
Vol.:(0123456789)1 3

Climate Dynamics (2019) 53:4911–4935 
https://doi.org/10.1007/s00382-019-04835-9

Skill of dynamical and GHACOF consensus seasonal forecasts of East 
African rainfall

Dean P. Walker1 · Cathryn E. Birch1 · John H. Marsham1,2 · Adam A. Scaife3,4 · Richard J. Graham3 · Zewdu T. Segele5

Received: 11 December 2018 / Accepted: 27 May 2019 / Published online: 4 June 2019 
© The Author(s) 2019

Abstract
Seasonal forecasts of rainfall are considered the priority timescale by many users in the tropics. In East Africa, the primary 
operational seasonal forecast for the region is produced by the Greater Horn of Africa Climate Outlook Forum (GHACOF), 
and issued ahead of each rainfall season. This study evaluates and compares the GHACOF consensus forecasts with dynami-
cal model forecasts from the UK Met Office GloSea5 seasonal prediction system for the two rainy seasons. GloSea dem-
onstrates positive skill (r = 0.69) for the short rains at 1 month lead. In contrast, skill is low for the long rains due to lack 
of predictability of driving factors. For both seasons GHACOF forecasts show generally lower levels of skill than GloSea. 
Several systematic errors within the GHACOF forecasts are identified; the largest being the tendency to over-estimate the 
likelihood of near normal rainfall, with over 70% (80%) of forecasts giving this category the highest probability in the short 
(long) rains. In a more detailed evaluation of GloSea, a large wet bias, increasing with forecast lead time, is identified in 
the short rains. This bias is attributed to a developing cold SST bias in the eastern Indian Ocean, driving an easterly wind 
bias across the equatorial Indian Ocean. These biases affect the mean state moisture availability, and could act to reduce the 
ability of the dynamical model in predicting interannual variability, which may also be relevant to predictions from coupled 
models on longer timescales.
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1 Introduction

East Africa is a region that is highly vulnerable to rainfall 
variability, as consistent rainfall is vital for crops and live-
stock. Extreme events such as the 2010-11 year long drought 
have major effects on society, and flooding events can occur 
even in years of water scarcity, such as in 2018, when heavy 
boreal spring rains followed the severe drought conditions 
of late 2017 (http://fews.net/east-afric a). Seasonal prediction 

of these events, if skilful, can therefore provide users with 
information to mitigate or avoid humanitarian disasters.

Equatorial East Africa experiences two rainfall seasons 
per year, commonly termed the long rains, occurring from 
March to May (MAM), and the short rains, occurring from 
October to December (OND). The long rains have higher 
total rainfall (Camberlin and Wairoto 1997), and are more 
reliable, and so coincide with the main growing season 
(Camberlin and Philippon 2002), whilst the short rains 
have a much larger interannual variability (Hastenrath et al. 
1993; Nicholson 1996). The two rainfall seasons lie within 
the seasonal reversals of the Somali Jet (Okoola 1999), are 
observed to be dynamically different (Camberlin and Wai-
roto 1997), and are classically attributed to the motion of the 
Intertropical Convergence Zone (e.g. Okoola 1998; Mutai 
and Ward 2000).

The correlation between the major modes of sea surface 
temperature (SST) variability and East African rainfall is 
different in the two rainfall seasons, and as such, the pre-
dictability of rainfall is different in the long and short rains 
(Camberlin and Philippon 2002). The short rains have been 
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linked to variability within the Pacific Ocean, with Rodhe 
and Virji (1976) observing similar periodicities in East 
African rainfall variability to those observed for El Niño-
Southern Oscillation (ENSO). Many studies since (e.g. 
Nicholson and Entekhabi 1986; Ogallo 1988; Nicholson 
1996; Nicholson and Kim 1997; Indeje et al. 2000), have 
investigated the role and mechanism of ENSO in influenc-
ing East African rainfall, through its effect on the Walker 
Circulation. More recently, a mode of variability within the 
Indian Ocean, termed the Indian Ocean Dipole (IOD), has 
been linked to East African rainfall variability (Saji et al. 
1999; Webster et al. 1999; Black et al. 2003; Marchant et al. 
2007; Ummenhofer et al. 2009). The positive phase of the 
IOD is often found to occur simultaneously with El Niño, 
and as such, several authors have investigated the depend-
ence of this mode on El Niño. The general consensus is that 
whilst El Niño modulates the IOD and is favourable for the 
evolution of an IOD event (Black et al. 2003), the IOD is 
an independent mode of variability from ENSO (Saji and 
Yamagata 2003; Yamagata et al. 2004; Behera et al. 2005; 
Bahaga et al. 2015). There are years where the IOD occurs 
under neutral ENSO conditions, such as in 1961 when a 
strong positive IOD event took place in absence of anoma-
lies in the Pacific Ocean, causing heavy rains in East Africa 
(Saji et al. 1999).

A major source of moisture variability for East African 
rainfall during the short rains originates from the flow over 
the Indian Ocean (Hastenrath et al. 2011). These zonal winds 
are described as being part of a Walker circulation cell (Has-
tenrath et al. 1993; Hastenrath 2000). Areas of ascent and 
descent lie over Indonesia and East Africa respectively, with 
a mean state of near-surface westerlies and upper level east-
erlies over the Indian Ocean. Years with near-surface east-
erly anomalies coincide with upper level westerly anomalies, 
increased ascent over East Africa and higher rainfall (Has-
tenrath et al. 1993; Yamagata et al. 2004; Hastenrath 2007). 
These anomalies are driven by a positive IOD, which drives 
high near-surface pressure in the eastern Indian Ocean and 
low pressure in the west.

Meanwhile, predictability during the long rains is 
less well understood (Camberlin and Philippon 2002), 
with several studies demonstrating that the season is not 
strongly constrained by SST variability (e.g. Ogallo 1988; 
Liebmann et al. 2014). Nicholson (2014) suggested that 
this is likely to be because El Niño is in transition during 
this time of year, a phenomenon referred to as the spring 
predictability barrier (Torrence and Webster 1998). Sev-
eral authors have suggested that atmospheric phenomena 
could control the interannual variability in this season 
(Philippon et al. 2002; Nicholson 2014, 2015), with Pohl 
and Camberlin (2006a, b) showing that the Madden-Julian 
Oscillation (MJO; Madden and Julian 1971, 1972) plays 
an important role, as well as Indeje and Semazzi (2000) 

identifying a possible contribution from the Quasi-Bien-
nial Oscillation (QBO; Ebdon 1960; Reed et al. 1961), 
although the underlying mechanism is not well described.

Real time forecasts of seasonal rainfall in East Africa 
have been made for several decades, with reasonable suc-
cess over the short rains, initially based upon statistical 
methods linking SST variability and rainfall (e.g. Farmer 
1988; Mutai et al. 1998). More recently, statistical fore-
casts of the long rains have also been produced. Nicholson 
(2014, 2015) used several variables including zonal and 
meridional wind fields at several pressure levels, as well 
as sea level pressure (SLP) values, to create models with 
strong correlations (up to 0.76) for February predictors, 
and also noted that using atmospheric fields improved 
statistical models of the short rains. Vellinga and Milton 
(2018) meanwhile created a multiple linear regression 
model for the long rains (defined in this study as March 
to April) using February to March MJO amplitude, QBO 
from September to November of the previous year, and an 
area of Indian Ocean SSTs close to the coast of Somalia in 
the Arabian Sea, finding a correlation with the first prin-
cipal component of the long rains of 0.77, with the largest 
contribution generally coming from the MJO amplitude.

In recent years, dynamical models have advanced 
greatly, and have become increasingly used to produce 
seasonal forecasts. Batté and Déqué (2011) evaluated the 
ENSEMBLES project multi-model ensemble of seasonal 
forecasts over Africa, finding mixed results over East 
Africa, with the model performing better during the short 
rains than the long rains. Bahaga et al. (2016) also evalu-
ated a multi-model ensemble with models sourced from 
North America and Asia over the short rains at 1 month 
lead. Models that could better forecast the Indian Ocean 
Dipole were found to have better skill, with the multi-
model ensemble achieving a correlation of 0.44 between 
observed and forecast rainfall, increasing to 0.67 when 
using only the models that had significant skill when 
evaluated individually. Although Nicholson (2017) noted 
that statistical forecasts generally outperform dynamical 
forecasts in this region, the latter are constantly improving, 
with ever increasing resolution, and improved representa-
tion of physical processes. The skill of statistical models 
in producing real time forecasts is also often overestimated 
due to the method of their construction, with common 
mistakes being overfitting the model, and using too many 
predictors or unphysical predictors. They also often fail 
to consider the nonstationary relationship between rain-
fall and the predictors. Such nonstationary relationships 
of teleconnections to East African rainfall in particular 
have been highlighted by Clark et al. (2003), Bahaga et al. 
(2019). To best meet user needs, a combination of sta-
tistical and dynamical methods is often most appropriate 
(Doblas-Reyes et al. 2013).
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Supported by the World Meteorological Organisation 
(WMO), consensus seasonal forecasts are produced by 
Regional Climate Outlook Forums (RCOFs) for many loca-
tions around the world (Ogallo et al. 2008). The Greater 
Horn of Africa Climate Outlook Forum (GHACOF), 
organised by the Intergovernmental Authority on Develop-
ment (IGAD) Climate Prediction and Applications Centre 
(ICPAC), has been issuing seasonal consensus forecasts 
for East Africa since 1998. GHACOFs are held three times 
per year, in the lead up to the long and short rains, and the 
summer rainfall season. For the long rains, GHACOFs 
are typically held in mid February (lead time less than 1 
month), whilst for the short rains, they are typically held 
late in August (lead time greater than 1 month). For the 
summer rainfall season, the GHACOF is typically held in 
the second half of May. The WMO has also fostered coor-
dination among centres running operational dynamical sea-
sonal forecast systems, so-called Global Producing Centres 
for Long-Range Forecasts (GPCs), with a specific objective 
to increase access and use of the model outputs in regional 
forecasting activities (Graham et al. 2011). Details of the 
GHACOF process will be presented in Sect. 2.3.

As well as producing the forecasts, RCOFs have been 
praised as an excellent opportunity for networking and 
information sharing between nations within the region, 
and within the different stakeholder groups (Ogallo et al. 
2008; Mwangi et al. 2014). Success stories of GHACOF 
forecasts having positive impact on the region have been 
recorded, such as a bumper harvest in 2009, where, based 
upon information from the GHACOF forecast, Kenya Red 
Cross distributed extra seeds to farmers across Kenya, lead-
ing to enhanced stores of grain (Graham et al. 2012), and in 
2002, where forecasts of below normal rainfall in Ethiopia 
were acted upon to relieve food insecurity (Patt et al. 2007; 
Hellmuth et al. 2007).

An evaluation of the GHACOF consensus forecasts was 
performed by Mason and Chidzambwa (2008) for 10 years 
of forecasts, as part of an RCOF review by the WMO. The 
forecasts were found to have positive skill but observed some 
notable biases that were also common to the West Africa and 
southern Africa RCOFS. In particular, forecast probabilities 
for the near average category were found to be systemati-
cally too high, indicating a tendency to “hedge” to average 
conditions. Current assessment of GHACOF includes an 
evaluation of each individual forecast’s performance using 
a form of hit score (http://rcc.icpac .net/index .php/long-range 
-forec ast/verifi cati on-produ cts), and an analysis of the per-
formance of the previous forecast at the following GHACOF 
event.

Comparisons between consensus and dynamical fore-
casts are few and far between. Mwangi et al. (2014) investi-
gated whether European Centre for Medium-Range Weather 
Forecasts (ECMWF) seasonal forecasting system product 

4 (SYS-4) can provide additional information, however, no 
statistical side-by-side comparison has been produced. Addi-
tionally, biases within dynamical models are well known, and 
regularly documented, such as in the Coupled Model Intercom-
parison Project Phase 5 (CMIP5; Taylor et al. 2012) and Phase 
3 (CMIP3; Meehl et al. 2007) models (Yang et al. 2015; Li 
and Xie 2014; Richter et al. 2016), however, their origins, and 
their effects on the models ability to produce skilful forecasts 
is rarely considered. In operational models, mean state biases 
are linearly removed from the forecast models using hindcasts 
(Troccoli 2010). A recent study by Hirons and Turner (2018) 
demonstrated that biases in the CMIP5 models’ mean states 
can drastically influence their ability to correctly represent the 
atmospheric response to anomalies from the mean state, whilst 
a study by Delsole and Shukla (2010) suggested that models 
whose mean state are most similar to the observations have a 
tendency to demonstrate higher skill.

As part of its GPC output the UK Met Office issues 
monthly-updating seasonal forecasts with global coverage and 
with a focus on RCOF regions including the Greater Horn of 
Africa using the dynamical forecast system: Global Seasonal 
Forecasting System Version 5 (GloSea5; MacLachlan et al. 
2015). Skill maps to assist in use of the forecast are also pub-
lished (https ://www.metoffi ce.gov.uk/resea rch/clima te/seaso 
nal-to-decad al/gpc-outlo oks). In this paper a detailed assess-
ment of the ability of GloSea in predicting the rainfall seasons 
over East Africa is presented and for the first time, a quantita-
tive comparison of skill between forecasts from a dynamical 
model and the GHACOF consensus forecasts is made. This 
analysis goes beyond that of Mason and Chidzambwa (2008), 
by using a larger period of assessment, and considering the 
impact of the skill conditional on a remote driver of rainfall. 
A secondary objective is to investigate the sources of rain-
fall biases within GloSea, to understand whether these biases 
could have a negative effect on the model’s prediction skill.

The structure of the rest of the paper will be as follows: 
Sect. 2 will introduce the data used for this study, and analysis 
methodologies. Section 3.1 will evaluate the climatology and 
interannual variability of GloSea. A statistical comparison of 
the forecast skill of GloSea and GHACOF forecasts will be 
presented in Sect. 3.2. Section 3.3 will consider the drivers of 
variability in the short rains, and their effects on skill within 
both GloSea and GHACOF, whilst Sect. 3.4 will discuss and 
investigate the origin of biases of rainfall within the short rains 
in GloSea. Section 4 summarises the key findings.

2  Data and methodology

2.1  Verification data

The observational rainfall data used in this study is Global 
Precipitation Climatology Project (GPCP) version 2.3 (Adler 

http://rcc.icpac.net/index.php/long-range-forecast/verification-products
http://rcc.icpac.net/index.php/long-range-forecast/verification-products
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks
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et al. 2003), a monthly rainfall dataset from 1979 to present, 
that combines observations from rain gauges and several sat-
ellite datasets. This is gridded onto a 2.5◦ × 2.5◦ resolution 
grid. This commonly used dataset covers the study period 
and region with both land and ocean rainfall estimates.

Sea surface temperature (SST) observations are obtained 
from the Hadley Centre Sea Ice and Sea Surface Tempera-
ture (HadISST) dataset (Rayner et al. 2003). HadISST pro-
vides monthly mean data at 1◦ × 1◦ resolution. For com-
parison with wind climatologies, the European Centre for 
Medium-Range Weather Forecasts (ECMWF), interim rea-
nalysis (ERA-Interim; Dee et al. 2011) is used. Mean sea 
level pressure data use the National Centers for Environmen-
tal Prediction-National Center for Atmospheric Research 
(NCEP-NCAR) reanalysis (Kalnay et al. 1996).

2.2  Seasonal forecast model

The forecast system used in this study is the UK Met Office 
Global Seasonal Forecast System 5 (GloSea5; MacLachlan 
et al. 2015). The core of GloSea5 is the Hadley Centre 
Global Environmental Model version 3 (HadGEM3; Hewitt 
et al. 2011), with atmosphere resolution 0.833◦ × 0.556◦ , 
with 85 atmospheric levels. The ocean resolution is 
0.25◦ × 0.25◦ . The higher ocean resolution improves pre-
dictions of sea surface temperature anomalies in the Tropical 
Pacific, as tropical instability waves can be better resolved, 
and improves mid-latitude ocean biases (Scaife et al. 2011). 
The seasonal forecast model runs for 210 days from initiali-
sation. An operational hindcast is produced in parallel and 
is used to bias correct the forecast. Further details of the 
GloSea5 system and the previous version (GloSea4) are dis-
cussed in MacLachlan et al. (2015) and Arribas et al. (2011) 
respectively.

This study makes use of operational hindcasts produced 
in parallel to the forecast, covering the period 1993–2015. 
Hindcasts are run 4 times per month (1st, 9th, 17th, 25th of 
each month) with three ensemble members initialised per 
start date. Members initialised on the same date differ by sto-
chastic physics (Bowler et al. 2009). Three months preceding 
each rainfall season are used: December, January, February 
for the long rains, and July, August, September for the short 
rains, giving a total of 36 ensemble members available for 
each season. When gridpoint to gridpoint comparison with 
observational data is needed, GloSea is interpolated onto a 
2.5◦ × 2.5◦ resolution grid. The word forecast will be used 
from here on to refer to the GloSea hindcasts in the evalu-
ation. This is because the evaluation treats the hindcasts as 
forecasts, and provides consistency when referring to both 
GloSea and GHACOF.

The full 36 members are used only in results investigating 
effects of ensemble size and lead time on model behaviour. 
For results investigating the forecast skill of the system, 

and in comparison with the GHACOF forecasts, a smaller 
ensemble is used to represent a forecast initialised with 1 
month lead time. To create this 1 month lead forecast, three 
start dates centred around the first of the month prior to the 
start of the season are used (25th January, 1st February, 9th 
February for the long rains, and 25th August, 1st September, 
9th September for the short rains). As 3 ensemble members 
are initialised per start date this produces an ensemble of 9 
members. The use of members from three different dates 
is to create a larger ensemble, representing the skill of the 
central date, as there is little difference in skill between hind-
casts from neighbouring weeks, and any advantage gained 
from the shorter lead time members will be balanced out by 
the longer lead time members.

2.3  GHACOF forecasts and the GHACOF process

Currently, the GHACOF process is split into two parts: a 
pre-COF capacity building workshop with the purpose of 
both producing the consensus forecast and giving training 
to forecasters from the East Africa member states; and the 
GHACOF itself, where the forecast for the season is pre-
sented to the media and representatives from climate sensi-
tive sectors such as agriculture, energy, water resources, and 
health, and gives an opportunity for representatives of these 
sectors to interact with forecasters from East Africa as well 
as climate experts from around the world.

To produce the GHACOF forecast, predictions from many 
sources are used. ICPAC produce a seasonal forecast using 
the weather and research forecast (WRF; Skamarock et al. 
2008) model over the Greater Horn of Africa (GHA) region, 
covering 11 countries. The model is driven by the NCEP Cli-
mate Forecast System version 2 (CFSv2; Saha et al. 2014). 
This model has an horizontal resolution of 30km, with an 
ensemble of up to 15 members, many of which are initialized 
from different dates and, more recently, some members use 
different convective parameterization schemes for the same 
initial and boundary conditions. The model domain covers 
all of Africa and the adjoining water bodies, which incor-
porate the large-scale systems that drive the weather and 
climate of the region. In addition to rainfall and temperature, 
the dynamical forecast diagnostics available to the forecast-
ers include the onset of the rainfall season, its cessation, 
intervening dry and wet spells, and duration of the season, 
for the entire GHA region.

Predictions from global dynamical seasonal forecast 
models from the North American Multi Model Ensemble 
(NMME; Kirtman et al. 2014) are considered, as well as 
dynamical forecasts from the UK Met Office, Metéo-France 
and ECMWF. These are looked at both in their raw form, 
with simple mean bias correction, linear regression, and 
also as calibrated forecasts using the Climate Predictability 
Tool (CPT; Mason and Tippett 2016). A statistical model 
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approach is also used, using the Geospatial Climate Outlook 
Forecasting Tool (GeoCOF; Magadzire et al. 2016) and CPT 
to produce multiple linear regression forecasts using predic-
tors such as observed or GCM predicted SSTs and wind 
fields. Each country uses all of these data sources, as well as 
their own knowledge of their country’s climate, to produce 
a subjective forecast for their country, dividing it into zones 
where the forecast falls into the same probability catego-
ries. ICPAC then collate the country level forecasts together 
onto a map. At this point, inconsistencies at country borders 
are considered, with forecasters from each country giving 
their justification for the forecast category they have used, to 
come to an agreement on how to solve these inconsistencies. 
The forecast is presented on a map of the region (Fig. 1), 
displaying the probability of the seasonal rainfall tercile cat-
egories, above normal (upper tercile category), near normal 
(centre tercile category), and below normal (lower tercile 
category), in zones delineated by regions where the forecasts 
were the same.

2.4  Gridding of GHACOF forecasts

The rainfall outlooks produced by the GHACOF were 
sourced from ICPAC (http://geopo rtal.icpac .net/), in the 
form of digital shapefiles containing the different forecast 
probability regions for each season, starting with the first 
GHACOF in 1998. These forecasts were then gridded using 
rasterization into a 2.5◦ × 2.5◦ grid matching the GPCP 
verification data. In this way, the GHACOF forecasts can 
be evaluated in the same manner as a probabilistic dynami-
cal model forecast, against a gridded comparison dataset. 
For direct comparison between GloSea and GHACOF the 
overlapping 18 year period of 1998 to 2015 is used. Regions 
where a climatological forecast was given due to the region 
being dry for that particular season were removed from the 
evaluation to avoid evaluating a forecast that by definition 
has zero skill in many of the metrics used.

2.5  Limitations of the probabilistic evaluation 
method

In converting the GHACOF consensus forecast into a grid-
ded probabilistic forecast of the same format as a dynami-
cal model forecast, and making comparison to a dynamical 
model, some considerations need to be made. Firstly, the 
GHACOF consensus forecasts, although issued in a proba-
bilistic format, are not true probabilistic forecasts due to 
the subjectivity that is applied throughout their produc-
tion meaning the probabilities given may not necessarily 
be the true probability. However, for the purposes of this 
study these numbers will be assumed to represent the true 
probability.

Another limitation is due to the resolution of the observa-
tion data to be used. Although 2.5◦ × 2.5◦ observation data 
is the most commonly used for verification of seasonal fore-
casts (and hence why it is used in this study) this relatively 
low resolution can cause problems when converting the hand 
drawn lines of the consensus forecast into a grid, as several 
grid squares are likely to cover regions split between two or 
even more different forecast zones, and are simply treated as 
the zone which has the greatest area inside the grid square. 
This is not necessarily representative of the forecast issued 
for that location, however, the lines drawn within the forecast 
are themselves subjective.

Finally, there are limitations related to the timing of the 
forecasts. These forecasts are being treated as 1 month lead 
time forecasts, this is to represent the time when the forecast 
becomes available. Whilst this is a fair comparison for the 
long rains, which is often released at a less than 1 month lead 
time (ie later than 1st February) and utilises 1 month lead 
dynamical model predictions, this is less favourable for the 

Fig. 1  Example GHACOF consensus seasonal forecast for rainfall 
for OND 2015. The different coloured regions represent regions with 
different forecast probabilities. The column of three numbers in each 
region gives the probability of the total rainfall amount for the sea-
son being within the upper, middle, and lower tercile with respect 
to climatology. Colours indicate regions where the issued forecast 
is the same. As described in the GHACOF statement: grey indicates 
the region is usually dry during this season, yellow indicates regions 
likely to receive near normal to below normal rainfall, green indicates 
regions likely to receive above normal to near normal rainfall, blue 
indicates regions likely to receive near normal to above normal rain-
fall

http://geoportal.icpac.net/
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short rains forecast, which is released in late August (com-
pared to 1st September for the 1 month lead forecast of the 
dynamical model). Although the availability of these fore-
casts is therefore often only a few days apart, the GHACOF 
process for the short rains utilises dynamical forecasts from 
August, or 2 month lead time. Consideration should also be 
given to the fact that older GHACOF forecasts of the short 
rains were issued for September to December rather than 
October to December, and that when issuing probabilities 
based on terciles, the terciles are based on the climatological 
normal period at the time of issue (currently 1981–2010), 
rather than the period used here (1998–2015: the period over 
which the analysis is performed).

In order to address these limitations, it must be stated 
that the presented analysis only represents an estimate of the 
true skill of the consensus forecasts. Similarly the analysis 
of the dynamical forecasts are only an estimate of the true 
forecast skill due to the differing sizes of ensembles and dif-
ferent availability of initialisation data between forecasts and 
hindcasts, and as such, statistical significance tests have not 
been applied to any identified differences in skill between 
the two forecasts. Finally, there is a level of uncertainty 
within the observed data used that must be taken into con-
sideration when performing any comparison between models 
and observations.

Despite these limitations, the comparison between the 
two forecasts is an important aspect of this study, as it pro-
vides information of the ability the GHACOF forecast with 
respect to state of the art models, which can be used to judge 
the GHACOF forecasts against the predictability of the rain-
fall seasons that the forecasts are being issued for.

2.6  Statistical techniques

To construct the relative operating characteristic (ROC) 
curve (Mason 1982), thresholds of predicted probabilities for 
each tercile category (above, near, and below average) were 
selected at every 10% for GloSea due to ensemble size, and 
every 5% for GHACOF chosen due to the practice of issu-
ing forecasts with probabilities rounded to the nearest 5% 
recommended by Mason (2013). For each threshold, if the 
forecast probability of a category is greater than the threshold 
value, it is classed as a forecast event, otherwise it is classed 
as a forecast non-event. The observation matching the fore-
cast is then considered, to determine which category occurred. 
This produces for each threshold value a 2 × 2 contingency 
table, whereby a forecast event that occurred in observations 
is a hit, a forecast non-event where the event subsequently 
occurred in observations is a miss, a forecast event that did 
not occur in the observations is a false alarm, and a forecast 
non-event that did not occur in the observations is a correct 
negative. For each contingency table the hit rate (HR), defined 
as hits/(hits + misses) and false alarm rate (FAR), defined as 

false alarms/ (false alarms + correct negatives) can then be 
calculated. These values are plotted with hit rate on the y-axis, 
and false alarm rate on the x-axis, for each threshold value. 
The curve passing through the points is referred to as the ROC 
curve, and the area under the ROC curve is the ROC score, 
which can be any value between 0 and 1. A line of gradient 1 
passing through the origin defines the line of no skill compared 
to a random forecast with a ROC score of 0.5. ROC scores 
greater than 0.5 are therefore considered to have positive pre-
dictive skill with respect to a random forecast. Threshold val-
ues of 0% (the event is always forecast) and greater than 100% 
(the event is never forecast) are used to fix the curves to (1,1) 
and (0,0), as these threshold values will always produce hit 
rates of 1 and 0, and false alarm rates of 1 and 0, respectively, 
regardless of the forecast being evaluated.

To construct the reliability diagram (Hartmann et al. 
2002), forecasts are split into bins dependent on the fore-
cast probability of an event. For each bin, the forecasts are 
matched up to their corresponding observations, and the 
observed frequency of the event occurring is calculated for 
each bin. The forecast probability is then plotted against the 
observed frequency for each bin. A perfectly reliable fore-
cast would have a forecast probability equal to the observed 
frequency in all bins, leading to a diagonal line of gradient 
1, shown on the diagrams. Horizontal and vertical lines are 
plotted through the climatological frequency of the event (in 
the case of terciles, 1/3). The horizontal line corresponds to 
no resolution (ie the outcome is the same regardless of what 
was forecast), whilst the vertical line is a forecast of clima-
tology. Another line is added bisecting the diagonal and no 
resolution lines, marking the line of no skill. Forecast points 
that lie in the region between this line and the vertical line 
contribute positively to the Brier skill score of the forecast.

When analysing reliability diagrams, several terms are 
regularly used, with their definitions as follows: over/under-
confidence, meaning the line has a gradient less/ greater than 
one, and over/under-forecasting, meaning that the line lies 
mostly below/ above the diagonal line, as defined in Mason 
(2013).

The Heidke Skill Score (HSS; Heidke 1926) is computed 
using the results from an n × n contingency table. HSS is 
defined as:

where pij is the probability of the i’th row and j’th column of 
the contingency table. This can be rewritten as:

(1)HSS =

∑n
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∑n
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��
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where PC is the proportion correct, or the sum of the val-
ues on the diagonal of the contingency table, and E is the 
expected proportion correct for a random forecast, found 
by taking the sum of the probability of a forecast of event i 
multiplied by the probability of observing event i, for each i. 
HSS is a standard skill score metric, with a minimum of −1, 
and a maximum of 1, with a score of 0 meaning the forecast 
is no better than a random chance forecast.

For further information on ROC curves, reliability dia-
grams, and skill scores or metrics used in this study, the 
reader is referred to Wilks (2006).

2.7  Time series indices

For time series of area averaged rainfall over East Africa, 
the land area within the region ( 12◦N–10◦S , 30◦E–55◦E ) 
is used, and is also averaged over the 3 months of March, 
April, and May (MAM) referred to as the East African 
long rains, and the 3 months of October, November, and 
December (OND) for the East African short rains. To rep-
resent the state of ENSO, the Niño 3.4 index is used, with 
its usual definition of the average SST anomaly over the 
region ( 5◦N–5◦S , 170◦W–120◦W ; Barnston et al. 1997). In 
particular, the time averaged Niño 3.4 index is used, with 
the anomaly being the average SST anomaly over OND 
with respect to the 1993-2015 climatological SST average 
over OND within this region. Similarly, two indices within 
the Indian Ocean are used. The Western Tropical Indian 
Ocean (WTIO) is the average SST anomaly over the region 
( 10◦N–10◦S , 50◦E–70◦E ) and the South Eastern Tropical 
Indian Ocean (SETIO) is the average SST anomaly over the 
region ( 0◦N–10◦S , 90◦E–110◦E ), as defined by Saji et al. 
(1999), and calculated in the same manner as the Niño 3.4 
index. Finally the Indian Ocean Dipole (IOD) index is cal-
culated as the difference between the WTIO and SETIO 
indices, again as defined by Saji et al. (1999).

3  Results

3.1  East African climatology and interannual 
variability in GloSea

In this section, the performance of GloSea in forecasting 
the climatology and interannual variability is analysed over 
East Africa in both rainfall seasons. The rainfall and 850 
hPa wind climatology of the short rains for GloSea and 
observations, with relative biases, is shown in Fig. 2. Large 
scale patterns in both rainfall and wind vectors are captured 
well by GloSea, however the dominant feature is a clear wet 
bias, approximately 40% over land areas over OND, with 
an approximately 35% bias over the land areas in the region 
( 12◦N–10◦S , 30◦E–55◦E ) to be used in later analysis, with 

greatest bias over the regions with greatest rainfall. This 
is followed by a dry bias during the dry season, evident in 
December when a spatially coherent dry bias is present north 
of the equator, but a wet bias remains to the south. Consist-
ent with this, the change in wind direction in GloSea from a 
southerly to northerly flow appears to occur too early in the 
season, suggesting a possible mistiming in the progression 
of the ITCZ. The rainfall biases based on the distributions 
coincidingly show a larger bias in October and November 
than December.

In Fig. 3, the climatology for the long rains is shown. 
Large scale patterns are again captured well by GloSea, how-
ever in this season an overall dry bias over land is present. 
The reversal of the northerly flow appears to occur too late 
in the season, and whilst a dry bias is present over the land 
points in the region ( 12◦N–10◦S , 30◦E–55◦E ) in March, it 
has changed to a slight wet bias by May. The net effect is 
that the rainfall bias in this season is of relatively small mag-
nitude, as seen in Fig. 3d. A large wet bias persists over the 
Indian Ocean, although moves northwards throughout the 
season, following the peak in rainfall.

The wet bias in the short rains, coupled with a minor dry 
bias in the long rains leads to a pattern where the short rains 
in the model provide greater rainfall than the long rains. This 
same error in the annual cycle of rainfall over East Africa is 
present in other models, as has been documented in previous 
studies of the CMIP3 (Anyah and Qiu 2012) and CMIP5 
(Yang et al. 2015) climate models. Wet biases are found 
in most tropical regions in many seasonal forecast systems 
(Scaife et al. 2018).

The key feature of interest within a seasonal rainfall 
forecast is the prediction of a rainfall anomaly over the 
season in comparison to climatology. Figure 4 shows the 
predicted rainfall anomaly for each year of the forecast 
period for both GloSea and observations for both rainfall 
seasons. During the short rains, a correlation skill of 0.69 
is achieved. This result is insensitive to the exact defini-
tion of the region. The model predicts the sign of many of 
the extreme years correctly such as 1997 and 2006, how-
ever ensemble members do not reach the extreme values 
seen in observations. The ensemble mean has a standard 
deviation of 0.40mm day−1 , and the observations have a 
standard deviation of 0.85mm day−1 . Some lack of vari-
ance with respect to the observations is expected, as the 
ensemble mean represents the predictable part of the vari-
ance (Scaife and Smith 2018). However, the mean ensemble 
member standard deviation over all members and years is 
0.55mm day−1 , also lower than the observations. Ensemble 
members should have approximately the same variance on 
average as the observations, to represent a possible realisa-
tion of the observations. This lack of variance explains why 
the ensemble members struggle to forecast the extremity of 
the most extreme wet or dry years (e.g. 1997, 1998, 2005, 
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2006). In a well calibrated forecast where each ensemble 
member represents a possible realization, the observations 
would be expected to appear as one of the extreme outer 
realisations in 2 out of 10 years (if treated as a 10th ensem-
ble member then it would be expected to be the most wet 1 in 
10 times, or most dry 1 in 10 times), so somewhere between 

4 and 5 occurrences would be expected to happen over 23 
years. This is considerably less than the 10 occurrences over 
the 23 years found here.

During the long rains, a correlation of 0.07 is achieved, 
this is insignificant at the 5% level and demonstrates that 
the model is unable to predict the long rains interannual 

(a) (b) (c)

(e)

(i) (j) (k)

(f) (g)

(d)

(h)

(l)

(m) (n) (o) (p)

Fig. 2  East Africa rainfall (colours) and 850 hPa wind (vectors) cli-
matology during the short rains for an ensemble mean of 36 members 
for GloSea (left), GPCP rainfall and ERA-Interim winds (second col-
umn), GloSea minus GPCP/ ERA-Interim (third column), and violin 
plots of rainfall distributions of GloSea and GPCP, with white dots 

representing the mean, the thick black line the interquartile range, 
and the shaded areas showing the distribution, for each land gridpoint 
within the region ( 12◦N–10◦S , 30◦E–55◦E ), for each year (right). 
The rows show the climatologies for OND (a–d), then October (e–h), 
November (i–l), December (m–p), separately
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variability over land, consistent with previous results based 
on other models (e.g. Batté and Déqué 2011; Shukla et al. 
2016). There is also an apparent failure of the model in cap-
turing anomalies in the most extreme wet (e.g. 1996, 2013) 
and dry (e.g. 2000, 2009) years in this season. In all years 
the spread of the ensemble members exceeds the spread of 
the observations.

A common question within dynamical models is whether 
an increase in ensemble size could further improve the 

forecast. To examine this, the correlation coefficient of 
the ensemble mean with the observations as a function of 
ensemble size is shown in Fig. 5. To create this, for each 
ensemble size, ensemble members are randomly sampled 
to build an ensemble of the correct size, then correlated 
with the observations. This is repeated 10,000 times, and 
the mean result is taken for each ensemble size. In the short 
rains the curves using both all 36 members available and the 
12 member sub-samples demonstrate a curve approaching 

(a) (b) (c)

(e)

(i) (j) (k)

(f) (g)

(d)

(h)

(l)

(m) (n) (o) (p)

Fig. 3  As in Fig. 2, but for the long rains (MAM)
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an asymptote, with the curves flattening between 10 and 15 
ensemble members. The small increase from 12 to 36 mem-
bers indicates that a further increase in ensemble size would 
provide limited additional benefit, given that the current 
operational forecasts use an ensemble size of 42. Also dem-
onstrated here is a monotonic increase in skill with decreas-
ing lead time. As well as studying potential improvements 
from increasing ensemble size, the potential skill; the ability 
of the model to predict itself (as in Kumar et al. 2014; Scaife 
et al. 2014), is also investigated. This is achieved by replac-
ing the observations with a single member of the ensem-
ble, and calculating the correlation between the ensemble 
mean of the rest of ensemble and the single member. This 
is repeated for each member in the ensemble, and the mean 
score is taken. It is also repeated for each ensemble size, 
leading to the dotted line in Fig. 5. The average correlation 
between a single member and the ensemble is shown to be 
consistently lower than the correlation between the ensemble 
and the observations, suggesting the model can better predict 
the observations than itself. This phenomenon has also been 
found elsewhere by Eade et al. (2014), and by Scaife and 
Smith (2018) who note its prevalence in the extratropical 
Atlantic, however this is one of few tropical examples of 
this behaviour as models generally overestimate the predict-
ability of tropical rainfall.

The long rains similarly demonstrate the pattern that 
an increase in ensemble size would have limited benefits, 
although for the 36 member line there is an increase in skill 
with ensemble size. The asymptote value for an infinitely 
large ensemble in this case is 0.26. In the long rains, the 
correlation does not increase monotonically with decreasing 
lead time, as was observed in the short rains. This is likely 
due to the limited skill at any lead time.

3.2  Forecast skill in GloSea and GHACOF

In this section, a comparison is made between GloSea 
and GHACOF consensus forecasts. Both are regridded to 
2.5◦ × 2.5◦ , and the period 1998–2015 is used. A discus-
sion on this process and the limitations of the comparisons 
made in this section was given in Sects. 2.4 and 2.5. Fig-
ure 6 shows ROC curves and reliability diagrams for both 
forecasts during the short rains. Both forecasts demonstrate 
skill for the outer categories, with the above average rain-
fall category being highest. GloSea demonstrates some level 
of skill in predicting the middle category although lower 
than in the outer categories, as is often the case for categori-
cal forecasts (van den Dool and Toth 1991), and generally 
achieves higher scores in all categories than GHACOF at 
one month lead. ROC scores of two month lead forecasts 
of GloSea were also calculated, finding values of 0.621 and 
0.567 in the above and below normal categories respectively, 
remaining higher than the GHACOF forecast. In the GloSea 

(b)

(a)

Fig. 4  Time series of rainfall anomaly from climatology for the short 
rains (a) and long rains (b), for 1 month lead time forecasts from Glo-
Sea ensemble mean (solid line), ensemble members (dots, coloured 
by initialisation date), and GPCP (dashed line). Correlation coef-
ficient between ensemble mean and GPCP shown at bottom of each 
panel

(a) (b)

Fig. 5  Correlation skill of GloSea forecasts as a function of ensemble 
size for the short rains (a), and long rains (b), for randomised ensem-
bles using all 36 members available (blue crosses) and each initiali-
sation month consisting of 12 members (coloured crosses). Dashed 
lines show curve fitted to crosses of corresponding colour. Dotted 
line in a shows correlation of GloSea ensemble mean rainfall against 
a single removed ensemble member, demonstrating internal predict-
ability
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reliability diagam, there is clear evidence of forecast over-
confidence in all three categories: a gradient less than 1. This 
means that for categories forecast with increased/decreased 
probability of occurrence with respect to climatology, the 
increase/decrease in probability is larger in magnitude than 
is observed. Meanwhile, the GHACOF reliability diagrams 
appear to show under-confidence in the outer categories, 
with a gradient greater than one, implying shifts in prob-
ability from climatology are on average too small.

Figure 7 shows the ROC curves and reliability diagrams 
for the long rains. Both GloSea and GHACOF display lit-
tle skill during this season for any tercile, although ROC 
scores are generally greater than 0.5 by a marginal amount. 
The GloSea reliability diagram displays very little res-
olution for any category, the observed frequency being 
approximately the same regardless of the forecast prob-
ability. GHACOF appears to show slightly greater reli-
ability for this season. Both of the reliability diagrams for 
GHACOF demonstrate a lack of forecasts landing within 
the 30% category. Forecasts of 30% for any category are 
rarely issued. This is related to the method of construction 

of the probabilities. In general, 40% is often taken as the 
starting point for the probability of the near normal cat-
egory, meaning that a probability of 30% for either outer 
category would then result in a forecast of equal probabil-
ity for both outer categories. Situations in which forecasts 
for both outer categories are given equal probabilities are 
avoided, as they are seen by users as not being a useful 
forecast.

In Fig. 8, a spatial map of the ROC score for each cat-
egory is shown for GloSea and GHACOF for the short rains. 
In the outer categories there is a coherent region of higher 
skill over Kenya, coastal Somalia, southeast Ethiopia and 
northeast Tanzania, as well as over the Indian Ocean. This 
region is apparent in both GloSea and GHACOF, and in both 
outer categories. These diagrams show highest skill in the 
regions where the heaviest rainfall is present. ROC scores 
for the long rains (Fig. 9) are lower than for the short rains 
for both GloSea and GHACOF for all categories, and less 
coherently distributed in GloSea. Kenya however appears to 
show some evidence of positive skill in the above tercile for 
GloSea, and both outer categories of GHACOF. The GloSea 

Fig. 6  Tercile category ROC 
curves (a, b) and reliability 
diagrams (c, d) for GloSea 
(left) and GHACOF (right), 
for the short rains. Upper 
tercile category shown in blue, 
lower tercile category in red, 
centre tercile category in black. 
ROC scores inset onto curves, 
labelled points on ROC curves 
correspond to threshold value 
used for each point. Dashed 
line in a, b refers to line of no 
ROC skill. Dashed line in c, d 
refers to line of zero Brier skill, 
horizontal dotted line shows 
line of no resolution, vertical 
dotted line represents climato-
logical forecast. Points lying 
between climatological forecast 
and dashed line contribute posi-
tively to Brier skill score. Size 
of circles demonstrate relative 
frequency of occurrence of the 
probability being forecast

(a) (b)

(d)(c)
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ROC maps demonstrate that positive skill is achieved over 
the Indian Ocean off the coast of East Africa in both outer 
categories.

Although it is not good practice to interpret the probabil-
ity forecasts deterministically, it is still a widespread practice 
(Patt et al. 2007). To explore the performance of the fore-
casts interpreted in this way, the probabilistic forecasts were 
converted into deterministic categorical forecasts whereby 
the forecast is assigned as the category of the highest prob-
ability of occurrence. If an outer category and centre cat-
egory are equal highest (for example a split of 40,40,20 for 
above, near, below categories respectively), then the higher 
outer category is assigned. If both outer categories are equal 
highest then the forecast is not included in this evaluation, 
this removes climatological forecasts, and bimodal forecasts. 
Table 1 presents a contingency table evaluation of determin-
istic forecasts generated in this way for both GloSea and 
GHACOF, and for both the long and short rains. The most 
striking difference between the GHACOF and GloSea fore-
casts are the large number of forecasts in which GHACOF 

has the highest weighting assigned to the normal category, 
with 81% of forecasts being made for this category for the 
long rains, and 71% of forecasts being made for this category 
in the short rains. This is something common to the West 
African RCOF (Bliefernicht et al. 2018), and RCOFs else-
where in Africa (Mason and Chidzambwa 2008). It is clear 
from the middle row of Table 1 that within GHACOF, as 
often occurs in categorical forecasts (van den Dool and Toth 
1991), there is very low skill in forecasting this category: 
when the near normal category is forecast, observations 
are spread approximately equally across the three catego-
ries. The number of correct forecasts within this category 
falls at approximately one third (34% for both MAM and 
OND). GloSea has similarly equal spread across this cat-
egory, although has a lower number of forecasts falling into 
it. Approximately 35% of near normal forecasts are correct 
for MAM, 40% for OND, and a total of 30% of forecasts are 
issued into the near normal category for MAM, and 38% for 
OND. This high level of hedging in GHACOF drastically 
lowers the hit rates for the outer tercile categories, as seen 

Fig. 7  As in Fig. 6, but for the 
long rains

(a)

(c) (d)

(b)
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in Table 2, and thus the usefulness of the forecasts, and was 
identified by Mason and Chidzambwa (2008) as one of the 
key issues within RCOF forecasts.

Some favourable conclusions for GHACOF can how-
ever be drawn from this table. Table 2 shows that for all 
categories except for the above normal category in MAM, 
GHACOF has a higher hit rate than false alarm rate, a signal 
that there is positive skill coming from these forecasts. By 
looking at the Heidke Skill Score (HSS) for the forecasts, 
positive values are achieved in both seasons by both fore-
casts, however GloSea shows marginally higher scores in 
each season. It is likely that the GHACOF forecast has lower 

scores in this measure due to the large number of forecasts 
that contained highest weighting into the centre category, 
which could have had higher weighting towards the correct 
outer category than incorrect, but is instead interpreted as a 
forecast for the near normal category. It is again clear from 
Table 2, the difference in skill for forecasting between the 
two seasons, with higher HSS and generally greater differ-
ences between the hit rates and false alarm rates in each 
category for the short rains than for the long rains.

By considering within GHACOF, the forecasts of the 
outer categories, it is clear from Table 1 that the forecasts 
are in fact capable of identifying years in which an above or 

Fig. 8  Maps of ROC score for 
GloSea (left) and GHACOF 
(right) for tercile categories of 
rainfall, upper tercile category 
(a, b), centre tercile category (c, 
d), lower tercile category (e, f), 
for the short rains

(a) (b)

(c) (d)

(e) (f)
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below average year is most likely, with many more forecasts 
for the correct outer category than incorrect outer category, 
with the exception of above normal forecasts of the long 
rains. These forecasts then have a property which, when con-
sidering the relative risks of an incorrect forecast compared 
to the return for a correct forecast, may be considered highly 
desirable; a low rate of forecasts with two category errors, 
much lower than is seen in GloSea.

Combining both GloSea and GHACOF also appears to 
display some complementary information. Whilst GloSea 
generally performs better over the previously displayed sta-
tistical measures, it appears that GloSea shows a lack of skill 

in predicting below average rainfall in the long rains, whilst 
GHACOF performs best in this category, with a higher ROC 
score (Fig. 7), and positive scores from the contingency table 
(Table 2), with this skill appearing to originate from over 
Kenya (Fig. 9). This is possibly due to alternative sources of 
predictability utilised by the forecasters that are not currently 
represented in GloSea, but could be related to other factors. 
For example the higher skill in both forecasts observed over 
Kenya could be related to higher observed data quality in 
this region. This could be due to, for example, the less com-
plex orography over the coastal area, as satellite estimates 

Fig. 9  As in Fig. 8, but for the 
long rains

(a) (b)

(c) (d)

(e) (f)
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often struggle to estimate correctly rainfall rates over steeper 
orography (e.g. Cattani et al. 2016; Kimani et al. 2017).

3.3  Drivers of interannual rainfall variability 
in the short rains

Many previous studies have shown the relationship between 
the East African short rains and SST anomalies in the equa-
torial Pacific, and more recently, Indian Ocean, as discussed 
in Sect. 1, in particular highlighting the importance of the 
El Niño-Southern Oscillation and Indian Ocean Dipole. 
For a model of the short rains to be successful it needs to 
predict correctly both the evolution of these modes of vari-
ability in the oceans, and also produce the correct atmos-
pheric response to the predicted SST anomalies. Figure 10 
shows the correlations of rainfall over East Africa within 
each grid point to the Niño 3.4 and IOD indices for GloSea 

and for observations. The spatial patterns of both indices 
correlations are well represented by GloSea; the model cor-
rectly represents the effect of these modes of variability 
on the rainfall, however some differences are noted. There 
is a sharp decrease in correlation running north to south 
through Kenya in the model in both indices, suggesting a 
sharp change in rainfall interannual variability here. This 
is not present in the observations (although some gradient 
does exist in the IOD map) and hints at a misplaced telecon-
nection, too far east in the model, as well as some possible 
incorrect orographic effects taking place in the model, as 
this north to south decrease runs down the eastern edge of 
the East African highlands. The region with the highest cor-
relation to IOD in the model coincides with the region of 
highest skill.

Figure 11 shows the correlation of SST anomalies at 
each grid point with the East African short rains, in the 

Table 1  3 × 3 contingency table 
for GHACOF (top) and GloSea 
(bottom) for the long rains 
(left) and short rains (right), for 
tercile probability categories, A: 
above normal, N: near normal, 
B: below normal

MAM OND

Forecast Observed Forecast Observed

A N B A N B

GHACOF
 A 16 22 24 A 91 56 20
 N 251 246 228 N 197 220 227
 B 32 31 46 B 8 25 57

GloSea
 A 119 75 104 A 145 69 63
 N 76 94 92 N 93 135 113
 B 98 127 106 B 62 99 126

Table 2  Hit rates (HR), false alarm rates (FAR) separated by forecast category, and Heidke Skill Score (HSS) for both forecasts and both seasons

Season Forecast HR FAR HSS

OND GHACOF
 Above 0.31 0.13
 Near 0.73 0.71 0.11
 Below 0.19 0.06

GloSea
 Above 0.48 0.22
 Near 0.45 0.34 0.17
 Below 0.42 0.27

MAM GHACOF
 Above 0.05 0.08
 Near 0.82 0.80 0.02
 Below 0.15 0.11

GloSea
 Above 0.41 0.30
 Near 0.32 0.28 0.04
 Below 0.35 0.38
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observations and in GloSea. In both panels the large scale 
pattern is clear, with the strongest, coherent correlations 
coming from the Pacific and Indian Oceans, representing 
the El Niño and IOD modes of variability. The correlations 
within GloSea are of a smaller magnitude than within the 
observations, suggesting that the coupling between the ocean 
and atmosphere may be too weak in the model. The posi-
tive correlation in the Pacific Ocean also stretches too far 
west, as does the negative correlation over the eastern Indian 
Ocean, matching with the rainfall response to ENSO noted 
by MacLachlan et al. (2015) within GloSea in December to 
February.

As well as capturing the correct teleconnections, the 
model also needs to capture the evolution of SSTs to be use-
ful as a forecast model. To examine whether the model cap-
tures the evolution of SSTs, SST indices within the Indian 
and Pacific Oceans over OND were forecast with 1 month 
lead time. These were then compared with observations, and 
a 1 month persistence forecast was used as a reference fore-
cast. This was done as high correlation scores are likely to 
occur even if the model doesn’t correctly model the evolu-
tion of the SSTs, due to the slowly evolving nature of SSTs. 
If the forecast can beat the correlation of the persistence 
forecast this implies that some useful information can be 
obtained from the forecast. The persistence forecast uses 

Fig. 10  Correlation of rainfall 
over East Africa during the 
short rains with Niño 3.4 (left), 
and IOD (right) over East 
Africa for GloSea mean correla-
tion over individual members 
(a, b), and GPCP/ HadISST 
(c, d). Grey line shows 1000 m 
contour

(a) (b)

(d)(c)

Fig. 11  Correlation of SST 
anomalies with East Afri-
can short rains land based 
points within ( 12◦N–10◦S , 
30◦E–55◦E ), for GPCP/ 
HadISST (a) and GloSea mean 
correlation over individual 
members (b)

(a)

(b)
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the average SST anomalies over the entire month of August, 
whilst the forecast is that which would be used for the 1st 
September, for a direct comparison. These were then com-
pared with the observed SST anomaly over OND, as shown 
in Fig. 12. GloSea consistently outperformed the persistence 
forecast in all indices, with the most promising results being 
over the western Indian Ocean (WTIO) where GloSea had a 
correlation of 0.93 with the observations, whilst the persis-
tence forecast had a value 0.71. GloSea also captured well 
the observed warming trend in the ocean in this region. This 
improvement over a persistence forecast also meant a nota-
bly better forecast IOD than persistence, with a correlation 
score for GloSea of 0.85, whilst persistence achieved 0.77. 
The eastern Indian Ocean and Niño 3.4 region both showed 
marginal improvements in comparison to persistence. 
Whilst there is already improved prediction compared to 
persistence at 1 month lead time, at longer lead times, bet-
ter performance of the dynamical model against persistence 

is expected for the Niño 3.4 region (Graham et al. 2012). 
For IOD it is less clear whether this is the case, as Graham 
et al. (2012) found that the previous version, GloSea4, was 
outperformed by persistence at forecasting IOD at both short 
and longer lead times.

A common feature of all the SST indices within Glo-
Sea was a variance larger than the observations, as can be 
seen in Fig. 12. This is in contrast to lower than observed 
variability in rainfall, and further suggests that the coupling 
between SSTs and the short rains is too weak. This large 
variance was particularly noticeable in the SETIO index, 
where the standard deviation was more than double that of 
the observed. This region also achieved the lowest correla-
tion score in GloSea (equal with the IOD, which is itself 
dependent on the SETIO forecast). Difficulty in forecasting 
SST evolution in this region has been highlighted previously 
by Lu et al. (2018).

As well as correctly predicting rainfall, GloSea has 
shown that it potentially can hold value over a purely sta-
tistical forecast of rainfall by skilful prediction of the evo-
lution of SST anomalies in the Pacific and Indian Ocean. 
To confirm this, multiple linear regression models were 
built using indices from the Pacific and Indian Ocean. A 
regression model was built using observed SST indices 
over OND to predict OND rainfall within the observations. 
The regression value achieved by the model utilising IOD 
and Niño 3.4 was 0.90, and demonstrates the dominance 
that these two modes of variability have over the region, 
during this period. Bahaga et al. (2019) demonstrated how-
ever that the correlation between these modes can fluctuate 
on decadal timescales, with the period used here found to 
have a particularly high correlation.

Building a regression model from the persisted values 
of IOD and Niño 3.4 achieved a regression value of 0.77. 
This value is actually larger than the rainfall forecast from 
GloSea (at 0.69), and although the difference is not sig-
nificant, demonstrates the strength of a statistical forecast 
in this region.

Since the persistence model value is lower than the 
regression model using the observed SSTs, correct pre-
dictions of SST evolution may give an improvement on 
the persistence model. To test this, a regression model 
was then built using GloSea forecast SST indices of IOD 
and Niño 3.4 for OND. This model achieved a regression 
value of 0.80, bettering the persistence forecast, although 
again the difference is not significant at this short lead 
time. The fact that the observed SST regression model 
achieved the same score regardless of whether the Niño 
3.4 index was included, whilst in the persistence model 
it improved the model, leads to the hypothesis that the 
high correlation observed between El Niño and East Afri-
can rainfall is primarily through modulation of the Indian 
Ocean, rather than independent influence, similar to the 

(a)

(b)

(c)

(d)

Fig. 12  Time series of OND values of SST indices; a IOD, b SETIO, 
c WTIO, d Niño 3.4. Solid lines show GloSea SST forecast anoma-
lies, dotted line shows persisted SST anomalies from August, dashed 
lines show observed SST anomalies
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conclusions of Behera et al. (2005), Bahaga et al. (2015). 
To examine whether this is the case, the partial correlation 
of two variables (subscript 1, 2) with the influence of a 
third variable (subscript 3) removed (Yule 1907; Lawrence 
1976), is calculated, defined as:

where �ij refers to the Pearson correlation coefficient of 
variables i and j. This value runs from − 1 to 1 as in the 

(3)
�12,3 =

�12 − �13�23
√

(1 − �
2
13
)(1 − �

2
23
)

Pearson correlation coefficient. In particular the partial 
correlation of East African rainfall with the IOD with the 
influence of ENSO removed, �ri,n , and the partial correla-
tion of East African rainfall with ENSO with the influence 
of IOD removed, �rn,i , are calculated, where the r, n, and i 
subscripts refer to the time series of East African rainfall, 
Niño 3.4, and IOD respectively. In the observations, a value 
of �ri,n = 0.82 is found, suggesting that when the effect of 
ENSO is excluded, the IOD still maintains a strong relation 
to East African rainfall. Meanwhile a value of �rn,i = 0.02 
was found in the observations, suggesting that when the 

Fig. 13  As in Fig. 8, but for 
years with a GloSea forecast 
active Indian Ocean Dipole 
event. Positive IOD years were 
identified as 1994, 1997, 2006, 
2007, 2011, 2012. Negative 
IOD years were identified as 
1996, 1998, 2001, 2008, 2010

(a) (b)

(c) (d)

(e) (f)
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effect of the IOD is excluded, ENSO has very little effect on 
East African rainfall, supporting the hypothesis above, also 
suggested by Behera et al. (2005), Bahaga et al. (2015). By 
performing the same calculations for GloSea’s forecast SST 
indices against rainfall, we find values of 0.83 and − 0.06 for 
�ri,n and �rn,i respectively, suggesting GloSea does very well 
at capturing the relationship between the IOD, ENSO, and 
East African rainfall. From this, it could be suggested that 
when an ENSO event is forecast, if anomalies in the Indian 
Ocean remain small, then a response in East African rainfall 
should not necessarily be expected.

Given the strength of connection between SST anomalies 
and the short rains, and the ability of GloSea at predicting 
SST evolution, it should be expected that during years where 
an IOD or ENSO event is forecast, the capability of the 
model should increase (Frías et al. 2010; Pegion and Kumar 
2013). To test this, both GloSea, and GHACOF forecasts 
were re-evaluated conditional on years where an IOD event 
(defined by an anomaly greater than 0.5◦ C) is forecast by the 
model. The model forecast IOD years are used rather than 
observed to demonstrate the skill based on making decisions 

using forecast SSTs. Figure 13 shows tercile category ROC 
maps (as in Fig. 8) for years where GloSea has forecast an 
IOD event, for both GloSea and GHACOF. In both forecasts 
the increase in skill is clear, with both having regions along 
coastal East Africa above 0.8 or 0.9, with this region coin-
ciding well with the regions of highest skill and highest cor-
relation with IOD shown in Figs. 8 and 10. Figure 14 shows 
the corresponding ROC curves, and reliability diagrams for 
this set of forecasts. Both GloSea and GHACOF show an 
increased ROC score, with the above normal category scor-
ing highest in both. GloSea again generally outperforms 
GHACOF in this score.

The reliability diagram for GloSea demonstrates that dur-
ing these years the forecast is highly reliable, with the outer 
categories lying consistently close to the perfect reliability 
line. Some evidence of under-forecasting is present in the 
below normal category, with the observed frequency con-
sistently higher than the forecast probability. There is also a 
hint of under-confidence in the above normal category, with 
a gradient greater than 1 apparent for this line. During these 
years the centre tercile category appears to be over-forecast.

Fig. 14  As in Fig. 6, but for 
years with a GloSea forecast 
active Indian Ocean Dipole 
event. Positive IOD years were 
identified as 1994, 1997, 2006, 
2007, 2011, 2012. Negative 
IOD years were identified as 
1996, 1998, 2001, 2008, 2010

(a) (b)

(d)(c)
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The reliability diagram for GHACOF, although noisy, 
demonstrates the under-confidence of forecasts during these 
years in the outer terciles, with a gradient greater than one 
apparent. This is more evident within the above average cat-
egory. The below average category demonstrates both some 
under-confidence, and some under-forecasting, below aver-
age years have occurred with greater probability than were 
forecast.

Similar results were found for years with an active ENSO 
event (not shown), however, in many of the years where IOD 
is active, ENSO was also found to be active. Years where 
SST anomalies in both the Niño 3.4 and the IOD index were 
small were also investigated. GloSea demonstrated positive 
skill in the outer categories in these neutral years, with a 
ROC score for the above (below) normal category being 0.61 
(0.54). GHACOF meanwhile shows less skill in the years 
where neutral conditions are forecast, with ROC score for 
the above (below) normal category being 0.52 (0.48).

3.4  Drivers of GloSea rainfall bias in the short rains

The large wet bias in GloSea over East Africa during the 
short rains was highlighted in Fig. 2. Whilst it is known 
that coupled dynamical models regularly have too much 
rainfall in the tropics (Li and Xie 2014; Scaife et al. 2018), 
this wet bias is large in size when compared to the rest of 
the tropics within GloSea. Although it is clear that GloSea 
achieves high levels of skill despite this bias, understand-
ing the origin of this bias may be important for explaining 
the lack of variability in the model, and for future improve-
ments to forecasts for this region. To understand this, the 
bias evolution over time was studied over a stationary 
period of time (the 3 months of OND) for different forecast 
lead times. Figure 15a shows the evolution of the rainfall 
bias over East Africa as a function of lead time. At all lead 
times there is a wet bias. There is an approximately linear 
increasing trend in the wet bias as lead time increases; 
a model drift. To understand what may be causing this, 
the bias as a function of lead time was plotted for several 
other fields. Figure 15b shows the bias-lead time relation 
for the SST indices over the Pacific and Indian Oceans. A 
cold bias is present in both the Pacific and Indian Ocean; 
these biases remain approximately constant in the Pacific 
and western Indian Ocean, however the SETIO index dis-
plays a linear decrease in temperature with increasing lead 
time, this region was also highlighted as the most difficult 
to forecast in the previous section, as well as having an 
unrealistically large variance within GloSea [also seen in 
Lu et al. (2018)]. This increasing cold bias has an impact 
on the sea level pressure over the eastern Indian Ocean 
region, seen in Fig. 15c. The bias in pressure over the 
western Indian Ocean remains approximately constant, 
whilst the pressure over the eastern Indian Ocean increases 

with increasing lead time, consistent with the cooler SSTs 
at longer lead times, generating a west to east pressure 
gradient.

Figure 15d shows the equatorial zonal wind bias over 
the Indian Ocean ( 5◦N–5◦S , 60◦E–90◦E ) as a function of 
lead time. At all lead times there is an easterly wind bias 
of these zonal winds. Matching with the pressure biases, 
the zonal winds become more easterly (more negative in 
Fig. 15d) with increasing lead times, with the average wind 
direction within the model switching from the observed 
westerlies to become easterly between 40 and 50 days lead 
time. This wind anomaly is likely to draw more moisture 

(a)

(b)

(c)

(d)

Fig. 15  GloSea lead time-bias relations over short rains season fore-
casts for a rainfall (against GPCP), b SST indices (against HadISST), 
c sea level pressure (against NCEP-NCAR Reanalysis), d 850 hPa 
equatorial zonal wind over Indian Ocean (against ERA-Interim Rea-
nalysis). Dots on same day show ensemble members initialised at 
the same lead time. Vertical dashed lines mark the 1st September, 
August, July. Proxy IOD shows the index for model minus observa-
tions in the mean state. Mean sea level pressure west and east refer to 
same co-ordinates as west and east poles of IOD, whilst west minus 
east shows relative pressure gradient compared to observed. Zonal 
winds averaged over ( 5◦N–5◦S , 60◦E–90◦E ). Dotted line on bottom 
panel shows point at which zonal average wind in box is zero
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toward the African continent from the Indian Ocean, as 
well as having an effect on the Indian Ocean Walker circu-
lation, reproducing a positive IOD-like response within the 
mean state. This is likely to reduce the impact of further 
increases in these winds in providing moisture. Whilst this 
is not necessarily the case for GloSea, it could explain part 
of the weakened coupling between the Indian Ocean and 
the short rains, as well as the lack of variability in rainfall 
with respect to the observations.

Capturing the direction of these winds is known to 
be difficult for coupled models, with Hirons and Turner 
(2018) recently showing that the majority of CMIP5 mod-
els incorrectly capture the mean state of these winds, and 
the models with incorrect easterly zonal winds in the mean 
state struggle to capture correctly the influence of the IOD 
on rainfall in the short rains.

4  Conclusions

Skilful seasonal forecasts of rainfall are vitally impor-
tant for many sectors in East Africa. In this study, the 
most widely issued operational seasonal forecast within 
the region, the GHACOF consensus forecast, has been 
evaluated against observations and compared to the UK 
Met Office dynamical seasonal forecast system, GloSea. 
In addition, physical rainfall-producing processes within 
the dynamical model related to the short rains season were 
investigated and an analysis of the origin of the model’s 
regional wet bias was performed.

The ability of Met Office GloSea system operational hind-
casts were evaluated on their ability to predict seasonal rain-
fall anomalies over East Africa at 1 month lead time before 
the start of the two rainy seasons. GloSea demonstrates an 
ability to represent the climatology of the rainfall seasons 
well, but with a large wet bias of approximately 40% during 
the short rains, and a lack of interannual variability. GloSea 
performs much better at predicting interannual variability 
during the short rains than the long rains due to its abil-
ity to capture teleconnections between SST anomalies and 
rainfall in the short rains season, as documented by Batté 
and Déqué (2011), Shukla et al. (2016), Nicholson (2017). 
However, GloSea’s short rains forecasts can be outperformed 
by a statistical forecast using persisted SST anomalies from 
August. A similar statistical model based on GloSea’s SST 
forecasts can, however, outperform both GloSea’s own rain-
fall prediction and the aforementioned statistical forecast 
using persistence. The ability to better predict rainfall using 
GloSea’s SST field suggests that further improvements to 
predictions of the short rains could be made by improving 
the atmospheric response to the ocean state.

GloSea displayed little ability in forecasting rainfall dur-
ing the long rains, with a correlation between GloSea and 

GPCP of 0.07, a result common to previous dynamical sea-
sonal forecast models in this season (e.g. Batté and Déqué 
2011; Shukla et al. 2016) with the potential for increases to 
approximately 0.25 in a larger ensemble than the ensemble 
of 9 members used. In both seasons it was demonstrated that 
an increase in ensemble size above the current operational 
size of 42 members would provide limited benefits, although 
could offer relatively larger improvements to the long rains 
than the short rains.

Probabilistic verification was performed on both GloSea 
and the GHACOF consensus forecasts. Both GloSea and 
GHACOF displayed positive skill in forecasting outer ter-
cile categories of rainfall over East Africa, and promisingly, 
both demonstrated similar spatial patterns of skill, with a 
coherent region of high skill coinciding with the area most 
highly correlated with Indian Ocean SST anomalies during 
the short rains. However, in general GHACOF was outper-
formed by GloSea over the two seasons, with the exception 
of the below normal category within the long rains. The 
predictability here could be related to GHACOF utilising 
information not represented within dynamical models, and 
demonstrates the value of using both statistical and dynami-
cal modelling techniques (Doblas-Reyes et al. 2013), as is 
done within the GHACOF forecasts.

Despite the positive skill, GHACOF demonstrated several 
features that are potentially harmful to the usefulness of the 
forecast. The stand out error is the tendency to over-forecast 
the near normal category of rainfall, common to RCOFs 
in other regions (Mason and Chidzambwa 2008; Bliefern-
icht et al. 2018). GHACOF regularly issue a probability of 
over 40% in the near normal category, and this category is 
issued as the highest probability category at over 70% of the 
forecast grid points over both seasons. Not only is it dem-
onstrated that forecasting this category is less skilful than 
forecasting for the outer categories, but this tendency also 
undermines the use of tercile categories, as, over the period 
of the forecasts, the three tercile categories have not been 
forecast to occur equally often. This could confuse interpre-
tation of the forecasts by user groups, who have regularly 
noted difficulties in understanding probabilistic forecasts. 
This lack of confidence also lowers the statistical resolu-
tion of the forecasts; forecasts predicting the most wet and 
most dry events often appear remarkably similar, with the 
probabilities in the outer categories often only shifting by 
5 or 10%.

Another common behaviour was the tendency to avoid 
forecasting 30% probability, this is due to the method with 
which probabilities are assigned. In general a probability of 
40% is used as an initial value for the near normal category, 
the 30% forecast is then avoided so as to ensure issuing a 
forecast with different probabilities for above and below 
normal years. In some cases however, a forecast for 30% 
may indeed be most appropriate. These tendencies identified 
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within the GHACOF forecast process are performed within a 
risk averse strategy, and this is reflected in the low number of 
times where the opposite outer category was forecast as the 
most probable, to what subsequently occurred. Whilst this 
strategy of reducing the number of complete misses may be 
a desirable property in building trust between forecasters and 
users, it also reduces the utility of the forecast.

A promising result from this study is the contrasting 
behaviour between the dynamical forecast, which often 
over-confidently forecasts a wet or dry year, and the com-
paratively risk averse consensus forecast. A way to reduce 
the under-confidence issues in the GHACOF forecasts would 
be to give an increased confidence weighting to the dynami-
cal forecast in scenarios where the dynamical models are 
known to be skilful. These results demonstrate the benefit 
of using a consistent comparison method for forecast evalua-
tion, something commonly produced for dynamical forecast 
verification, but rarely applied elsewhere.

It was shown that in years where a driver such as the 
IOD is forecast as active, prediction skill of both GloSea 
and GHACOF is increased, however GHACOF still show 
evidence of under-confidence within the forecasts. This sug-
gests that in years when a strong driver is forecast, the prob-
abilities of the relevant outer categories of the GHACOF 
forecast should be more confidently forecast to reflect the 
increased predictability. This can be aided by the fact that 
GloSea outperforms persistence SST forecasts even at a 1 
month lead time.

The large rainfall bias during the short rains was shown to 
primarily originate from the evolution of a cold SST anom-
aly in the eastern Indian Ocean and easterly wind anomalies 
across the equatorial Indian Ocean, a situation reminiscent 
of a positive IOD state (Saji et al. 1999). At short lead times, 
there is little SST bias, however an easterly wind bias forms 
very quickly, suggesting that the mechanism for the gen-
eration of the IOD-like state is caused by the wind bias: an 
easterly wind bias across the Indian Ocean causes upwelling 
and cooling of the eastern side of the Indian Ocean basin, 
reducing SSTs. This causes a higher pressure to form over 
the eastern IO, generating a west to east pressure gradient, 
further increasing the easterly wind. This positive Bjerknes 
feedback (Bjerknes 1969) then causes the increase in bias 
with increased lead time.

Recent results from Hirons and Turner (2018) dem-
onstrate that CMIP5 models with easterly zonal winds 
across the Indian Ocean in the mean state fail to capture 
the observed moisture advection in the short rains linked 
to Indian Ocean SSTs, and struggle to capture the observed 
teleconnection patterns. This bias should be further investi-
gated to understand what impact it has on predictions on a 
seasonal timescale, and whether improvements to the Indian 
Ocean and the Walker circulation can reduce the rainfall bias 
and improve predictions of the short rains.
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