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 69 

The identity of the dominant microbial symbionts in a forest determines the ability 70 

of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester 71 

carbon3,4 and withstand the impacts of climate change1-7. Characterizing the global 72 

distribution of symbioses, and identifying the factors that control it, are thus integral to 73 

understanding present and future forest ecosystem functioning. Here we generate the first 74 

spatially explicit map of forest symbiotic status using a global database of 1.2 million forest 75 

inventory plots with over 28,000 tree species. Our analyses indicate that climatic variables, 76 

and in particular climatically-controlled variation in decomposition rate, are the primary 77 

drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal 78 

(EM) trees, which represent only 2% of all plant species8, constitute approximately 60% of 79 

tree stems on Earth. EM symbiosis dominates forests where seasonally cold and dry 80 
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climates inhibit decomposition, and are the predominant symbiosis at high latitudes and 81 

elevation. In contrast, arbuscular mycorrhizal (AM) trees dominate aseasonally warm 82 

tropical forests and occur with EM trees in temperate biomes where seasonally warm-and-83 

wet climates enhance decomposition. Continental transitions between AM and EM 84 

dominated forests occur relatively abruptly along climate driven decomposition gradients, 85 

which is likely caused by positive plant-microbe feedbacks. Symbiotic N-fixers, which are 86 

insensitive to climatic controls on decomposition compared with mycorrhizal fungi, are 87 

most abundant in arid biomes with alkaline soils and high maximum temperatures. The 88 

climatically driven global symbiosis gradient we document represents the first spatially-89 

explicit, quantitative understanding of microbial symbioses at the global scale and 90 

demonstrates the critical role of microbial mutualisms in shaping the distribution of plant 91 

species. 92 

Microbial symbionts strongly influence the functioning of forest ecosystems. They 93 

exploit inorganic, organic2 and/or atmospheric forms of nutrients that enable plant growth1, 94 

determine how trees respond to elevated CO2
6, regulate the respiratory activity of soil 95 

microbes3,9,  and affect plant species diversity by altering the strength of conspecific negative 96 

density dependence10. Despite growing recognition of the importance of root symbioses for 97 

forest functioning1,6,11 and the potential to integrate symbiotic status into Earth system models 98 

that predict functional changes to the terrestrial biosphere11,12, we lack spatially-explicit, 99 

quantitative maps of the different root symbioses at the global scale. Generating these 100 

quantitative maps of tree symbiotic states would link the biogeography of functional traits of 101 

belowground microbial symbionts with their 1.5 trillion host trees13, spread across Earth’s 102 

forests, woodlands, and savannas.  103 
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The dominant guilds of tree root symbionts, arbuscular mycorrhizal (AM) fungi, 104 

ectomycorrhizal (EM) fungi, ericoid mycorrhizal (ErM) fungi, and nitrogen (N)-fixing bacteria 105 

(N-fixer) are all based on the exchange of plant photosynthate for limiting macronutrients. The 106 

AM symbiosis is the oldest of the four, having evolved nearly 500 million years ago, with EM, 107 

ErM and N-fixer plant taxa having evolved multiple times from an AM basal state. Plants that 108 

form the AM symbiosis are markedly more diverse than the other symbiotic groups, comprising 109 

nearly 80% of all terrestrial plant species, and principally rely on AM fungi for enhancing 110 

mineral phosphorus (P) uptake14. EM fungi evolved more recently from saprotrophic ancestors, 111 

and as a result may be better than AM fungi at competing with free living soil microbes for 112 

resources3. As such, some EM fungal lineages are more capable of mobilizing organic sources of 113 

soil nutrients (particularly nitrogen) compared with AM fungi15,16. Association with EM fungi, 114 

but not AM fungi, has been shown to allow trees to accelerate photosynthesis in response to 115 

increased atmospheric CO2 when soil nitrogen (N) is limiting6 and to inhibit soil respiration by 116 

decomposer microbes3,9 (but see 17). Because increased plant photosynthesis and decreased soil 117 

respiration both reduce atmospheric CO2 concentrations, the EM symbiosis is associated with 118 

buffering the Earth’s climate against anthropogenic changes.   119 

In contrast to mycorrhizal fungi, which extract nutrients from the soil, symbiotic N-fixers 120 

(Rhizobia and Actinobacteria) convert atmospheric N2 to plant-usable forms. Symbiotic N-fixers 121 

are responsible for a large fraction of biological soil-N inputs, which can increase N-availability 122 

in forests where they are locally abundant18. Both N-fixing bacteria and EM fungi often demand 123 

more plant photosynthate than does the AM symbiosis14,19,20. Because tree growth and 124 

reproduction are limited by access to inorganic, organic and atmospheric sources of N, the 125 

distribution of these root symbioses is likely to reflect both environmental conditions that 126 
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maximize the cost-benefit ratio of symbiotic exchange as well as physiological constraints on 127 

different symbionts.   128 

 In one of the earliest efforts to understand the functional biogeography of plant root 129 

symbioses, Sir David Read21 categorically classified biomes by their perceived dominant 130 

mycorrhizal type and hypothesized that seasonal climates favor hosts associating with EM fungi 131 

due to their ability to compete directly for organic N. By contrast, it has been proposed that 132 

sensitivity to low temperatures has prevented N-fixers from dominating outside the tropics, 133 

despite the potential for N-fixation to alleviate N-limitation in boreal forests20,22. However, 134 

global scale tests of these proposed biogeographic patterns and their proposed climate drivers are 135 

lacking or inconclusive23-25 and we have no understanding of the regional variations in this 136 

proposed latitudinal trend. To address this research gap, we compiled the first global ground-137 

sourced survey database to reveal numerical abundances of each symbiosis across the global 138 

forested biomes, rather than incidence (presence or absence, e.g.,23-25), which is essential for 139 

identifying the shapes and potential mechanisms underlying transitions in forest symbiotic state 140 

along climatic gradients26,27. 141 

We determined the abundance of tree symbioses using GFBi, an extension from the plot-142 

based Global Forest Biodiversity (GFB28) database, which contains over 1.2 million forest 143 

inventory plots of individual-based measurement records from which we derive abundance 144 

information for entire tree communities (Figure 1).  145 
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 146 

Figure 1. A map of 1 by 1 degree grid cells where we analyzed the proportion of tree stems 147 

and basal area for different symbiotic guilds (above). Circles show the location of training 148 

data, colored by geographic origin, while black squares show the extent of model 149 

projections. Panels below the map show actual vs. predicted proportion of basal area for 150 

ectomycorrhizal (EM), arbuscular mycorrhizal (AM), and N-fixer trees by continent and 151 

subregion, and demonstrate globally consistent model performance. 152 
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Using published literature on the evolutionary histories of mycorrhizal and N-fixer 153 

symbioses8,25,29-33, we assigned plant species from the GFBi to one of 5 symbiotic guilds:  AM, 154 

EM, ErM, N-fixer, and non- or weakly-mycorrhizal (NM). Most plants with symbioses derived 155 

from the AM state retain the genetic potential to associate with AM fungi14. Thus, consistent 156 

with other studies in this field29, we assigned tree species to the AM-exclusive guild if they were 157 

not EM, ericoid mycorrhizal, non-mycorrhizal, or N-fixers. While there is some uncertainty in 158 

such assignments, direct investigation of mycorrhizal status when done supports this 159 

assumption34.  Because individual measurements of mycorrhizal colonization are not possible at 160 

this scale, our models represent potential symbiotic associations. 161 

To identify the key factors structuring symbiotic distributions we assembled 70 global 162 

predictor layers:  19 climatic (annual, monthly, and quarterly temperature and precipitation 163 

variables), 14 soil chemical (total soil N density, microbial N, C:N ratios and soil P fractions, 164 

pH, cation exchange capacity), 5 soil physical (soil texture and bulk density), 26 vegetative 165 

indices (leaf area index, total stem density, enhanced vegetation index means and variances), and 166 

5 topographic variables (elevation, hillshade) (Table S7). Because decomposition is the dominant 167 

process by which soil nutrients become available to plants, we generated 5 additional layers that 168 

estimate the climatic control of decomposition. We parameterized decomposition coefficients 169 

according to the Yasso07 model35,36 using the following equation: 170 

k = Exp(0.095Ti - 0.00014 Ti2) (1-Exp[ -1.21 Pi]),     (1)
 171 

where Pi and Ti are precipitation and mean temperature, either quarterly or annually, and the 172 

constants 0.0095 (=ȕ1) =0.00014 (=ȕ2) , and -1.21 (=Ȗ) are parameters fit using a previous global 173 

study of leaf litter mass-loss36. Although local decomposition rates can vary significantly based 174 

on litter quality or microbial community composition37, climate is the primary control at the 175 
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global scale36. Decomposition coefficients describe how fast different chemical pools of leaf 176 

litter lose mass over time relative to a parameter, Į, that accounts for leaf-chemistry. 177 

Decomposition coefficients (k) with values of 0.5 and 2 indicate a halving and doubling of 178 

decomposition rates relative to Į, respectively (Supplemental Materials).  179 

Given the large set of possible environmental predictors, we used the random forest 180 

machine-learning algorithm to identify the best predictors of global symbiosis distributions. The 181 

random forest algorithm averages multiple regression trees, each of which uses a random subset 182 

of all the model variables to predict a response. These regression trees identify optimal values 183 

along a predictor-gradient to “split” the model response into different nodes (e.g., predictions 184 

could be “split” into nodes of 50 or 75% of EM basal area depending on whether mean annual 185 

temperature is > or < 20°C). We ranked the importance of each variable according to inc node 186 

purity, which measures the decrease in model error that occurs whenever the response is split on 187 

that variable (Figure 2ABC). We first determined the influence and relationship of all 75 188 

predictor layers on forest symbiotic state and then optimized our models using a stepwise 189 

reduction in variables, from least- to most-important. Soil chemical, vegetative, and topographic 190 

variables were the first to be eliminated from our models in this way. In a subsequent model that 191 

included only layers of climate, decomposition, and certain soil physical and chemical 192 

information, we found that the 4 most important variables accounted for >85% of the explained 193 

variability. We plot the partial-fits of these four variables for each symbiotic guild (Figure 194 

2ABC). 195 
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Figure 2.  Partial plots of residual variation explained by the four most important 196 

predictors of the proportion of tree basal area belonging to the (A) ectomycorrhizal (EM), 197 

(B) arbuscular mycorrhizal (AM), and (C) N-fixer symbiotic guilds. Variables are listed in 198 

declining importance from left to right, as determined by inc node purity, with points 199 

colored with a red-green-blue gradient according to their position on the x-axis of the most 200 

important variable (left-most panels for each guild), allowing cross visualization between 201 

predictors. Each panel lists two measures of variable importance, inc node purity (used for 202 

sorting) and %IncMSE (see Supplemental Information for description). Decomposition 203 

rates in (A) and (B) are in units of leaf litter mass loss per quarter. The abundance of each 204 

symbiont type transitions sharply along climatic gradients, suggesting that sites near the 205 

threshold are particularly vulnerable to switching their dominant symbiont guild with 206 

climate changes.  207 

 208 

The three most numerically abundant tree symbiotic guilds each have reliable 209 

environmental signatures, with the four most important predictors accounting for 81, 79, and 210 

52% of the total variability in EM, AM, and N-fixer relative basal area, respectively. Models for 211 
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ErM and NM lack strong predictive power given the relative rarity of these symbiotic states 212 

amongst trees, although the raw data do identify some local abundance hotspots for ErM (Figure 213 

S1).  As a result, we focus the remainder of results and discussion on the three major tree 214 

symbiotic states (EM, AM, N-fixer). Despite the fact that data from N. and S. America constitute 215 

65% of the training data (at the 1 by 1 degree grid scale), our models accurately predict the 216 

proportional abundances of the three major symbioses across all major geographic regions 217 

(Figure 1). The high performance of our models, which is robust to both K-fold cross-validation 218 

and rarefying samples so that all continents are represented with equal depth (Figures S10-12), 219 

suggest that regional variations in climate (including indirect effects on decomposition) and soil 220 

pH (for N-fixers) are the primary factors influencing the relative dominance of each guild at the 221 

global scale (geographic origin only explained ~2-5% of the variability in residual relative 222 

abundance) (Figure 1BCD, Table S8).  223 

Random forest models should not be projected across predictor gradients that fall outside 224 

the ranges of their training data (e.g., grid cells with higher mean annual temperatures than the 225 

maximum used to fit the models). To prevent the over-projecting of our models over pixels 226 

where we lacked training data, we subset a global grid of predictor layers depending on whether 227 

(1) the grid cell fell within the top 60% of land surface with respect to tree stem density13 and 228 

either (2) fell within the univariate distribution of all the predictor layers from our training data 229 

and/or (3) fell  within an 8-dimensional hypervolume defined by the unique set of the 4-best 230 

predictors of the relative abundance of each guild (Figure 2, Supplemental Materials). We then 231 

projected our models across only those grid cells that met these criteria, which constitutes 46% 232 

of the global land surface and 88% of global tree stems (Figure 1; Figure S16). While model 233 

validation indicates that our projections are robust, additional ground truthing of predictions to 234 
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identify any discrepancies would be incredibly valuable.  If such discrepancies exist they can 235 

help fine tune climate-symbiosis models, or identify areas where climate might favors invasion 236 

by symbioses that have not yet evolved or dispersed to a particular biogeographic region.     237 

In contrast to a recent global analysis of root traits, which concluded that plant evolution 238 

has favored reduced dependence on mycorrhizal fungi38, we find that trees associating with the 239 

relatively more C-demanding and recently-derived EM fungi14,19 represent the dominant tree-240 

symbiosis. By taking the average proportion of EM trees, weighted by spatially-explicit global 241 

predictions for tree stem density13, we estimate that approximately 60% of trees on earth are EM, 242 

despite the fact that only 2% of plant species associate with EM fungi (vs. 80% associating with 243 

AM fungi)8,29. Outside of the tropics, the estimate for EM relative abundance increases to 244 

approximately 80% of trees. 245 

Turnover among the major symbiotic guilds results in a tri-modal latitudinal abundance 246 

gradient, with the proportion of EM trees increasing (and AM trees decreasing) with distance 247 

from the equator, while N-fixing trees reach peak abundance in the arid zone around 30 degrees 248 

(Figure 3A, Figure 4). These trends are driven by abrupt transitional regions along continental 249 

climatic gradients (Figure 2), which skew the distribution of symbioses among biomes (Figure 250 

3A) and drive strong patterns across geographic and topographic features that influence climate. 251 

For example, moving north or south from the equator, the first transitional zone separates warm 252 

(aseasonal), AM-dominated, tropical broadleaf forests (>75% median basal area, vs. 8% for EM 253 

trees) from the rest of the EM-dominated world forest system (Figure 2AB; Figure 3A). It 254 

stretches longitudinally across 25 degrees N and S, just beyond the dry tropical broadleaf forests 255 

(with 25% EM tree basal area; Figure 3A), where average monthly temperature variation reaches 256 

3-5°C (Figure 2AB).  257 
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Figure 3. (A) The median 
proportion of tree basal area per 
biome (arranged in order of 
increasing mean temperature of 
the warmest quarter) for 
ectomycorrhizal (EM), 
arbuscular mycorrhizal (AM), 
and N-fixer symbiotic guilds. 
EM trees dominate all extra-
tropical biomes. (B) The 
dependency of decomposition 
coefficients (k, solid and dotted 
lines) on temperature and 
precipitation during the 
warmest quarter with respect to 
predicted dominance of 
mycorrhizal symbiosis. AM 
forests transition to EM forests 
abruptly in the region between 
k=1 and 2, which is consistent 
with positive feedback between 
climatic and biological controls 
of decomposition. 
 

Moving further N or S, the second transitional climate zone separates regions where 258 

decomposition coefficients during the warmest quarter of the year are less than 2 (see Figure 3B 259 

for the associated temperature and precipitation ranges). In N. America and China, this transition 260 

zone spans longitudinally around 50 degrees N, separating the mixed AM / EM temperate forests 261 

from their neighboring EM dominated boreal forests (75 vs 100% EM tree basal area, 262 

respectively; Figure 3A). This transitional decomposition zone bypasses W. Europe, which has 263 

temperature seasonality > 5°C, but lacks sufficiently wet summers to accelerate decomposition 264 

coefficients beyond values associated with mixed AM/EM forests. The latitudinal transitions in 265 

symbiotic state observed among biomes are mirrored by within-biome transitions along elevation 266 
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gradients.  For example, in tropical Mexico, warm and wet quarter decomposition coefficients < 267 

2 occur along the slopes of the Sierra Madre, where mixed AM-exclusive and N-fixer woodlands 268 

in arid climates transition to EM dominated tropical coniferous forests (75% basal area, Figure 269 

3A, Figure 4ABC, Figure S17-19). The southern hemisphere, which lacks the landmass to 270 

support extensive boreal forests, experiences a similar latitudinal transition in decomposition 271 

rates along the ecotone separating its tropical and temperate biomes, around 28 degrees S. 272 

The abrupt transitions that we detected between forest symbiotic states along 273 

environmental gradients suggest that positive feedbacks may exist between climatic and 274 

biological controls of decomposition11,36. In contrast to AM fungi, some EM fungi can use 275 

oxidative enzymes to mineralize organic nutrients from leaf litter, converting nutrients to plant-276 

usable forms before transferring them to their host trees2,5. Relative to AM trees, the leaf litter of 277 

EM trees is also chemically more resistant to decomposition, with higher C:N ratios and higher 278 

concentrations of decomposition-inhibiting secondary compounds11. Thus, EM leaf litter can 279 

exacerbate climatic barriers to decomposition, promoting conditions where EM fungi have 280 

superior nutrient-acquiring abilities to AM-fungi5,11. Such positive-feedbacks are known to cause 281 

abrupt ecosystem transitions along smooth environmental gradients between woodlands and 282 

grasses: trees suppress fires, which promotes seedling recruitment, while grass fuels fires, which 283 

kill tree seedlings39. Our study provides the first evidence that rapid transitions in tree 284 

community structure along climate gradients could also be governed by positive-feedbacks 285 

between symbiotic guilds and nutrient cycling; although other types of interactions, such as 286 

environmentally sensitive competition hierarchies among symbiotic guilds, could also lead to 287 

abrupt transitions without specifically invoking feedback effects. In either case, the existence of 288 

abrupt transitions suggests that trees and associated microbial symbionts in transitional regions 289 
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along decomposition gradients should be susceptible to drastic turnover in symbiotic state with 290 

future environmental changes40. 291 

To illustrate the sensitivity of global patterns of tree symbiosis to climate change, we use 292 

the climate relationships we developed for current climate to project potential changes due to 293 

climate change. Relative to our global predictions using the most recent climate data, model 294 

predictions using the projected climates for 2070 suggest the abundance of EM trees will decline 295 

by as much as 10% (using a relative concentration pathway of 8.5 W/m2; Figure S25). Due to 296 

their position along decomposition gradients relative to the abrupt shift from EM to AM forests 297 

(Figure 2AB), our models predict the largest declines in EM abundance will occur along the 298 

boreal-temperate ecotone, although declines in species abundances can lag decades, or even 299 

centuries or millennia, behind associated climatic changes41. The predicted decline in EM trees 300 

corroborates the results of common garden transfer and simulated warming experiments, which 301 

demonstrate that some important EM hosts will decline at the boreal-temperate ecotone in altered 302 

climates42-44. Because of the low tree diversity in boreal forests, tree species loss around 303 

transition zones may have major consequences for forest related economic activity45. 304 

 305 

306 
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 307 

Figure 4. Predicted global maps (left) and latitudinal gradients (right, with solid line 308 

indicating the median and colored ribbon spanning the range from the 5% and 95% 309 

quantiles) of the proportion of tree basal area for (A) ectomycorrhizal (EM), (B) 310 

arbuscular mycorrhizal (AM), and (C) N-fixer symbiotic guilds. 311 

 312 
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The change in dominant nutrient exchange symbioses along climate gradients highlights 313 

the interconnection between atmospheric and soil compartments of the biosphere. The transition 314 

from AM to EM dominance corresponds with a shift from P to N limitation of plant growth with 315 

increasing latitude46-48. Including published global projections of total soil N or P, microbial N, 316 

or soil P fractions (labile, occluded, organic, and apatite) did not increase the amount of variation 317 

explained by the model or alter the variables identified as most important, and thus were dropped 318 

from our analysis. However, this does not necessarily mean that soil nutrient availability is 319 

unimportant at the global scale, as the best-available global data likely do not adequately 320 

represent local nutrient availability49,50. Rather, our finding that climatic controls of 321 

decomposition best predict the dominant mycorrhizal associations mechanistically links 322 

symbiont physiology with climatic controls of soil nutrient release from leaf litter. These 323 

findings are consistent with Read’s hypothesis21 that slow decomposition at high latitudes favors 324 

EM fungi due to their increased capacity to liberate organic nutrients2. Thus, while more 325 

experiments are necessary to understand the specific mechanism by which nutrient competition 326 

favors dominance of AM or EM symbioses26, we propose that the latitudinal and elevational 327 

transitions from AM to EM dominated forests be called Read’s Rule.  328 

While our analyses focus on prediction at large spatial scales appropriate to the available 329 

data, our findings with respect to Read’s Rule also provide insight into how soil factors structure 330 

the fine-scale distributions of tree symbioses within our grid cells. For example, while at a coarse 331 

scale we find that EM trees are relatively rare in many wet tropical forests, individual tropical 332 

sites in our raw data span the full range from 0 – 100 % EM basal area. In much of the wet 333 

tropics, these EM dominated sites exist as outliers within a matrix of predominantly AM trees. In 334 

an apparent exception that proves Read’s Rule, in aseasonal warm neotropical climates, which 335 
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accelerate leaf-decomposition and promote regional AM dominance (Figure 3), EM dominated 336 

tree stands can develop in sites where poor soils and recalcitrant litter slow decomposition and N 337 

mineralization26,51. Landscape-scale variation in the relative abundance of symbiotic states also 338 

changes along climate gradients, with variability highest in xeric and temperate biomes (Figure 339 

S2), suggesting that the potential of local nutrient variability to favor particular symbioses is 340 

contingent on climate.  341 

Whereas EM trees are associated with ecosystems where plant growth is thought to be 342 

primarily N-limited, N-fixer trees are not. Our results highlight the global extent of the “N-343 

cycling paradox,” wherein some metrics suggest that N-limitation is greater in the temperate 344 

zone46-48, yet N-fixing trees are relatively more common in the tropics20,52,53 (Figure 3A). We 345 

find that N-fixers, which we estimate represent 7% of all trees, dominate forests with annual max 346 

temperatures >35°C and alkaline soils (particularly in North America and Africa, Figure 2C). 347 

They have the highest relative abundance in xeric shrublands (24%), tropical savannas (21%), 348 

and dry broadleaf forest biomes (20%), but are nearly absent from boreal forests (<1%) (Figure 349 

3A, Figure 4). The decline in N-fixer tree abundance we observed with increasing latitude is also 350 

associated with a previously documented latitudinal shift in the identity of N-fixing microbes, 351 

from facultative N-fixing rhizobial bacteria in tropical forests to obligate N-fixing actinorhizal 352 

bacteria in temperate forests52. Our data are not capable of fully disentangling the several 353 

hypotheses that have been proposed to reconcile the N-cycling paradox20,54. However, our results 354 

are consistent with the model prediction22 and regional empirical evidence27,55,56 that N-fixing 355 

trees are particularly important in arid biomes. Based primarily on the observed positive, 356 

nonlinear association of N-fixer relative abundance with the mean temperature of the hottest 357 
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month (Figure 2C), our models predict a two-fold increase in N-fixer relative abundance when 358 

transitioning from humid to dry tropical forest biomes (Figure 3A).  359 

Although soil microbes are a dominant component of forests, both in terms of diversity 360 

and ecosystem functioning5,6,11, identifying global-scale microbial biogeographic patterns 361 

remains an ongoing research priority. Our analyses confirm that Read’s Rule, which is one of the 362 

first proposed biogeographic rules specific to microbial symbioses, successfully describes global 363 

transitions between mycorrhizal guilds. More generally, climate driven turnover among the 364 

major plant-microbe symbioses represents a fundamental biological pattern in the Earth system, 365 

as forests transition from low-latitude arbuscular mycorrhizal, to N-fixer, to high-latitude 366 

ectomycorrhizal ecosystems. The predictions of our model (which we make available as a global 367 

raster layer) can now be used to represent these critical ecosystem variations in global 368 

biogeochemical models used to predict climate-biogeochemical feedbacks within and between 369 

trees, soils, and the atmosphere. Additionally, the layer containing the proportion abundance of 370 

N-fixing trees can be used to map potential symbiotic N-fixation, which links together 371 

atmospheric pools of C and N.  Future work can extend our findings to incorporate multiple plant 372 

growth forms and non-forested biomes, where similar patterns likely exist, to generate a 373 

complete global perspective. Our predictive maps leverage the most comprehensive global forest 374 

dataset to generate the first quantitative global map of forest tree symbioses, demonstrating how 375 

nutritional mutualisms are coupled with the global distribution of plant communities. 376 
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