1, s2)R dΘ dR,

= 2π in−m ei(n−m)θ∗X∗, (B 11)

where we used the Jacobi–Anger expansion and X∗ is defined by (4.9). In conclusion, we should

sum 2πAn
∗(s2)X∗ to Bn,m, appearing in equations (B 8) and (B 10).

(b) Low number fraction

To calculate k2
∗ we need only equation (4.5), which after substituting (4.10) and

Nm(ka12, k∗a12) ∼
2i

π
+ nK∗1

a212

2
dm(ka21), (B 12)

with dm defined by (4.14), and then equating terms of order O(1) and O(n), leads to

Am
∗0(s1) =

4i

K∗1

∞
∑

n=−∞

∫
S

An
∗0(s2) ds

n
2 (B 13)

and

Am
∗1(s1) − π

∞
∑

n=−∞

∫
S

a2
21dn−m(ka21)An

∗0(s2) ds
n
2

=
4i

K∗1

∞
∑

n=−∞

∫
S

[

An
∗1(s2) − An

∗0(s2)
K∗2

K∗1

]

ds
n
2 . (B 14)

Turning to (B 13), we see that Am
∗0(s1) is independent of both m and s1. Let A∗0 :=An

∗0(s2) =
Am

∗0(s1), then we can divide both sides of (B 13) by A∗0 (assuming A∗0 �= 0), and use (4.12) to

arrive at

K∗1 = −4i〈 f◦〉(0). (B 15)

Turning to (B 14), we see that

F∗ =Am
∗1(s1) − πA∗0

∞
∑

n=−∞

∫
S

a2
21 dn−m(ka21) ds

n
2 (B 16)

is independent of both m and s1, which we use to write (B 14) as

F∗ = −
1

〈 f◦〉(0)

∞
∑

n=−∞

∫
S

An
∗1(s2) ds

n
2 − iA∗0

K∗2

4〈 f◦〉(0)

= −
F∗

〈 f◦〉(0)

∞
∑

n=−∞

∫
S

ds
n
2 − iA∗0

K∗2

4〈 f◦〉(0)
+ A∗0

〈 f◦◦〉(0)

〈 f◦〉(0)
,

where we used (4.13). This simplifies to K∗2 = −4i〈 f◦◦〉(0), which together with (B 15), (4.10) leads

to the effective wavenumber (4.11).
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