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Nonstationary shape estimation in electrical

impedance tomography using a parametric level

set-based extended Kalman filter approach
Dong Liu, Danny Smyl and Jiangfeng Du

Abstract—This paper presents a parametric level set based
reconstruction method for non-stationary applications using
electrical impedance tomography (EIT). Owing to relatively low
signal to noise ratios in EIT measurement systems and the
diffusive nature of EIT, reconstructed images often suffer from
low spatial resolution. In addressing these challenges, we propose
a computationally efficient shape-estimation approach where the
conductivity distribution to be reconstructed is assumed to be
piecewise constant, and the region boundaries are assumed to
be non-stationary in the sense that the characteristics of region
boundaries change during measurement time. The EIT inverse
problem is formulated as a state estimation problem in which
the system is modeled with a state equation and an observation
equation. Given the temporal evolution model of the boundaries
and observation model, the objective is to estimate a sequence of
states for the nonstationary region boundaries. The implemen-
tation of the approach is based on the finite element method
and a parametric representation of the region boundaries using
level set functions. The performance of the proposed approach
is evaluated with simulated examples of thorax imaging, using
noisy synthetic data and experimental data from a laboratory
setting. In addition, robustness studies of the approach w.r.t the
modeling errors caused by inaccurately known boundary shape,
non-homogeneous background and varying conductivity values
of the targets are carried out and it is found that the proposed
approach tolerates such kind of modeling errors, leading to good
reconstructions in non-stationary situations.

Index Terms—Electrical impedance tomography, nonstation-
ary estimation, parametric level set method, extended Kalman
filter, lung imaging, inverse problems.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a tech-

nique used to recover the spatially distributed conductiv-

ity within a domain using electrical stimulations and measure-

ments applied at electrodes on the domain boundary. Being a
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safe (non-radiation), non-intrusive, and inexpensive method, it

has proven to be useful in a number of medical and industrial

applications, including biomedical imaging [1]–[5], industrial

process [6]–[8] and non-destructive testing [9], [10]. For a

recent review of EIT, see [11].

Currently, EIT systems (coupled measurement systems and

reconstruction algorithms) suffer from low spatial resolution

for the following reasons: relatively low resolution of mea-

surable data, low signal-to-noise ratio, the diffusive nature of

EIT, and implementation of image reconstruction methods.

Since the development of the first EIT systems more than

three decades ago, significant effort has been made to improve

the resolution of reconstructed images. These efforts have

included the improvement of hardware design [12]–[16] and

the formulation of novel reconstruction algorithms [17]–[22].

Reconstruction of the conductivity distribution from electric

potential measurements using EIT is a nonlinear ill-posed

inverse problem. Therefore, reconstruction approaches in EIT

need to be regularized to overcome the high sensitivity to

measurement noise and modeling errors [23]–[25]. Broadly

speaking, image reconstruction in EIT can be classified as sta-

tionary (i.e., assuming time-invariant target) and nonstationary

(time-varying target) methods.

In traditional stationary methods, such as regularized least-

square formulations, the properties inside the body or domain

are assumed to remain constant during the collection of

a complete set of independent measurements. However, in

certain applications such as monitoring of fast moving targets

in industrial applications (e.g., fluids flowing in pipelines [26]),

monitoring high frequency oscillatory ventilation [27] and

cardiac functional studies in medicine [28] (e.g., in patients

with narrow complex tachycardias, a sustained heart rate up

to 220 beats/min), the properties of the medium are changing

so rapidly that the conventional assumptions of stationary

imaging may not yield desirable results. To obtain feasible

estimates in such a situation, nonstationary reconstruction

methods that use limited data should be considered.

Generally, in nonstationary methods, a state space model is

used to represent the nonstationary systems and the reconstruc-

tion problem is treated as a state estimation problem and the

time varying state is estimated using a suitable reconstruction

algorithm. For example, Kalman type filters are among the

most popular algorithms used in tracking the time-varying

(nonstationary) parameters. In nonstationary problems, the

image at each evolution step is estimated from the current

data based on the previous image estimation. Vauhkonen et
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al [29] first proposed a Kalman filter based algorithm for

difference EIT, and this algorithm had been further extended

to different scenarios in [30]–[35]. Adler et al. [36], [37]

proposed a temporal difference image reconstruction algorithm

that accounts for correlations between images in successive

data frames and images. Although nonstationary methods have

been studied for many years, they are not used for image

reconstruction in real-time applications due to the challenges

they pose in computational complexity.

Considering EIT applications where the process of interest

(conductivity changes) are often very fast w.r.t the EIT frame

rate, there is often a demand for high image reconstruction

rate, which is commonly met with certain assumptions or

approximations in the numerical models as well as in re-

construction algorithms. For example, a widely used method

for overcoming the problems related to the computational

complexity is to modify the numerical model with a reduced

order model [34], [38]. Another widely used approach for

dimension reduction is to adopt parametrization of the conduc-

tivity distribution and consider the associated parameters as a

new representation of the conductivity distribution (see [30]).

The parameterization significantly decreases the dimension of

the problem, and thus, the problem becomes less compu-

tationally intense and less ill-posed. For example, truncated

Fourier series was extensively applied for nonstationary close

boundary estimation problems in [30], [35], [39]. Another

regime for nonstationary boundary estimation, based on the

particle filter approach, was studied in [40], where B-spline

curves were used to represent the boundaries.

A challenge in the truncated Fourier series based nonsta-

tionary boundary estimation is to find a suitable coefficient

set for representing complex shapes when little a priori

information of the Fourier coefficient(s) is known about the

shape. For example, Fourier coefficients can be used to easily

represent circular or elliptic shapes leading to accurate geom-

etry/boundary descriptions with few degrees of freedom [41].

However, it is well known that Fourier coefficients are less

suitable for inclusions with complex shapes or other irregular

features [40], [42]. A similar challenge in B-spline based

estimation is that we need to have the prior knowledge about

the boundary shape and then model it with B-spline curves by

placing the control points wisely. i.e., use more control points

where more detail is needed and fewer where the boundary is

smooth, to get a better approximation of the boundary using

the same number of points. Thus, B-spline based estimates

are limited to problems where the reference boundary and its

allowed geometric deformations are known a priori. Another

drawback of using truncated Fourier series and B-spline to

represent the boundary is that the initial number of inclusions

is required.

In this paper, we propose a parametric level set (PLS) based

Extended Kalman Filter (EKF) approach for nonstationary

absolute EIT image reconstruction, in which the conductivity

distribution to be reconstructed is assumed to be piecewise

constant, and the region boundaries are assumed to be non-

stationary and represented by using a level set function (LSF).

The PLS scheme not only inherits the primary advantages of

the traditional level set (TLS) methods, such as the capability

and flexibility in handling topological changes (e.g., shape

splitting/emerging and holes developing) and clear boundary

representation, but it also alleviates some undesired features

from the TLS methods, such as the need for reinitialization to

keep the LSF well behaved and to maintain stable evolution

[43]. The key aspect of our proposed approach is that the

LSF was decomposed into the weighted summation of radial

basis functions (RBFs) defined on each node, also termed the

RBF centers. The corresponding weighting coefficients were

chosen as the unknown state parameters, which need to be

estimated, to control the LSF during the optimization process.

This approach intrinsically allows reduction of the dimension

of the unknowns, thus the computational cost will be reduced

significantly [44]–[48]. Another appealing advantage of the

PLS method is that prior knowledge of number of inclusions

is not necessarily required. Thus, the method is, in this sense,

self-adaptive.

It is worth remarking that the proposed approach is not

limited to EIT applications. Herein, we provide a general

framework for the imaging regime, while extension to other

imaging modalities, e.g., electrical capacitance tomography

(ECT) [49], multiphase flow tomography (EIT, ECT, etc.)

[50], [51] are rather straightforward. For the purposes of this

article, however, the numerical and experimental program are

designed to test popular biomedical applications of EIT with

the proposed approach.

A central aim of this article is to test PLS-EKF regime in a

robust suite of conditions encountered in EIT imaging. To this

end, since modeling errors are always present and are difficult

to predict in EIT applications [23]–[25], an interesting question

with respect to the practical usability of the proposed approach

is: to what extent does it tolerate modeling errors? In this

paper, we also study the robustness of the proposed approach

to the presence of modeling errors arising from inaccurately

known boundary shape, inhomogeneous background, variation

of the piecewise constant conductivity, using five simulated

test cases. The performance of the approach is evaluated also

with experimental data from measurements carried out in a

laboratory water tank.

The paper is structured as follows: a brief introduction of

the EIT forward model, PLS method, and the proposed PLS-

based EKF model are discussed in Section II. In Section III, we

explain the FEM modeling, simulations, experiments as well

as the implementation issues. The numerical and experimental

results are presented in Section IV, and some concluding

remarks are given in the last section.

II. MATHEMATICAL MODEL

In this section, we formulate the observation model and

set up a nonstationary shape reconstruction approach. In the

following, we give a brief review of the mathematical model of

EIT and consider some aspects of numerical implementation.

A. EIT forward problem

In EIT, to perform impedance measurements, an electrode

belt containing L electrodes is placed around the boundary

of the measurement domain to be imaged. Let us denote the
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domain under investigation by Ω ⊂ R
q, q = 2, 3, and its

boundary by ∂Ω. Using the electrodes, an alternating electric

current is injected into the domain and corresponding voltages

are measured. The electric potential u(x) inside Ω induced

by the injected current can be modeled using the complete

electrode model (CEM) [52]

∇ · (σ(x)∇u(x)) = 0 , x ∈ Ω, (1)

u(x) + zℓσ(x)
∂u(x)

∂n
= Uℓ, x ∈ eℓ, ℓ = 1, ..., L, (2)

∫

eℓ

σ(x)
∂u(x)

∂n
dS = Iℓ, ℓ = 1, ..., L, (3)

σ(x)
∂u(x)

∂n
= 0, x ∈ ∂Ω\

L⋃

ℓ=1

eℓ, (4)

where σ(x) is the conductivity, x ∈ Ω is the spatial coordinate,

zℓ is the contact impedance between electrodes and the imaged

body; Uℓ and Iℓ denote the potential and current corresponding

to electrode eℓ, respectively; n denotes an outward unit normal.

In addition, the electric current must satisfy the charge

conservation law
L∑

ℓ=1

Iℓ = 0, (5)

and to determine uniquely the potentials u(x) and Uℓ based on

the CEM, the reference potential must be fixed, for instance,

by setting
L∑

ℓ=1

Uℓ = 0. (6)

The finite element (FE) approximation of CEM(1-6) and an

additive noise model lead to the observation model:

V = U(σ) + e, (7)

where vector V consists all the measured voltages, U(σ) is the

FE method solution to the forward problem, and e is additive

Gaussian noise with mean e∗ and covariance matrix Γe. For

the FE approximation of CEM, see [53], for example.

B. Shape representation using parametric level set function

The use of PLS functions for representing the shape was

proposed and validated in [46], [48] for absolute EIT and in

[47] for difference EIT. We provide herein the outline of this

approach and we recommend the interested reader to the above

mentioned papers for more details.

For the sake of brevity, in the following, we assume that

there exists a boundary Γ ⊂ Ω that separates the domain Ω into

two regions Ω− and Ω+, i.e., Ω = Ω− ⋃
Ω+. The conductivity

of both regions is assumed to be piecewise constant, i.e.,

σ(x) = σ0 for x ∈ Ω− and σ(x) = σ1 for x ∈ Ω+, as

shown in Fig.1.

The boundary Γ = {x : f(x) = 0} of the inclusion, which is

also an interface between two regions, is presented as the zero

level set of a Lipschitz-continuous function f(x) of dimension

q + 1 that satisfy 



f(x) < 0, ∀x ∈ Ω−,

f(x) = 0, ∀x ∈ Γ,

f(x) > 0, ∀x ∈ Ω+.

(8)

Fig. 1. Illustration of shape representation using a level set function.

Then, the conductivity distribution σ can be represented in

terms of LSF f(x) as

σ(x) = σ0(1−H(f(x))) + σ1(H(f(x))), (9)

in which the first term and the last term refer to the background

(outside region) and anomaly (inside region) separated by

the interface Γ, respectively. Further, H(s) is the Heaviside

function, where H(s) = 0 for s < 0 and H(s) = 1 otherwise.

In practice, one cannot differentiate the exact Heaviside

function in the classical sense, thus one often replaces it with

a smooth approximation of the Heaviside function, such as the

C2 function

Hε(s) =





0 s < −ε,
1
2 [1 +

s
ε
+ 1

π
sin(πs

ε
)] |s| ≤ ε,

1 s > ε.
(10)

Here, the parameter ε defines a band Sb = 2ε within which

the Heaviside function is smoothed [54].

To determine the interface Γ, it suffices to determine the

LSF f(x). It is clear that many different LSFs can achieve

the above requirement, e.g., by applying a signed distance

function [43], which is associated with the discretization of x-

space. In this paper, we consider now the LSF f(x) expressed

parametrically as a linear combination of a predefined basis

set as

f(x) =

N∑

i=1

µipi(x), (11)

where pi(x) are the radial basis functions (RBFs) that belong

to the basis set of P = {p1, p2, · · · pN}. N denotes the number

of RBFs and µi, i = 1, 2, · · · , N are the weight coefficients.

The shape reconstruction problem is then reduced to the

determination of a set of weight coefficients. Consequently,

this regime affords the potential to eliminate the requirement

of implementing of narrow-band methods [43] and a reini-

tialization process that are essential for theTLS approach,

where the so-called signed distance function is applied for

the LSF and a curve evolution is performed. In addition, well-

known properties of the level set approach such as capability

and flexibility of handling topology and representing multiple

objects are maintained [48]. Possible choices for the P basis

function include global RBFs (Gaussian, inverse multi quadric

and inverse quadric) and compactly supported RBF (Wend

land), etc. A comparison of different RBFs for PLS-based

method in EIT, we refer to [55].

In this work, we used Gaussian radial basis function (GRBF)

for the basis set P . GRBFs are defined as

pi(x) = exp
(
− ‖ x− xi ‖2

2γ2

)
, (12)
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where γ is the Gaussian width, xi is the RBF center, see details

in Section III-D, and ‖ · ‖ denotes the Euclidean norm.

Based on the parameterization of the LSF, equation (8) can

be modified as




f(x, µ) < c ∀x ∈ Ω−,

f(x, µ) = c ∀x ∈ Γ,

f(x, µ) > c ∀x ∈ Ω+.

(13)

Here, c is a small positive value to ensure stable evolu-

tion of LSF and µ is the PLS parameter vector, i.e., µ =
[µ1, µ2, · · · , µN ].

Based on equation (13), the conductivity model in (9) can

be expressed as

σ(x, µ) = σ0(1−H(f(x, µ)−c))+σ1(H(f(x, µ)−c)). (14)

This new model in fact maps the space of unknown region

Ω+ into the space of unknown PLS parameter vector µ, which

effectively reduces the dimension and the computational de-

mand of the reconstruction problem when the parameterization

is chosen properly.

Finally, the observation model in (7) can be updated as

V = U(σ(x, µ)) + e. (15)

For the purposes of clarity, it is important to note that error

term e is used herein in a broad sense; in that e given in

Eq. 7 is not strictly equivalent to e given in Eq. 15. This

realization lies in the fact that the forward models U(σ(x, µ))
and U(σ(x)) are not theoretically equivalent and therefore

have slightly differing modeling errors. From a pragmatic

vantage, these differences we found to be small in comparison

to measurement noise and thereby of second-order significance

to this work.

C. Extended Kalman filter model

As reported from the Kalman filter approaches studied

in [56]–[58], the unknown boundary shape or conductivity

distribution is regarded as state variables, whereby the EIT

problem is transformed into a state estimation problem. In this

work, we treat the unknown state parameters µ as a stochastic

process which has an evolution model

µk+1 = Fkµk + wk, wk ∼ N (0,Γwk
), (16)

where Fk ∈ R
N×N is the state transition matrix and k is the

state index, and wk ∈ R
N×1 is the evolution noise (assumed

zero mean Gaussian with covariance Γwk
). According to the

EIT observation model in (15), for the EIT measurement we

write the model

Vk = Uk(µk) + vk, vk ∼ N (0,Γvk), (17)

where Vk ∈ R
E×1 (E is the number of measurements) is

the vector of measurements at state index k, vk ∈ R
E×1 is

the measurement noise (assumed zero mean Gaussian with

covariance Γvk ) and Uk(µk) denotes the observation model

explain in Section II-A.

In EKF, the nonlinear forward mapping Uk(µk) is linearized

at a priori state estimate µk|k−1 at step k,

Vk = Uk(µk|k−1) + Jk
(
µk − µk|k−1

)
+ vk.

(18)

The Jacobians Jk ∈ R
E×N will be defined as

Jk =
∂Uk

∂µk

|µk|k−1
. (19)

Let us define the pseudo measurement yk ∈ R
E×1 as

yk ≡ Vk − Uk(µk|k−1) + Jkµk|k−1. (20)

From equations (18 and 20), we obtain the linearized

observation model as

yk = Jkµk + vk. (21)

With the assumptions that the noise is Gaussian and the

observation model is linear, the required estimate of µk is

obtained by solving the minimization problem formulated on

the basis of (16) and (21) and has the form

µ̂k = argmin
µk

{∥∥µk − µk|k−1

∥∥2
Γ−1

k|k−1

+ ‖yk − Jkµk‖2Γ−1

vk

+ λ ‖I(µk − µ∗)‖2
}
, (22)

where Γk|k−1 ∈ R
N×N is the time-updated error covariance

matrix, λ is the regularization parameter, I ∈ R
N×N is the

identity matrix and µ∗ is a pre-determined vector for the

unknown state parameter.

If we define the augmented pseudo measurement ỹk and the

augmented pseudo observation matrix Hk as

ỹk =

(
yk√
λIµ∗

)
, (23)

and

Hk =

(
Jk√
λI

)
. (24)

Then, the minimization problem in (22) can be rewritten as

µ̂k = argmin
µk

{∥∥µk − µk|k−1

∥∥2
Γ−1

k|k−1

+ ‖ỹk −Hkµk‖2Γ−1

k

}
,

(25)

where Γ−1
k ∈ R

(E+N)×(E+N) is a block diagonal matrix

defined as

Γk ≡ Blockdiag
[
Γvk

, I
]
. (26)

Now the prediction and update steps of the KF can be written

as follows.

• Prediction: move the state estimate µk−1|k−1 and its

covariance Γk−1|k−1 in time

1) Compute µk|k−1 = Fk−1µk−1|k−1

2) Compute Γk|k−1 = Fk−1Γk−1|k−1F
T
k−1 + Γwk−1

• Update: measurements

1) Compute the Kalman gain Gk =
Γk|k−1H

T
k (HkΓk|k−1H

T
k + Γk)

−1

2) Compute the updated state estimate µk|k =
µk|k−1 +Gk(ỹk −Hkµk|k−1)

3) Compute the updated covariance estimate Γk|k =
(I −GkHk) Γk|k−1
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D. Jacobian calculation

In order to complete the procedure to estimate the unknown

state variable (PLS parameter) µ in (25), the derivative of the

calculated voltage U w.r.t the state variable µ, i.e., the Jacobian

JU (µ) =
∂U
∂µ

, is required.

To begin, taking a derivative of conductivity σ(x, µ) in (14)

w.r.t f(x) yields

∂σ

∂f
= (σ1 − σ0)(δ(f − c)), (27)

where δ(·) denotes the Dirac delta function.

Following, the Jacobian JU (µ) = ∂U
∂µ

is obtained by

applying the chain rule, yielding

JU (µ) =
∂U

∂σ
· ∂σ
∂f

· ∂f
∂µ

= JU (σ)(σ1−σ0)(δ(f−c))
∂f

∂µ
, (28)

where JU (σ) can be computed using the standard method, see

details in [59], ∂f
∂µ

can be easily computed from (11).

III. METHODS

In this section, we describe the models used in the simula-

tion studies and the experimental setup.

A. FEM modeling of the human thorax

The geometries of the thorax and lungs were created using

EIDORS [60] built-in functions, as shown in the left of Fig.

2. The lungs were simulated as inclusions inside the forward

mesh. Note that the inverse meshes were unstructured, i.e., no

embedded inclusions were constructed in it. In the forward

mesh, the lungs were simulated as varying states by scaling

a given 2D lung model with time, such that the numbers of

node (Nn) and element (NE) of forward meshes were also

varied, which were around 2000 and 3800, respectively. For

the inverse discretization, the numbers of node and element of

inverse mesh were fixed, namely, Nn = 1910 and NE = 3587.

In the following simulated test cases, L = 16 electrodes

(width 1 cm) on the surface of the thorax model were used

to acquire conductivity change in lungs. Electric current with

amplitude 1 mA was stimulated through adjacent patterns

while voltages were measured between adjacent pairs of

electrodes. The contact impedances zℓ were set as 0.01 for

all the electrodes.

The assigned conductivities of lung and background were

0.5 mS/cm and 2.0 mS/cm, respectively. In order to simulate

inherent noise of EIT systems in reality, we added Gaussian

noise with standard deviation 0.1% of the difference between

the maximum and minimum value of the noise free mea-

surement data to the simulated data. The selected noise level

corresponds to the signal to noise (SNR) ratio SNR=45 dB,

which represents well the noise level of modern EIT systems

[61].

B. Simulation examples

To explore the performance of the PLS-based EKF ap-

proach, the following five test cases were designed.

• Case 1: Lung imaging without modeling errors. In this

case, the model is ideal in the sense that there is no

change of shape of the thorax and the conductivity of

lungs. This was done for producing a reference case of

lung imaging. As shown in Fig. 2(a), to simulate the lung

shape movement, the shape of lungs was changed by

linear movement and deformation of the lung boundary,

leading to series of changes in the lung area. More

specifically, in Fig. 2(a), the outermost solid blue line and

the innermost solid cyan line denote the end-inspiration

phase and end-expiration phase, respectively. To account

for the change in lung cross-sectional area, we calculated

the relative area change of lungs (RL):

RL =
Area of lungs

Area of lungs at the end-inspiration phase
. (29)

The series of RL w.r.t frame number were shown in

Fig. 2(c). The simulated scenario contains almost two

whole respiratory cycles with 16 frames of thorax

images, i.e., end-inspiration phase (RL=1.00) →
expiration (RL decreasing) →
end-expiration phase (RL=0.64) →
end-inspiration phase → end-expiration phase.

(a) changes of lung shape (b) changes of chest domain

(c) Relative changes of lung and chest (d) Conductivity varies in the lung

Fig. 2. Study of lung imaging with and without modeling errors. (a):
Geometrical outline of human thorax and lungs. The lungs were simulated as
varying states by scaling a given 2D lung model (solid blue line) with time.
(b): Shape changes of the thorax in Case 2. (c): Relative changes of lungs and
chest domain. (d): Randomly distributed conductivity value of lungs in Case
4, the dashed line indicates the fixed σ1 = 0.6 mS/cm for the reconstruction.

• Case 2: Lung imaging with modeling errors caused by

changes of the thorax. In clinical situations, the thorax

shape varies due to breathing and movements of the

thorax. For this reason, we considered a more realistic

case in lung imaging. The change of the thorax shape is

simulated by linear movement and deformation of the

ventral part of the chest. As shown in Fig. 2(b), the

outermost solid blue line and the innermost solid black

line denote the end-inspiration phase and end-expiration

phase, respectively. To account for the level of change,

we calculated the relative area change of thorax (RA):

RA =
Area of thorax

Area of thorax at the end-inspiration phase
. (30)

Again, the series of RA for 16 frames of thorax image

were shown in Fig. 2(c). Note that the thorax domain with
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RA = 1, corresponding to the end-inspiration phase, was

used for solving the inverse problem.

• Case 3: Lung imaging with modeling errors caused by

non-homogeneous background. In reality, the conductiv-

ity of heart is notably different than the the background

tissue. For this reason, we assigned a more realistic

conductivity value of 3.5 mS/cm for the heart [62], e.g.,

two images of the thorax in the end-inspiration phase and

the end-expiration phase were shown in Fig. 3. leading to

a non-homogeneous background. Namely, the assumption

of a constant value of σ0 is violated, leading to modeling

errors in the reconstruction, since only one LSF was

applied for representing the conductivity distribution in

the model (14).

This test case also provides a chance to investigate the

robustness of the propose PLS-based EKF reconstruction

with respect to misspecifying the number of phases: The

actual target consisted of conductivities in three phases

(lungs, heart and background), but in the reconstruction,

only two phases (lungs and background) were assumed

– by representing the conductivity distribution with one

LSF in the model (14). We note that it is possible to

apply one more LSF to represent the region of heart,

see details in [48] for studying multiphase conductivity

reconstruction using PLS method. However, as our pri-

mary interest in this study is to evaluate the performance

of the PLS-based EKF approach for non-stationary lung

imaging, this is out of the scope of the present work.

Note that in this case, the thorax shape was fixed as

RA=1, and the lung shape evolution follows the same

definition in Case 1.

(a) Thorax is in the end-inspiration phase (b) Thorax is in the end-expiration phase

Fig. 3. Two example images of the thorax in the end-inspiration phase and
the end-expiration phase with the presence of heart in the background, leading
to non-homogeneous background.

• Case 4: Lung imaging with modeling errors caused

by varying the conductivity of lungs. In a real situa-

tion, the conductivity value of lung varies with inhala-

tion and exhalation. For this reason, we considered the

lungs’ conductivity value as randomly distributed σ1 ∼
N (0.5, 0.252), as shown in Fig. 2 (d). The minimum and

maximum conductivity value are 0.54 mS/cm and 0.74

mS/cm, respectively, which are plausible—according to

literature [62]. A fixed value σ0 = 0.6 mS/cm was applied

for the reconstruction. In addition, same as Case 3, the

thorax shape was fixed as RA=1, and the lung shape

evolution follows the same definition in Case 1.

• Case 5: Lung imaging with modeling errors caused by

varying the conductivity of lungs and changes of the

thorax. In a real situation, the lung shape, thorax as well

as the conductivity value of lung vary simultaneously

with respect to time. For this reason, in Case 5 we

consider both the thorax and the conductivity value of

lung behavior to vary simultaneously with respect to

time, in which the thorax changes same as in Case 2

and the lungs’ conductivity value assigned in the same

way in Case 4. In addition, the lung shape evolution

follows the same definition in Case 1. Again, a fixed

value σ0 = 0.6 mS/cm and thorax domain with RA = 1
corresponding to the end-inspiration phase were applied

in the reconstruction.

In order to simulate a nonstationary environment, it is

assumed that a full set of EIT measurements is not available

before the lung shape is changed. The current study, therefore,

assumed that the lung shape is invariant during the time taken

to inject four current patterns and to collect the corresponding

voltages. That is, in the EKF reconstruction, at least four

states are available for reconstructing a single frame of image.

Very often in practice, additional states can be introduced

for obtaining better minimization behavior without further

measurement data [57]. In other words, for a single frame,

four current-voltage data are collected but one or two more

states can be introduced, such that the fifth or sixth states

are evolved based on the aforementioned four current-voltage

data. In this paper, we applied five states per image frame. The

additional fifth state was updated based on the fourth current-

voltage data. In the present studies, each test case consists

of 16 frames of images, which means 64 current injections

are applied and 64 EIT data sets are collected, i.e., the whole

measurement V ∈ R
16×64. Then, the number of states evolved

for each test case is 80.

C. Experimental studies

The feasibility of the proposed approach was studied exper-

imentally. The experiment was carried out using a cylindrical

tank shown in Fig. 9. The radius of the tank was 14 cm.

L = 16 metallic electrodes with width 2.5 cm were attached to

the inner surface of the tank. The tank was filled with saline of

conductivity 1.948 mS/cm, and the lung-type inclusions were

made of agar. Note that we did not measure the conductivity of

lung-like inclusions, since the exact value of the conductivity

after solidification cannot be measured using the conductivity

meter.

The EIT measurements were carried out with an in-house

system developed in the Department of Modern Physics, Uni-

versity of Science and Technology of China. The measurement

system takes PXIe-6738 cards supplied by National Instru-

ments (NI) as the hardware foundation, and uses the LabView

software to realize the data acquisition and compile the control

program. The main units of the measurement system are

current injection module and voltage measurement module.

The current injection module consists of two components:

a waveform synthesis unit and a voltage controlled current

source. In the waveform synthesis unit, two NI PXI-6733

analog output cards were used to generate sinusoidal voltage

signal. Note that, during the design of our measurement

system, we followed the well-reported KIT4 system in [63].

The collected data was stimulated with adjacent current

pattern (amplitude 1 mA, frequency 10 kHz) and adjacent
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measurement. We assumed that a full set of EIT measurements

is not available before the lung shape is changed. The current

study, therefore, only considered four adjacent current patterns

for each single frame of image. In the experiments, the lung-

type inclusions are randomly placed in the tank, i.e., at each

evolution step the lung position was changing, see details

in Fig. 9. To simulate an inspiration state, the sizes of the

inclusions were changed after six evolution steps (from T1

to T6 the lung size was fixed, from T6 to T7 the lung size

was changing), and then changed again during the eleventh

evolution steps (from T7 to T11 the lung size was fixed,

from T11 to T12 the lung size was again changing). Note

that the conductivity of lung-type inclusions was fixed during

the evolution steps.

D. Model implementation

In this section, we discuss important information related the

implementation issue of the proposed reconstruction approach.

To start, we remark that the initial guess and expected value µ∗

of the weighting coefficients µ were set to 0.5 for all studied

cases in this paper. Note that the true value of the weight

coefficients in each image frame are not known a priori, but

they are numerically estimated.

In inverse computation, it was assumed that we do not have

the prior knowledge of the evolution therefore the so-called

random-walk model is adopted, i.e., Fk = IN ∈ R
N×N ,

where IN is the identity matrix. The covariance matrices of

the process noise Γωk
, measurement noise Γvk and initial

covariance of the predicted error µ0|0 were predetermined and

listed in Table I. In determining these parameters, we utilized

trial and error. As for the regularization parameter λ, it was

empirically chosen.

To represent the lung shapes, the Heaviside function (10)

with ε = A/2 was applied, here, A denotes the mean value

of the element area in the FEM mesh. The constant c = fm
level set was considered, where fm is the mean value of the

initial LSF fk.

According to relevant works [46], [47], the Gaussian width

parameter was defined as γ = 1√
2KA , where K is a free

coefficient of the Gaussian width parameter, which was se-

lected based on simulations and visual inspection of the

results. In this paper, K was set to 5 and 3/4 for simulated

and experimental studies, respectively. For more information

regarding the effect of K to the PLS-based absolute and

difference EIT, we refer the reader to our earlier publications

[46], [47] for more details.

The PLS-based reconstruction method was found to be quite

robust to the selection of locations of RBF centers in [46]. The

same selection strategy for RBF centers was used in the study,

we chose NRBFc = 31 for both simulated and experimental test

cases. Thus, the corresponding unknowns parameters vector

was µ ∈ R
31. Note that the piecewise constant conductivity

values in the experimental test case were assumed to be not

known a priori; rather, they were estimated together with the

TABLE I
PARAMETERS USED IN THE PLS-BASED EKF RECONSTRUCTIONS.

Γωk
Γvk

Γ0|0 λ K µ∗

Simulated Cases 0.01IN 5× 10
−4IE 100IN 1× 10

−4 5 0.5IN
Experimental Case 0.1IN 5× 10

−4IE 10IN 1× 10
−4 3/4 0.5IN

PLS parameter, by solving the minimization problem

[µ̂k, σ̂0, σ̂1] = argmin
{∥∥µk − µk|k−1

∥∥2
Γ−1

k|k−1

+ ‖ỹk −Hkµk‖2Γ−1

k

+

1∑

j=0

‖(σj − σ∗
j )‖2

}

(31)

Here, σ∗
j is a predetermined value of conductivity. More

specifically, we firstly computed the best homogeneous es-

timation σ̂∗
hom ∈ R by solving

[σ̂∗
hom] = argmin{‖Le(V − U(σ∗

hom))‖2}, (32)

here, Le is defined as LT
e Le = C−1

e , where Ce is the

observation noise covariance matrix. Then we set σ∗
0 = σ∗

hom

and σ∗
1 = 1

4σ
∗
hom for the experimental reconstruction.

Therefore, in the experimental study, the corresponding

unknowns parameters vector was (µ, σ0, σ1) ∈ R
33. A rep-

resentative image of the distribution of the RBF centers for

both simulated and experimental studies is shown in Fig.4.

(a) Simulated test cases (b) experimental case

Fig. 4. Distributions of the RBF centers.

IV. RESULTS AND DISCUSSIONS

The results of the numerical test cases are shown in Figs.

5-9. In each of these figures, the numbers marked at the top of

each sub figure indicate the frame numbers, i.e., each single

frame represents the reconstructed image at every fifth state,

the dashed line indicates the true shape of lungs, and the PLS-

based EKF reconstructions for the moving lung shapes are

shown as cyan patches.

To quantitatively assess the results of the simulated test

cases, we computed the structural similarity index (SSIM) [64]

for measuring the similarity between the true and reconstructed

images. The best SSIM value, 1, would be achieved if and only

if the images are identical. When the SSIM value approaches

1, the degree of structural similarity between the two images

increases. Note that in Case 3, to avoid the influence arising

from the heart region, the true images of Case 1 was used as

the reference images for computing the SSIM index, since the

main interest in this test case is to recover the lung shapes.

To further quantitatively verify the reconstruction perfor-

mances the PLS-based EKF approach, we show the root

mean square error (RMSE) and correlation coefficient (CC)
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of the estimated conductivity against the iteration steps for

the simulated Cases 1-5:

RMSEσ =
||σTrue − T σ̂||

||σTrue||
× 100%, (33)

and

CCσ =
(σTrue − σ̄True)

T(T (σ̂ − ¯̂σ))√
||σTrue − σ̄True||2||σ̂ − ¯̂σ||2

× 100%. (34)

Here, T is a matrix that interpolates the nodal conductivity

σ̂ in the inverse mesh into a nodal conductivity σTrue in the

forward mesh. σ̄True and ¯̂σ are the mean values of σTrue and

σ̂, respectively.

The results of experimental test cases are shown in Fig. 9.

In this figure, the real targets were shown in the first and third

rows, while the corresponding estimates based on the proposed

approach were shown in the second and fourth rows; capital

letters ‘T’ and ‘E’ in the subtitles denote the ‘True targets’

and ‘Estimated images’, respectively; the numbers marked at

the top of each sub figures indicate the frame numbers.

To quantitatively access the recovery of the binary con-

ductivity values and the inclusion shape in the experimental

studies, we computed a relative contrast (Rco)

Rco =
Estimated conductivity of the background

Measured conductivity of saline
, (35)

and a size coverage ratio (CR) for measuring how well the

sizes of inclusions were recovered:

CR =
Estimated inclusion area

True inclusion area
× 100%. (36)

Half the value of the maximum of the reconstructed con-

ductivity, i.e., σ0/2, was used as the threshold for detecting

the inclusions. Note that, the inclusions are irregular shapes,

such that the true areas of inclusions are unknown, we use

ImageJ [65] to determine the approximated true value. CR

value 1 indicates exact match of area of the true and recovered

inclusions, while a value less or greater than 1 would indicate

underestimation or overestimation of the inclusion area, re-

spectively.

A. Results of numerical test cases

1) Case 1: Lung imaging without modeling errors: Fig.5

shows the results of Case 1. We observe that the performance

of the proposed is fairly successful, except in early states

corresponding to the first few frames of the image where

the improper initial guess of the RBFs’ weighting affects the

reconstructions. In fact, it is highly unlikely to guess the initial

RBFs’ weighting and hence smaller SSIM and higher RMSE

values (see details in Fig.10) for the images in the case of the

early states are quite probable.

2) Cases 2-5: Lung imaging with modeling errors: Cases

2-5, investigating modeling errors, are shown in Figs. 6-9.

In Case 2, due to the change of the thorax shape during

the evolution, the reconstructed images are slightly worse

compared to the ideal – Case 1. However, except in early

states corresponding to the first few frames of the image, the

estimated images track the lungs’ shape relatively well, which

is also verified by the evaluation metrics plotted in Fig. 10. The

Fig. 5. Case 1: Lung imaging without modeling errors. The sub figures
correspond to reconstruction at every fifth states, and numbers marked at the
top of each sub figure indicate the frame number; the dashed line indicates
the true shape of lungs; the PLS-based EKF reconstructions for the moving
lung shapes are shown as cyan patches.

results of Case 2 indicates that the PLS-based EKF approach

tolerates inexact knowledge of the body shape.

Fig. 6. Case 2: Lung imaging with modeling errors caused by changes of the
thorax. Otherwise as in Fig.5.

In Case 3, where the assumed conductivity phases are

less than that are actually present, the reconstructed images

are worse compared to that of Cases 1&2, which does not

exceed our expectation, due to the modeling errors caused by

the non-homogeneous background. Note that, the RMSE and

CC values corresponding to most of the iterations in Case

3 are slightly worse than that of other cases; this is also an
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intuitively appealing result, because we only apply one LSF

for modeling the conductivity distribution, and it is obvious

that the heart region can not be tracked, leading to errors in

the computation of RMSE and CC. Meanwhile, the results of

Case 3 suggest that the PLS-based EKF approach tolerates a

misspecification of the phase numbers to some extent – even

though the assumed number of phases is too low, the overall

quality of the reconstructed image is still quite good.

In Case 4, where the conductivity values of lungs are mis-

assigned in the reconstruction, the PLS-based EKF approach

yields images with good accuracy, resulting in the evaluation

metrics closest to those of the ideal Case 1.

In Case 5, where the thorax as well as the conductivity value

of lung vary simultaneously with respect to time, the recon-

structions of the lung with PLS-based EKF approach are more

affected by the modeling errors, compared to separate Cases

1, 2 & 4, which is also evident from the evaluation criteria

shown in Fig. 10. This is mainly due to the fact that mutual

influence between the change of thorax shape and varying the

lungs’ conductivity adversely affect the reconstruction.

Fig. 7. Case 3: Lung imaging with modeling errors caused by non-
homogeneous background. Otherwise as in Fig.5.

Obviously, the modeling errors in all test cases affect

the lung shape reconstructions. From these results, we are

able to conclude that modeling errors due to the change of

thorax shape affected the proposed approach more than other

modeling errors. This finding is also supported quantitatively

by the evaluation criteria- the worst SSIM of Cases 2 &5 and

the worst RMSE and CC of Case 5 (excluding those values of

Case 3 affected by the presence of heart) shown in Fig. 10.

Overall, the PLS-based EKF approach yields successful

reconstructions of the shape of lungs which even has similar

performance compared to the ideal case 1, leading to the trends

of SSIM index, RMSE and CC values for Cases 2-5 tend to be

somewhat similar to that for Case 1, see Fig. 10. This implies

that the PLS-based EKF approach tolerates modeling errors to

some extent at least.

Fig. 8. Case 4: Lung imaging with modeling errors caused by varying the
conductivity of lungs. Otherwise as in Fig.5.

Fig. 9. Case 5: Lung imaging with modeling errors caused by changes of the
thorax and varying the conductivity of lungs. Otherwise as in Fig.5.

Finally, we discuss computational aspects pertinent to the

efficiency of the reconstruction algorithm. As an example,

the result shown in Fig. 5 was obtained from a MATLAB

implementation on a desktop PC with an Intel Core i7-6700K

processor and 32GB memory within 168 seconds at an average

speed of 2.10 seconds/state.

B. Results of experimental test case

In the reconstruction, the initial guess of the saline con-

ductivity was computed by solving (32). The estimated saline

conductivity was estimated to be σ̂∗
hom = 1.62 mS/cm.
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Fig. 10. Comparison of SSIM index, RMSEσ and CC for Cases 1-5.

The reconstructions are shown in Fig. 11. The proposed

PLS-based EKF approach is found to track the two targets

(lung-like structures) shape and location quite reasonably as

observed in Fig. 11. In regard to the estimation of the binary

conductivity values, the conductivity of the background is

estimated well, which is evident from the relative contrast

(Rco), see details in Fig. 12. It should be remarked that we did

not compute the Rco value for the targets, since the exact value

of the conductivity of the targets after solidification cannot

be measured using the conductivity meter. In addition, the

coverage ratio (CR) shows that the targets’ area was recovered

satisfactorily.

V. DISCUSSION ON THE RESULTS

It is worth remarking that an interesting phenomenon hap-

pens in the results of simulated test cases, e.g., from the 13th

state to the 16th state in Fig. 6, it seems that the proposed

approach could better catch the ‘inner’ boundary of the right

lung which is alway from the domain boundary. However, it

is very well known that the center of imaging domain has low

sensitivity compared to the domain boundary region. The main

explanation of this phenomenon is that the ‘inner’ boundary

changes relatively less than the ‘outer’ boundary, as shown in

the top-left of Fig.2, such that EKF-PLS approach is able to

substantially track the small changes to the ‘inner’ boundary.

In the experimental results, E4 and E6 were quite similar to

each other by visual inspection, similar behavior occurred to

E11 and E12. One may argue that the experimental results are

not quite consistent with the experimental setup. The main

reason for this inconsistency is that the changes of lung-

shaped inclusions in the experiment are abrupt, such that the

difference between the frames is too large and EKF requires

some additional states or more transition time to track the

inclusion. A potential solution is to consider including more

states or adding more process noise for the reconstruction.

For example, as shown in Fig. 13, compared to the results in

Fig. 11, we applied one more state for each frame, it can be

observed that E4 and E6 were different to each other, e.g., the

lobe of right ’lung’ moved downward to the right boundary

of the tank in E6. Also, for E15 and E16, the lobes of both

lungs are moved close to each other, which is consistent with

the experimental phenomena.

It is worth mentioning that, in this paper, a random-walk

model is used as a state evolution model in which the change

between two consecutive states is only governed by the process

noise. That is, adding more process noise is another option

to represent the feature (e.g., the large difference between

the frames) that the state of the shape changes over time. In

addition, it is well known that the modeling uncertainty of

the random-walk model may cause poor shape reconstruction.

To improve the modeling accuracy, dynamic evolution models,

e.g., kinematic models, could be used to describe the evolution

of the shape. However, studying the selection of optimized

initial parameters (e.g., covariance of the process noise) and

different evolution models are out of the scope of this paper,

therefore, we defer this to future work.

The main application we considered in the study was

lung imaging. From a practical point of view, in real time

monitoring of lung ventilation, we need to consider modeling

error caused by unknown contact impedances, electrode dis-

placement, random noise, as well as other unknown auxiliary

parameters in the EIT reconstruction problem. For example,

in practical measurements the contact impedances are always

unknown and can change during the measurement due to

sweat on the skin and drying of the electrode gel. This is

particularly relevant here, since the proposed approach is based

in the context of absolute imaging, which is known to be

very sensitive to such kinds of modeling errors [24], [25],

[66]. Even though we showed that the proposed approach is

tolerant to some of the aforementioned modeling errors to

some extent, more practical situations need to be considered.

For example: during lung ventilation, conductivity, lung shape,

and thorax change simultaneously thereby generating more

uncertainty. As a potential solution for handling uncertainties,

we suggest applying the so-called approximation error ap-

proach [23] to reduce errors intrinsic in the observation model,

and to improve the robustness and efficiency of the proposed

approach. Another potential solution is to consider extending

the current reconstruction framework from the context of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 11. Case 6: Reconstructions with five states per image frame from real water tank data. Capital letters ‘T’ and ‘E’ in the subtitles denote the ‘True
targets’ and ‘Estimated images’, respectively.

Fig. 12. Coverage ratio CR and relative contrast Rco versus the frame number
in the experimental studies.

absolute imaging to the context of difference imaging, which

is popularly used in EIT monitoring of lung ventilation, by

using a linearization forward model [56]. Clearly, this matter

is beyond the scope of this paper and is planned to be studied

in future work.

VI. CONCLUSIONS

In this paper, a new parametric level set based EKF ap-

proach was proposed for the nonstationary shape reconstruc-

tion problem in EIT. It was assumed that the target shape

varies during the time taken to collect a full set of independent

measurement data. In such transient situations, conventional

EIT algorithms based on the static reconstruction may fail to

recover the non-stationary conductivity distribution. In order

to track the nonstationary target shape, the target boundaries

were represented using parametric level set functions, which

were decomposed into the weighted summation of radial basis

functions, and the weighting coefficients of the radial basis

functions were regarded as the unknown state variables. Then,

the unknown state variables were estimated with the aid of the

EKF. For the verification of the proposed approach, extensive

numerical and experimental test cases were performed and

some computational considerations were discussed.

The proposed approach was demonstrated to accurately

track the nonstationary target shape relatively well and it

was also found to be tolerant to modeling errors caused

by inexact knowledge of boundary shape, non-homogeneous

background, variation of the piecewise constant conductivity.

These findings suggest the PLS-based EKF approach could

be used in practical applications of EIT, especially in cases

where targets’ topology (e.g., the characteristics of region

boundaries) changes during measurement time.

ACKNOWLEDGMENT

The authors would like to thank Anil Kumar Khambampati,

PhD for the helpful discussions. The authors would also like

to thank Zhengjie Yu for helping us in carrying out the water

tank experiments.

REFERENCES

[1] C. N. Herrera, M. F. Vallejo, J. L. Mueller, and R. G. Lima, “Direct
2-D reconstructions of conductivity and permittivity from EIT data on
a human chest,” IEEE Transactions on Medical Imaging, vol. 34, no. 1,
pp. 267–274, 2015.

[2] Z. Ren and W. Q. Yang, “Development of a navigation tool for revision
total hip surgery based on electrical impedance tomography,” IEEE

Transactions on Instrumentation and Measurement, vol. 65, no. 12, pp.
2748–2757, 2016.

[3] Y. Yang, J. Jia, S. Smith, N. Jamil, W. Gamal, and P.-O. Bagnaninchi,
“A miniature electrical impedance tomography sensor and 3-d image
reconstruction for cell imaging,” IEEE Sensors Journal, vol. 17, no. 2,
pp. 514–523, 2017.

[4] Z. Zhao, P.-J. Yun, Y.-L. Kuo, F. Fu, M. Dai, I. Frerichs, and K. Möller,
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