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ARTICLE

Distribution and dynamics of Greenland subglacial
lakes
J.S. Bowling 1,2, S.J. Livingstone 2, A.J. Sole 2 & W. Chu 3

Few subglacial lakes have been identified beneath the Greenland Ice Sheet (GrIS) despite

extensive documentation in Antarctica, where periodic release of water can impact ice flow.

Here we present an ice-sheet-wide survey of Greenland subglacial lakes, identifying 54

candidates from airborne radio-echo sounding, and 2 lakes from ice-surface elevation

changes. These range from 0.2–5.9 km in length, and are mostly distributed away from ice

divides, beneath relatively slow-moving ice. Based on our results and previous observations,

we suggest three zones of formation: stable lakes in northern and eastern regions above the

Equilibrium Line Altitude (ELA) but away from the interior; hydrologically-active lakes near

the ELA recharged by surface meltwater and; small, seasonally-active lakes below the ELA,

which form over winter and drain during the melt season. These observations provide

important constraints on the GrIS's basal thermal regime and help refine our understanding of

the subglacial hydrological system.
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O
nly four subglacial lakes have been discovered beneath
the Greenland Ice Sheet (GrIS), despite evidence sug-
gesting a significant proportion of the bed is thawed1,2

and that some of this basal water forms metre-scale diameter
ponds over ~3 cm deep3. Two small (<10 km2) lakes, separated
by a bedrock island, were detected beneath the Bowdoin
Glacier, northwest Greenland, from airborne radio-echo sound-
ing (RES)4. The presence of ice-surface collapse basins in ice-
marginal settings provided evidence for two further active sub-
glacial lakes, recharged by surface meltwater penetrating to the
bed5–7. The scarcity of subglacial lakes identified in Greenland
has been associated with steeper ice-surface slopes, and therefore
a stronger hydraulic gradient, compared to Antarctica8,9. How-
ever, hydrological potential calculations predict that subglacial
lakes could cover ~1.2% of the GrIS bed9, and may constitute a
significant component of the subglacial drainage system in
regions conducive to their formation, such as high subglacial
relief regions in the eastern sector of the ice sheet, or beneath fast-
flowing outlet glaciers, such as the North East Greenland Ice
Stream (NEGIS).

In contrast, over 400 subglacial lakes have been detected
beneath the Antarctic Ice Sheet using a combination of ice-
penetrating radar, ground-based seismic surveys and satellite
surface altimetry10. Antarctic subglacial lakes range in size from
water bodies less than 1 km in length11 to the largest, sub-
glacial Lake Vostok, which is ~250 km long12. Hydrologically
active lakes which fill and drain over decadal or shorter timescales
causing uplift and subsidence of the ice surface, are typically
identified from ice-surface elevation changes and commonly
form close to the ice margin beneath fast-flowing outlet glaciers
and ice streams13–15. Conversely, larger subglacial lakes,
predominantly detected from RES surveys (showing bright,
hydraulically flat, specular bed reflections, typically 10–20 dB
stronger than surrounding bedrock), are located within 200 km of
ice divides and tend to be stable over >103 years10. Antarctic
subglacial lakes have been implicated in initiating ice stream
flow16,17 and causing transient ice accelerations driven by peri-
odic drainage events18–20, highlighting their important role in ice
sheet mass balance, and consequently sea-level rise18. Further-
more, direct sampling of subglacial lake environments has
revealed complex microorganisms adapted to isolated and
extreme conditions21,22.

In this paper, we conduct the first comprehensive survey of
subglacial lakes beneath the GrIS using NASA's Operation Ice-
Bridge (OIB) airborne RES database (1993–2016), in addition to
OIB Airborne Topographic Mapper (ATM) L2 surface elevation
data, and 5 m ArcticDEM composite and 2 m multi-temporal
swaths to detect collapsed ice-surface basins and monitor changes
in ice-surface elevation. Our results reveal a different distribution
of subglacial lakes compared to their Antarctic counterparts, with
a dominance of small subglacial lakes that act as a stable storage
of water above the Equilibrium Line Altitude (ELA).

Results
Radar evidence for subglacial lakes. Inspection of OIB airborne
RES data reveals 54 previously uncharted subglacial lake candi-
dates beneath the GrIS, accounting for 0.025% of the ~574,000
km of flight lines analysed (Supplementary Figs. 1–34). These are
identified based on two methods: first, qualitative visual inspec-
tion for the presence of hydraulically flat and specular bed
reflectors, analogous to subglacial lakes identified in Antarctic
surveys23,24; second, quantitative relative basal reflectivity analysis
where subglacial lakes are identified by basal reflectivity exceeding
1σ, 2σ or 3σ above the mean reflectivity within a 10 km radius
surrounding region25 (Fig. 1). We categorise our results using

four confidence levels. Low confidence where the potential lake
reflector is hydraulically flat, but relative basal reflectivity
anomalies are not found (Fig. 1a), or the reflector is not
hydraulically flat, but exhibits reflectivity anomalies over 1σ above
the mean of the surrounding region. Medium/high/very high
confidence where the hydraulically flat reflector coincides with
relative basal reflectivity exceeding 1σ/2σ/3σ above the mean of
the surrounding region (Fig. 1b–h). Our results classify only 7%
of subglacial lakes as low confidence, while 44% of the lakes
identified in this study are ranked as either high or very high
confidence (Supplementary Table 1). For the more uncertain lake
candidates (i.e., low and medium confidence) that do not have an
obvious flat reflector or with a relative basal reflectivity <2σ, we
acknowledge that our approach cannot clearly differentiate very
shallow lakes from flat areas of saturated sediment (akin to the
fuzzy Antarctic lakes26).

Of the lake candidates identified using RES, 35% were surveyed
multiple times between 1993 and 2016, allowing us to investigate
their minimum persistence (Supplementary Table 1). Signifi-
cantly, all of these subglacial lakes were detected quantitatively by
high relative reflectivity indicative of basal water in each of the
years surveyed, suggesting that they persisted through the period
of data availability. This includes 8 lakes with RES data covering
2–5 years, 8 lakes with 13–16 years of RES data and 3 lakes
that have RES data across 20 years (Supplementary Table 1).
The absence of any surface elevation changes indicative
of drainage or filling in both the multi-temporal OIB IceBridge
L2 ATM data (2009–2017), covering 48% of RES lakes,
and timestamped ArcticDEM data (2012–2016), across all RES
lakes, provides further support that these lakes are stable and
therefore persistent features. Together, these data provide
evidence that all RES identified lakes are stable over multiple
years, with 20 persisting for at least 10 consecutive years
(Supplementary Table 1).

Ice surface collapse basins. Analysis of surface depressions with
depth-to-area ratios equivalent to collapse basins previously
linked to subglacial lake drainages (see methods)6, revealed two
new surface depressions situated about 35 km apart, between
Sermeq and Sioqqap Sermia glaciers in southwest Greenland
(Fig. 2). The depressions measured ~0.18 and ~0.64 km2 in 2012
and are approximately 15.4 and 18.1 m deep, respectively (using
the ArcticDEM 2m resolution swath data). Surface elevation
change, measured from multi-temporal ArcticDEM swaths,
revealed ~11 ± 0.2 m uplift of the northern basin (Fig. 2a) and
~14 ± 0.2 m uplift of the southern basin between 2012 and 2015
(Fig. 2b). Landsat 4, 5, 7 and 8 imagery shows evolution from
surface depressions to dome-like features through continued
uplift (Fig. 2c–j). We interpret these as collapse basins that are
slowly filling following subglacial lake drainage events6. Based on
the timestamped ArcticDEM data and Landsat imagery, although
equivocal, recharge at the northern collapse basin is estimated to
have been occurring for >5 years, though the subglacial lake
drainage event was not identified (Fig. 2a). For the southern
collapse basin, a major depression appears in the Landsat imagery
around 2001 and repeat imagery indicates that the depression has
since shrunk in area (Fig. 2h–j), suggesting that the subglacial lake
beneath has been refilling for a period of 17 years (2001–2018) so
far. Observations of surface meltwater ponding, moulins (Fig. 2c)
and sudden supraglacial lake drainage in this region may indicate
at least partial recharge of the subglacial lake by meltwater
draining to the bed7. No RES flight lines run directly through
these lakes, therefore we cannot determine whether, like Ant-
arctica, the radar records for these active lakes show an absence of
lake reflectors27.
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Distribution of identified subglacial lakes. The spatial dis-
tribution of subglacial lakes beneath the GrIS is illustrated in
Fig. 3. We observe three main clusters of subglacial lakes in
north-western, northern and central-eastern Greenland, which
coincide with recent observations of ponded water from radar
signal characteristics3. The minimum length of lake reflectors
ranges from 0.2 to 5.9 km, with a mean of 1.4 km (Fig. 4a). The
largest lakes (>3 km length) are located in the central-eastern

sector of the ice sheet, while the smallest lakes (<0.5 km length)
are predominantly situated in northwest Greenland (Fig. 3). The
thickness of the ice overlying the identified subglacial lakes ranges
from ~300 to 3200 m, with an average of 1647 m (Fig. 4b). Few
subglacial lakes (22%) are located within 50 km of the margin,
and lakes are generally absent beneath major ice divides (Fig. 4c)
and fast-flowing outlet glaciers (Fig. 3). Most lakes (74%) are
found beneath relatively slow-moving ice (<15 m a–1). Subglacial
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Fig. 1 Example RES profiles for 13 subglacial lakes identified beneath the Greenland Ice Sheet in this study and the surrounding bed topography. Relative

basal reflectivity values (1–3σ) are indicated by the blue-purple circles. Lakes are depicted by a bar colour-coded according to the confidence level (see

Fig. 3). The bedrock elevation (black) and hydraulic potential (blue) are shown in the graphs below. a Lakes 32–34 along flight line 20120516_01_059,

b lake 39 along flight line 20120503_03_037, c lakes 24–25 along flight line 20110329_01_019, d lakes 56–57 along flight line 19930702_01_012, e lake 29

along flight line 20140313_08_001, f lake 45 along flight line 20140424_01_033, with reflectivity values for years 2011 and 2014, g lakes 18–19 along flight

line 20020530_01_007, with reflectivity values for years 2002, 2007 and 2011, h lakes 30–31 along flight line 20140313_08_002
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lakes appear in a variety of topographic settings; a third of
lakes occur in regions of low relief confined by small bedrock
bumps (≤10% bedrock gradient), while nearly a quarter of sub-
glacial lakes are surrounded by steep bedrock hills (>30%
gradient).

The spatial distribution of simulated subglacial lakes beneath the
GrIS, following hydraulic potential analysis methods9, updated for
BedMachine v328 (150m resolution) is shown in Fig. 5a. Only 32%
of our identified subglacial lakes are located within 1 km of estimated
hydraulic minima (f= 0.9). This is reduced to 9% when a flotation
fraction of f= 1 is applied. The majority of subglacial lakes coincide
with regions of estimated geothermal heat flux29 between 50 and 61
mWm−2 (Fig. 5b), while central-eastern lakes mostly appear in the

zone of elevated geothermal heat flux (>66mWm−2). Figure 5c
displays locations of identified subglacial lakes in relation to basal
thermal state predictions, estimated using thermomechanical ice flow
modelling, radiostratigraphy, surface ice velocity and borehole
observations1. 20% of subglacial lakes identified in the RES data
are situated in the likely frozen region, all of which are found in
central-eastern Greenland, a quarter of lakes are located in the likely
thawed region, predominantly in north-western Greenland, and the
remaining 55% are detected in regions where the predicted basal
thermal state is uncertain (Fig. 5c). The majority (63%) of subglacial
lakes in this study are found in regions of relatively high
(dimensionless) bed roughness (>1.29), towards the margins
(Fig. 5d).
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Discussion
The subglacial lake candidates identified in this study differ from
those observed in Antarctica, both in terms of topographic setting
and size. Antarctic subglacial lakes detected by RES typically
occur in close proximity to ice divides under thick (>4000 m),
warm-based ice30, with the largest subglacial lakes occupying
tectonically controlled topographic depressions31,32. In contrast,
Greenland subglacial lakes are typically absent beneath the iso-
statically depressed, smooth interior basin along the main N–S ice
divide, and are instead concentrated toward the ice margin. In
the centre of the GrIS, ice is largely frozen to its bed1, with water
becoming more prevalent towards the margin where ice surface
speeds are typically higher2 and surface-to-bed hydraulic con-
nectivity more likely. This is in contrast, however, to a recent
analysis of radar signal characteristics which suggests extensive
ponded water around the North GRIP drill site at the onset of the
NEGIS3. The largest GrIS subglacial lakes are constrained by
steep bedrock relief in the East Greenland subglacial mountain
chain, whereas the smaller lakes (<2 km) tend to be prevalent in
regions associated with low subglacial roughness, such as north-
west Greenland33. On average, GrIS subglacial lakes are nearly
eight times shorter than their Antarctic counterparts (1.4 km
compared to 11 km on average in Antarctica, excluding Lake
Vostok34), reflecting the steeper average ice-surface (and thus
subglacial hydraulic) gradient and different bed topographic
settings controlling the locations of subglacial lakes. In particular,
Greenland bed topography is relatively flat and well-organised
with respect to ice flow28, whereas the topography beneath
Antarctica is more complex35, and therefore offers sites where
large volumes of basal water can be stored e.g., Subglacial Lake
Vostok, Concordia and Ellsworth.

About 40% of identified subglacial lakes in Antarctica are active
(i.e., evidence of drainage/filling from ice-surface elevation
changes), and these are mostly found beneath ice streams in West
Antarctica36. In contrast, we observe only two further examples of
active subglacial lakes in Greenland (4 in total; 6.7% of all dis-
covered lakes), and a general absence of subglacial lakes beneath
fast-flowing outlet glaciers. This could be due to the reliance on
altimetry methods rather than RES techniques to resolve active
lakes36. However, as well as assessing surface elevation changes
above RES-detected lakes using both timestamped ArcticDEM
and OIB IceBridge ATM2 datasets, we also carried out an ice-
sheet wide survey for ice surface collapsed basins using the 5 m
resolution ArcticDEM v2.0 mosaic37 (see methods), finding just
two collapsed ice basins consistent with lake drainage events
(Fig. 2).

There is a general paucity of lakes in fast-flowing western and
southern sectors of the GrIS, and beneath the NEGIS (Fig. 3),
despite hydraulic potential9 and bed reflectivity analysis2,3 pre-
dicting widespread basal water in these regions. The southern and
western sectors of the GrIS have extensive ablation areas where
large volumes of surface meltwater are generated each sum-
mer38,39. Lakes in the ablation area may be more difficult to
detect from airborne radar because the ice is thin, and the ice-
surface is rougher and steeper than further inland. In addition, we
hypothesise that the drainage of this meltwater to the bed inhibits
subglacial lake formation on annual or longer timescales, due to
the seasonal evolution of efficient subglacial drainage systems able
to connect and drain stored water to the ice margin40. Evidence of
seasonal subglacial water storage from RES data supports this;
water is stored on bedrock plateaus during the winter and flushed
out during summer when efficient subglacial drainage develops41.
These small, seasonally active subglacial lakes are difficult to
resolve from monitoring ice-surface elevation alone due to large
seasonal mass changes in the ablation zone, including the drai-
nage and filling of supraglacial lakes, which can coincide with
subglacial lake locations42. Over longer time-scales, focused ero-
sion by subglacial water cutting channels into the bed beneath
fast-flowing southern and western sectors (e.g., due to the per-
ennial drainage of supraglacial lakes) and the NEGIS (e.g., due to
geothermal and frictional basal melting) may lead to the removal
of hydraulic minima43,44. This may explain why the few active
subglacial lakes large and stable enough to be detected under the
GrIS are found in close proximity to the ELA, where there is less
surface melting and where the formation of efficient subglacial
drainage is inhibited by thicker ice and low surface slopes45,46.
More persistent, RES-detected subglacial lakes, are associated
with regions of low melt input variability; the majority of sub-
glacial water recharging these lakes is generated from elevated
geothermal heat flux rather than surface melt (the region of
surface lakes only coincides with one RES detected subglacial
lake–Fig. 3)29. Finally, the lack of subglacial lakes detected
beneath the fast-flowing southern and western sectors of the GrIS
and the NEGIS may represent a limitation of our approach. In
particular, we consistently struggle to discriminate lakes in uni-
formly thawed regions1 (Fig. 5c), where they are predicted to be
prevalent9, likely because extensive water/saturated sediment
results in a higher mean reflectivity and thus reduced relative
contrast of the lake compared to background bed conditions. This
may partially explain the discrepancy with previous studies which
find extensive ponded water at the onset of and beneath the
NEGIS3.
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The recall of just 32% of the identified subglacial lakes by
hydraulic potential analysis using a flotation fraction of f= 0.9
(Fig. 5a) contrasts with similar analyses in Antarctica that suc-
cessfully recall >50% of the known subglacial lakes9,47. We sug-
gest three reasons why hydraulic potential analysis is less useful at
predicting subglacial lakes in Greenland, even under steady state
basal conditions. Firstly, there is a clear size bias, with larger lakes
being generally easier to recall9. As Greenland lakes are on
average 8 times shorter than those in Antarctica, they are typi-
cally more difficult to discern from the hydraulic potential ana-
lysis. However, recall of subglacial lakes is still low even in regions
of the ice sheet characterised by high data coverage and low bed
error, such as northwest Greenland (Fig. 5a), where we would
expect smaller hydraulic minima to be more accurately con-
strained. We therefore posit that low bed roughness in areas such
as northwest Greenland33,48 (Fig. 5d), makes it more difficult to
accurately pick out hydraulic minima because there is a
small difference in elevation between the lake surface and basin
lip (0% recall in northwest Greenland using a flotation fraction of
f= 0.9). In contrast, regions with higher bed roughness, such as
north-eastern Greenland33 have correspondingly higher recall
rates (44%), and indeed, like Antarctica, lakes that form in deep
topographic depressions also tend to be larger. Finally, only 25%
of low and 31% of medium confidence lake candidates fall within

1 km of hydropotential lows, compared to 50% for very high
confidence lakes, supporting the inference that these lower con-
fidence lakes may actually comprise regions of swampy saturated
sediment rather than well-defined lake basins26.

We have shown that subglacial lakes are more prevalent in
Greenland than previously assumed. These subglacial lake candi-
dates are repeatedly identified in RES data, suggesting that they
could act as long-term meltwater reservoirs; active drainage of
lakes towards the ice sheet margin is restricted or difficult to
detect. The majority of subglacial lakes are concentrated in the
uncertain regions of predicted basal thermal state1 where ice sheet
models and ice-penetrating radar do not agree on whether the bed
is frozen or thawed. As our method is based on relative bed echo
strength, it is likely to pick out lakes surrounded by colder, less
reflective bed material more easily, compared to lakes surrounded
by warm-bedded regions (e.g., beneath the NEGIS). Thus, our
results may indicate that this uncertain region is heterogenous (a
mosaic of cold and warm basal conditions) on length scales that
enable us to detect multiple water pockets from RES, but which
ice-sheet models running at coarser resolution would have diffi-
culty resolving. The lack of alignment between RES-detected lakes
and hydraulic potential analyses may therefore occur because
subglacial water is spatially constrained by the prevalence of fro-
zen bed conditions rather than topography43. The presence

Fig. 5 Comparison between location of identified subglacial lakes and predicted lakes, geothermal heat flux, basal thermal state and bed roughness.

a Predicted subglacial lake locations, using Shreve hydraulic potential equation and varying flotation fractions (f) overlain on the BedMachine DEM error

map28. Lakes in black coincide with hydraulic minima (using f= 0.9), whilst those in red were not successfully predicted. b Estimated geothermal heat flux

derived from magnetic data29. c Predicted basal thermal state1 (blue= likely frozen, white= uncertain, red= likely thawed). d Dimensionless bed

roughness beneath the GrIS33, measured using the fast Fourier transform approach which converts bed topography (derived from radar echo sounding)

into the frequency domain. Known subglacial lakes in existing literature are shown by black circles (RES-detected) and squares (detected through elevation

changes). Deep ice core locations are depicted by black triangles. Lakes identified in this study are shown by circles, and the size of the circle is

proportional to the minimum length of the lake reflector
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Above the equilibrium line altitude (ELA) but away from ice divides, where the bed is predicted to comprise a heterogeneous patchwork of frozen and

warm-bedded conditions, subglacial lakes are relatively common but stable features. Around the ELA, subglacial lakes are hydrologically active and

recharged seasonally by inputs of surface water. Finally, relatively numerous small subglacial lakes that drain on seasonal timescales when efficient

subglacial networks develop during the melt season likely exist in the ablation zone
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of subglacial lakes scattered within these uncertain regions conse-
quently helps to further constrain the thermal state of the bed.

Similar to previous investigations4–7 we suggest that
the actively draining lakes in southwest Greenland are recharged
by seasonal surface meltwater transferred to the bed due to the
association of these locations with surface meltwater ponding and
drainage. Although further study is required to assess the net
influence of subglacial lakes on GrIS dynamics, it is likely to be
limited due to the paucity of active lakes large enough to induce
dynamic surface height changes, their proximity to the margin,
and the strong control of surface meltwater in determining the
character of subglacial drainage and its influence on ice-sheet
dynamics. However, this inventory of Greenland subglacial lakes
could be utilised to locate candidates for direct sampling. Seasonal
surface meltwater transporting microbial life, minerals, organic
matter and pollutants into the hydraulically connected subglacial
system may have important implications for basal biogeochem-
istry, while their sedimentary deposits contain an archive of ice
sheet evolution49 and palaeoenvironmental change50.

There is little doubt that our inventory, although representing a
significant augmentation of the number of identified lakes, is
incomplete and further subglacial lakes remain to be discovered
with continued expansion and repetition of OIB flights, in
addition to the launch of NASA’s IceSat-2 satellite enabling
improved active subglacial lake identification. However, the dis-
tribution (Fig. 3), size (Fig. 4a) and activity (Supplementary
Table 1) of identified subglacial lakes allows us to propose a
conceptual model of GrIS subglacial water storage and dynamics
(Fig. 6). Beneath the ice sheet interior there is limited detectable
water storage due to the frozen and flat bed. Where the bed is
inferred to comprise a heterogeneous patchwork of frozen and
warm-bedded conditions, isolated subglacial lakes persist from
year to year. Regions characterised by high relief basal topography
and geothermal heat flux sustain the largest lakes (e.g., large parts
of East Greenland). We identify a range of lake detection con-
fidence levels, with some lakes clearly distinguishable, whereas
others are less distinct and may represent shallow water lenses or
even patches of saturated sediment. Around the ELA, there is
some evidence of hydrologically active lakes recharged seasonally
by inputs of surface water6. However, relatively numerous small
subglacial lakes that drain on seasonal timescales when efficient
subglacial networks develop during the melt season, likely exist in
the ablation zone41. These lakes are difficult to detect from
monitoring surface elevation due to their small size and the large
seasonal surface mass changes in the ablation zone. Although we
do not identify many subglacial lakes beneath fast-flowing warm-
based regions of the ice-sheet, we do not rule out significant
additional water storage here given the potential limitations of
our approach for effectively identifying lakes where the mean
reflectivity is high. Long-term basal meltwater storage beneath the
region beyond the ELA could be activated in the future as the
ablation area migrates inland51. The resulting increased input of
meltwater to the bed at higher elevations could open new sub-
glacial drainage pathways through enhanced sliding and poten-
tially connect this dormant storage to the ice sheet margin.

Method
Subglacial lake identification from radio-echo sounding. We analysed OIB
airborne RES profiles collected between 1993 and 2016 and obtained from the
Center for Remote Sensing of Ice Sheets (CReSIS) archive (http://data.cresis.ku.
edu)52. A number of RES instruments (Improved Coherent Radar Depth Sounder
(ICORDS), Multi-Channel Radar Depth Sounder (MCRDS), and Multi-Channel
Coherent Radar Depth Sounder (MCoRDS)) on board various NASA aircraft were
used, which have a frequency range of 140–230MHz and a transmit power of
200–2000W. We used the L1B synthetic aperture radar (SAR) products for our
analysis, which were processed by CReSIS. The basic processing steps included
pulse compression with time and frequency windowing, followed by compensation

for aircraft motions. The data were then stacked coherently before application of
focused SAR processing. The depth range resolution in ice after the final processing
was ~4.3 m with a final product along-track resolution of ~25 m. Bed depths were
defined by the returned bed echoes identified by CReSIS with automatic detectors
and manual pickers.

We interrogated over 574,000 km of radar echograms for subglacial lakes based
on two metrics: first, qualitative visual inspections for hydraulically flat and smooth
bed reflectors23,24,26, second, quantitative analysis of bed reflectivity53. Relative
basal reflectivity, determined from the bed returned power, is a well-established
method for detecting subglacial water and basal conditions beneath both the
Antarctic Ice Sheet53–59 and the GrIS25,41,44. Studies typically suggest anomalies of
10–20 dB constitute a suitable threshold for distinguishing wet and dry beds,
however, this threshold is sensitive to basal roughness; high reflectivity anomalies
can also be associated with a smooth, flat bed and saturated sediment48. We
therefore use relative basal reflectivity thresholds based on the statistics of the bed
returned power within a 10 km radius around the identified lake (1σ, 2σ and 3σ
from the mean), together with hydraulically flat reflectors at the ice-bed interface,
to delineate subglacial lakes. Following the qualitative identification of subglacial
lakes in the RES data, lakes were classified based on the coincidence of horizontal
reflectors and high relative basal reflectivity. Confidence levels range from low
confidence (a flat reflector but low relative reflectivity) to very high confidence (a
flat reflector which is three standard deviations above the mean).

Surface collapse basin identification. In addition to RES analysis, we applied a
simple technique to identify potential collapse basins in the surface of the ice sheet,
which are indicative of subglacial lake drainage and recharge events6,7. We
removed the sinks in the high resolution (5 m) ArcticDEM (v2.0) from the Polar
Geospatial Center37 and then subtracted this from the original DEM to identify
topographic surface depressions. These ice-surface depressions were then classified
based on the similarity of their depth-to-area ratios to existing collapse basins
(21.07 m to 0.55 km2). Multi-temporal ArcticDEM strip files (2012–2016) at 2 m
resolution enabled elevation change detection, providing additional information
about potential subglacial lake drainage events.

Surface elevation change measurements using Operation IceBridge ATM.
OIB Airborne Topographic Mapper (ATM) Level-2 Icessn Elevation, Slope and
Roughness version 2 dataset, provided and processed by National Snow and Ice
Data Center (NSIDC)60, were used to assess the activity of subglacial lakes detected
in the RES data. This laser altimeter system provides swath surface elevation
measurements at a sampling frequency of 5 kHz, cross-track width of ~400 m, and
a footprint diameter of ~1 m. Co-located measurements are repeated annually
(2009–2017), providing a surface elevation time series for each identified
subglacial lake.

Hydraulic potential analysis. To calculate hydraulic potential gradients, we apply
the Shreve61 hydraulic potential equation using BedMachine v328 (150 m resolu-
tion) bed elevation and ice thickness data, following methods outlined in a previous
study9. Minima in the hydraulic potential surface were identified using Topo-
Toolbox62, a Matlab-based software. Hydraulic potential surfaces were calculated
for a range of flotation fraction values from 0.8 to 1.11 to test the sensitivity of lake
locations to changes in water pressure.

Data availability
Radar echo sounding data are freely available from CReSIS/ NASA Operation IceBridge

and accessed via the National Snow and Ice Data Center (NSIDC) archive (https://data.

cresis.ku.edu/data/rds/). MEaSUReS InSAR ice velocity measurements were also accessed

from NSIDC via https://doi.org/10.5067/IAGYM8Q26QRE. NASA Operation IceBridge

BedMachine Greenland v3 ice thickness and surface data are available through NSIDC at

http://nsidc.org/data/IDBMG4. DEMs provided by the Polar Geospatial Center under

NSF OPP awards 1043681, 1559691 and 1542736. The Landsat images used for this work

are available from the US Geological Survey via http://earthexplorer.usgs.gov/. Predicted

basal thermal state of the Greenland Ice Sheet data are freely available from the NSIDC

Distributed Active Archive Centre at https://nsidc.org/data/RDBTS4.

Code availability
The data that support the findings of this study are available from the corresponding

author upon request.
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