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Abstract 

The sorting of multi-component textile waste into individual components limit the recycling potential 

of textile waste. Thermo-mechanical processes can be applied to recycle mixed waste, without sorting, 

to extrude hybrid fibres. This research reports on the mixing of polyamide 6 (PA6) and thermoplastic 

polyurethane (TPU) polymers to produce hybrid fibres by melt extrusion process. Two different 

blending compositions; namely PA6-80 and PA6-50, were produced. SEM images show the 

development of interconnected multi-porous hybrid fibre structures with average fibre and pore 

diameter of 126-136 µm and 7-8 µm, respectively. Differential scanning calorimetry (DSC), TGA and 

ATR-FTIR results show the changes in the thermal and chemical properties of the blends, 

demonstrating the interactions that happen between PA6 and TPU. Mechanical testing shows properties 

of the novel hybrid fibres are in between that of the fibres spun from the constituent polymers. The 

multicomponent melt extrusion can be potentially applied to the mixed polymer waste. 

Keywords: Blends, fibres, thermoplastics, recycle, extrusion 

Introduction 

Plastic litter is a problem of growing concern around the globe. The Goal 12 of the 2030 Agenda for 

Sustainable Development [1] commits to responsible consumption and production. More than two-

thirds of textile raw materials come from a plastic source. The increasing demand for textiles products 

is likely to increases the amount of plastic waste generated [2] and this is of concern, especially for 

materials from non-renewable sources. Globally, 92 million tonnes of clothing waste were recorded in 

2015 and expected to reach 148 million tonnes by 2030 [3]. Most of the waste were sent to landfill, 

incinerated for energy recovery [4] or polluted the oceans in the form of microfibres [5] while only 25% 

were recovered through reuse and recycling routes [6]. The reuse of textile products can be a preferred 

option as the effective life of textile products can be extended. However, a sizeable proportion of the 

textile waste (usually worn out fabric, torn, stained, mildewed) inevitably needs recycling. 

 Textile recycling can be divided into fabric recycling, fibre recycling, polymer/oligomer 

recycling and monomer recycling which can be achieved by mechanical, chemical and/or thermal 

processes [6, 7]. Fabric recycling and fibre recycling are widely adopted in the industry. Polymer and 
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monomer recycling, at the moment, are limited to one material groups such as PA6 [8–10], polyester 

[11] and cellulose-based fibres [12, 13]. Despite the growing awareness and efforts to recycle textile 

waste, the amount of the waste that recycled back to produce materials for new clothing is still very 

small (<1%) [6]. In textile industry, blending of two or more materials (e.g. blend of polyester/cotton 

yarn, bi-component fibre, coated fabric) is usually performed to achieve desired end use properties. 

However, lack of technologies and facilities to sort and separate mixed-waste materials at an industrial 

scale limits the recycling of composite materials [14].  

 One of the approaches to recycle mixed-waste can be direct thermo-mechanical processing of the 

mixed-waste. The blending of two or more recycled polymers can allow the development of blended 

fibres in novel morphologies and with improved properties. There are two possible morphologies 

developed in polymer blend; matrix-dispersed structure and co-continuous structure [15]. The matrix-

dispersed structure can produce varieties of dispersed shapes such as a sphere, droplet or fibril. In fibre 

production, the elongation force during processing forms the matrix-fibril structure. The matrix-fibril 

structure resembles the island-in-the-sea bi-component fibres with the fibrils resembles the ‘island’, and 

the matrix resembles the ‘sea’. By removing the ‘sea’ or matrix during subsequent production, micro 
or nanofibres can be obtained [16, 17]. Meanwhile, the co-continuous structures are formed when 

individual polymers are connected to each other and produced a continuous structure [18, 19]. Different 

proportion of components and the polymer types can allow to produce varying blended fibre structures. 

 The applications of polyamide woven fabrics coated with thermoplastic polyurethane (TPU) 

include marine products such as inflatable raft, life vest and buoyancy control products [20]. Polyamide, 

or commonly known as nylon, ranks third among synthetic textile fibres, with 4.55 million tonnes 

produced in 2014 [21]. In polyamide family, polyamide 6 (PA6) dominates (86%) usage in the apparel 

industry compared to PA6,6 (14%) [21]. PA6 exhibits excellent mechanical, thermal and chemical 

resistance properties and considered as an expensive thermoplastic polymer (compared to commodity 

polyolefin and polyethylene terephthalate). Hence, by recycling, the life and usage of the polymer can 

be extended. TPU is an elastomer with high elongation, high strength, high elasticity and excellent 

resistance to oil, grease, solvents and chemicals [22]. Like PA6, TPU is also a highly expensive 

polymer. In the textiles industry, TPU is mainly used as a coating onto fabrics, and nonwoven fabrics 

are produced for medical, pharmaceutical, sportswear and filtration applications.  

 Several studies have produced hybrid fibres by blending PA6 with other materials such as low 

density polyethylene (LDPE) [23], cellulose acetate butyrate (CAB) [24], polypropylene (PP) [25], 

chitosan [26] and polyethylene terephthalate (PET) [27]. The blending of polyamide with TPU in 

injection moulding and compressed mould have been reported [28–32] but there is a paucity of reported 

work on fibre blending of PA6 and TPU. A study conducted by John and Furukawa [33] showed that 

PA6 fibres coated with TPU increase the tensile strength and the breaking elongation of the filaments. 

The blending of PA6 and TPU via melt spinning can be of further interest as the functional groups 

present in both polymers; hydroxyl and carbonyl groups will form hydrogen bonding with amide and 

urethane/urea group [34, 35].  

 In this study, the PA6:TPU hybrid fibres were produced by using one-step twin-screw melt 

spinning method. This work aims to recycle polymer waste containing more than one polymer. The 

approach can allow end-of-life recycling options for multi-material polymer products. The morphology, 
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thermal, mechanical and chemical properties of the extruded fibres were characterised. The effect of 

blend composition, screw speed and take-up winder speed were also studied on the fibres spun from a 

mix of PA6 and TPU polymers. 

Materials  

Extrusion grade polyamide 6 (PA6) pellets (Radilon S 35F 100NT, melting temperature: 223°C) were 

purchased from Radici Group, Gandino, Italy and the thermoplastic polyurethane (TPU) pellets 

(polyether-polyurethane type; Elastollan®1278 D 11U000, Melt flow rate: 35 g/10 min, melting 

temperature: 189°C) were supplied by BASF Polyurethanes GmbH, Lemförde, Germany.  

Experimental 

Extrusion 

Hybrid fibres were extruded using a 10 mm twin-screw extruder manufactured by Rondol Technology 

Ltd., UK (Rondol-Microlab; screw dimension (L/D) 20:1; die diameter 2 mm). Prior to extrusion, both 

materials were dried in a vacuum oven (Gallenkamp, 1000 mbar) at 80°C for 6 h before mixing the two 

polymers (PA6:TPU) at a weight ratio of 80:20 (PA6-80) and 50:50 (PA6-50). PA6, TPU, and hybrid 

PA6-80 and PA6-50 were produced at 60 rpm screw speed with 24.5 m min-1 take-up winder speed. 

The temperature profile of the twin-screw extruder was divided into five heating zones and temperature 

profiles from the feed hopper to die were 180/200/220/225/230°C. To study the effect of screw speed 

and take-up winder speed, PA6-80 hybrid fibres were produced at three different screw speeds (40, 60 

and 80 rpm) and take-up winder speeds of 7.5, 24.5 and 40.0 m min-1. The distance between the die and 

take-up winder was set at 1 m. After melt spinning, the samples were conditioned at 20±2°C and a 

relative humidity of 65±5% for 24 h. 

Characterisation of fibres 

Differential Scanning Calorimetry (DSC) (heat-cool-heat, Nitrogen (N2): 25 mL min-1, temperature: 0-

250°C, heating rate: 10°C min-1) studies were performed to analyse the thermal transitions of the single 

component and the hybrid fibres (5-7 mg, cut from fibres, undried). Testing was conducted on a Q2000 

apparatus from TA instrument. The melting and crystallisation behaviour of the fibres were observed 

from DSC thermograph. The percentage of PA6 crystallinity for the fibres were calculated from eq. (1) 

[25], where ȟܪ is melting enthalpy, ݓ is the weight percentage of PA6 in the hybrid fibres and ȟܪ  is a reference value of melting enthalpy for PA6 (230.1 J g-1) [25, 36]. 

 Ψ ܣܲ ݂ ݕݐ݈݈݅݊݅ܽݐݏݕݎܥ ൌ  ܪ߂ ܪ߂  ൈ ݓ  ൈ ͳͲͲ (1) 

 Thermogravimetric analyser (TGA) (TA Instruments Q50) was employed to test the thermal 

stability of the hybrid fibres (Nitrogen (N2) : 25 mL min-1, temperature: 50-600°C, heating rate: 10°C 

min-1). X-ray diffraction (XRD) (Bruker D8) was used to study the crystal form of the hybrid fibres. 

The measurements were taken with Cu KĮ1 radiation (wavelength, Ȝ= 0.15406 nm) in the range from 
5-60° at a step size of 0.05° s-1. Capillary Rheometer (Bohlin, RH2000) with a 16 mm barrel and 1 mm 



4 
 

diameter die was used to study the apparent viscosity of the PA6 and TPU pellets at a temperature of 

230°C. The barrel has three heating zones that were held constant at a designated temperature. The 

polymer was then extruded through the die with piston speed ranged between 5-35 mm min-1 resulting 

in an apparent shear rate of 150 to 1050 s-1 with an interval of 150 s-1.  

 The morphology of the as-spun fibres was examined using a Hitachi S-2600N SEM. The fibres 

were placed on a 12mm diameter pinned stubs before gold coating in an Emitech K550X sputter coater. 

The fibres were cross-sectioned following AATCC Test Method 202159 and viewed under a light 

microscope (Leica M205C). Thirty pictures of each sample were analysed using ImageJ software to get 

the area of the fibres cross-section. Fourier Transform Infrared Spectroscopy (FTIR) equipped with 

Attenuated Total Reflectance (ATR) (Perkin Elmer Spectrum BX spectrophotometer) was used (4,000-

600 cm-1 with 32 scans, 4 cm-1 and scanning interval was 2 cm-1) to study the infrared spectrum of the 

as-spun fibres. Tensile strength (cN tex-1) and elongation at break (%) of single fibres were measured 

(gauge length: 100 mm at 500 mm min-1
 cross-head speed) using single column tensile strength tester 

(Instron 5540) following BS EN 13895. 10 specimens were tested for each fibre to get an average value. 

Results and Discussion 

The properties of the hybrid fibres are discussed in this section including the thermal, rheology, 

morphology of the fibres, chemical and mechanical properties. 

 

Thermal properties 

 

Fig. 1 The DSC thermograph of; a) second heating and b) cooling scan of pure and hybrid 
fibres. 

Table 1 Thermal properties of pure and hybrid fibres. 

Fibre Melting 

temperature, 

Tm (°C) 

Melting 

enthalpy, 

ǻHm (J g-1) 

Crystallisation 

temperature, 

Tc
 (°C) 

PA6 crystallinity 

(%) 

PA6 221 59.6 188 25.9 

PA6-80 204 25.9 153 14.1 

PA6-50 204 24.1 148 20.9 
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TPU 182 9.0 108 - 

 

The DSC curves for PA6, TPU, PA6-80 and PA6-50 fibres are shown in Fig. 1 and the melting and 

crystallisation behaviours are presented in Table 1. The first heating scan was conducted to remove 

previous thermal history. Therefore the melting temperature and melting enthalpy of the fibres were 

determined from the second heating scan as shown in Fig. 1a.  

 The PA6 melting curve shows the maximum melting peak (Tm) at 221°C, and a shoulder peak 

appears near to the maximum melting peak. The appearance of the shoulder could be attributed to either 

the development of two different crystal morphologies in the PA6 polymer or could be attributed to 

recrystallisation effect after the first heating cycle [37] or same kind of crystal formation with different 

thicknesses [38]. Two kinds of crystal forms can be expected in PA6 structure, Į and Ȗ-form, which 

were melted at 222°C and 213°C, respectively [39]. TPU fibres showed a melting peak at 182°C and 

small endothermic peaks at 202°C and 220°C. TPU is an amorphous polymer and these peaks are related 

to the disordering of crystallinity of TPU hard segments [40]. 

 PA6-80 and PA6-50 show similar melting behaviour with melting temperatures at 204°C and 

melting enthalpy of 25.9 and 24.1 J g-1, respectively. The melting point of hybrid fibres were lower than 

that of PA6 with a small endothermic peak of TPU. The decrease in the melting temperature of hybrid 

fibres can be linked to the interactions between amide group and urethane/urea group via hydrogen 

bonding [35]. PA6 and TPU could form extensive hydrogen bonding due to their chemical structures 

and availability of relevant functional groups [34, 41]. The appearance of single endotherm in the hybrid 

fibres indicate the existence of extensive interactions between PA6 and TPU. These two polymers, due 

to extensive hydrogen bonding, develops strong interactions during melt spinning thus will affect the 

morphological structure of the blended fibres. 

 The addition of 20% TPU in PA6 does affect the molecular and crystalline structure of the hybrid 

fibres significantly as could be seen from Table 1. The fibre blend with 1:1 composition of PA6 and 

TPU also affect the crystallinity of the hybrid fibres but, interestingly, shows better crystallinity than 

PA6-80. These results correspond with the tensile properties of the hybrid fibres; this will be discussed 

in Mechanical properties.  

 The crystallisation temperatures of the hybrid fibres are in between that of PA6 and TPU fibres 

(Fig. 1b) The crystallisation temperatures of PA6-80, PA6-50 and PA6 are 153°C, 148°C, and 188°C 

(Table 1), respectively. TPU cooling curve shows two crystallisation peaks at 108°C and 128°C which 

corresponding to the soft segment of TPU [31]. The blending of PA6 and TPU might disorder the PA6 

crystal form [32], discussed further in Chemical properties.  
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Fig. 2 TG and DTG curves of pure and hybrid fibres.  

 

The results for thermal stability of the hybrid fibres and single component fibres are shown in Fig. 2 

and Table 2. The thermal stability of hybrid fibres were in between that of pure PA6 and TPU, 

depending on the actual ratio of the blend components;  PA6-50 started to decompose much earlier than 

that of PA6-80. . As TPU was found dispersed in the PA6 matrix, this helped to delay the degradation 

of the TPU in the blend, as evident by the Tonset. The degradation of 100% TPU samples happens in two 

steps which can be attributed to the presence of incompatible hard and soft segments of TPU.  

 

Table 2 Thermal characteristics of pure and hybrid fibres 

Fibre Tonset (°C)  T50 (°C) Tmax (°C) 

PA6 419 441 465 

PA6-80 373 416 462 

PA6-50 345 390 456 

TPU 298 351 426 

 

 

XRD 

Diffraction spectra of the fibres are depicted in Fig. 3. For PA6, two type of crystals frequently observed 

are Į-type and Ȗ-type crystal structure. As displayed in PA6 spectra (Fig. 3), one sharp peak at 21.3° 

was obtained representing the PA6 Ȗ-crystal structure. Ȗ-form crystal is more pronounced in PA6 due 

to the moderate fibre spinning process used in this study with take-up speed less than 6 km min-1.[42] 

TPU fibres showed amorphous peak at 20.6°. The addition of 20% of TPU in the hybrid fibres distorted 

the PA6 crystal form but Ȗ-crystal remained as main crystal structure form with a very small proportion 

of  Į-type crystal. On the other hand, PA6-50 crystallised into Į1 and Į2 crystal structures which showed  

peaks at 20.5° and 22.7°, respectively. Interestingly, two new peaks appear on PA6-50 at peaks 14° and 

17° which can be linked to the crystallinity of the hard segment of TPU [43]. Development of TPU hard 
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segment crystals in PA6-50 increases the strength of the fibres and is further discussed in mechanical 

properties section. 

 

Fig. 3 XRD pattern of pure and hybrid fibres 

 

Rheology 

Flow behaviour of polymer melt depends on the shear rate, shear stress and the residence time of the 

polymer in the extruder [44]. The apparent viscosity of a polymer, at a given temperature, affects the 

distribution of the polymers in the melt extruder barrel and consequently affects the morphology and 

structural properties of the as-spun fibres [45–47]. In a polymer blend, the composition of each blend 

(blend ratio) affect the final morphology of the fibre. A polymer with a high composition will act as the 

matrix, and the polymer with lower composition will be the disperse component. The minor component 

will disperse in the primary component and will form small droplets that can be transformed into fibrils 

when the elongational forces were applied. The diameter of the droplets increases with the increase in 

the disperse phase composition [45]. The viscosity ratio of the dispersed phase to matrix phase will also 

affect the diameter of the droplets. Increase in dispersed component viscosity increases the viscosity 

ratio of dispersed to matrix phase thus increases the average diameter of the droplet but reduces the 

number of droplets formed. Therefore, to measure the viscosity ratio of the studied polymers, the 

estimated viscosity of the polymers during melt spinning are determined by considering the screw speed 

of the extruder during melt processing.  
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 The screw speeds for the production of PA6:TPU hybrid fibres were set at 40, 60 and 80 rpm. 

The shear rate for each conditions were calculated using eq. (2) [48] where ܦ is a screw outside 

diameter, ݊  is a screw speed (rpm) and ݄ is an overflight gap between the tip of the screw and the inner 

wall of the barrel.  

 In this study, the screw diameter is 10 mm, and the overflight gap is 0.1 mm. The calculated shear 

rate for the hybrid polymer of PA6 and TPU processing at 40, 60 and 80 rpm are 209, 314 and 419 s-1 

respectively.  

 

Fig. 4 The shear viscosity-shear rate of  and TPU at 230°C. 

 

݁ݐܽݎ ݎ݄ܽ݁ܵ ൌ ߨ  ൈ ܦ ൈ ݄݊ ൈ Ͳ  
(2) 
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 As can be seen from Fig. 4, both polymers are non-Newtonian fluids with shear thinning fluid 

characteristic, where the viscosity of both polymers decreased with increasing shear rate. PA6 showed 

higher viscosity compare to the TPU, which can be attributed to the dissimilar melting temperatures of 

both polymers. TPU melting temperature is 189°C and therefore will show lower viscosity at 230°C 

compared with PA6 which completely melt at 220°C. The shear rate of 209, 314 and 419 s-1 for 

PA6:TPU hybrid fibres processed at 230°C corresponds to the viscosities of PA6 (1130, 890 and 770 

Pa.s) and TPU (170, 120 and 100 Pa.s). Therefore, the viscosity ratio of the hybrid polymer is 0.15, 

0.13 and 0.12 for the shear rates 209 s-1, 314 s-1 and 419 s-1, respectively, evaluated using eq. (3). The 

lower viscosity ratio should lead to finer droplets of the dispersed phase in the polymer blend. Increasing 

the screw speed (rpm) results in increasing the shear rate thus contributes to the better dispersion of the 

blend [49]. Increasing shear rate has been reported to cause a decrease in the diameter of the fibrils [45] 

from dispersed droplets. 

 

Morphology of the hybrid fibres 

The formation of the sphere, laminar or fibril morphologies might happen in a polymer blend [45]. 

However, in this study, the phase separation between PA6 and TPU was not clearly observed in both 

hybrid fibres, PA6-80 and PA6-50, as shown in Fig. 5. In other studies involving the blending of TPU 

with PA6 [30], PA10 [29], PA11 [31] and PA1212 [28], the separation between these two polymers 

were observed under SEM.  

݅ݐܽݎ ݕݐ݅ݏܿݏܸ݅ ൌ ǡ݀݁ݏݎ݁ݏ݅݀ ݕݐ݅ݏܿݏ݅ݒ  ǡݔ݅ݎݐܽ݉ ݕݐ݅ݏܿݏ݅ݒௗߟ ߟ  (3) 
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Fig. 5 SEM micrograph of fibre’s cross-section (left) and fibre surface (right). 

 

Distinct morphology differences can be observed between the single component and hybrid fibres, as 

shown in Fig. 5. PA6 fibre shows a clean and smooth cross-sectional and longitudinal view. Rod-like 

appearance can be seen from the image, as expected from PA6 fibres. When 20% of TPU was added, 

porous fibres with rough and grooved surface were formed. For the PA6-50 hybrid fibre, the existence 

of pores still can be observed with the fibre surface smoother than PA6-80.  

 The porous features are also evident in TPU fibres processed at 230°C. To critically understand 

the formation of the TPU porous structures, TPU fibres were extruded at different temperatures (200°C 

to 230°C). Fig. 6 shows that the pores started to appear in the TPU fibres produced at 220°C and the 
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significant appearance of pores can be seen in the TPU fibres produced at 230°C. The processing of 

TPU at high temperature (~230°C) can lead to degradation of TPU owing to oxidation, chain scission 

and release of carbon dioxide [50]. The pores that appear in TPU and hybrid fibres could be attributed 

to the formation of gas bubbles which were produced during the melt spinning process. Chiu and 

Chuang [30] studied the mechanical properties of the compressed mould of PA6:TPU (80:20) and found 

the presence of small holes that cause a decrement in tensile stress. Other study conducted by Zo et al. 

[35] also reported the development of small holes in the PA6 and TPU blend composites. Both studies 

prepared the PA6:TPU blends at the temperature range of 230 to 260°C. 

 The processing temperature of TPU in this study is higher than the average melting temperature 

of TPU (~185°C) and this causes the degradation of TPU and thus could cause the pores in the hybrid 

fibres. The presence of the pores in the single component TPU fibres at higher processing temperature 

(Fig. 6) explains the formation of the pores in the PA6:TPU hybrid fibres. 

 

Fig. 6 Microscope images of TPU produce at 200°C to 230°C (dotted circles in 220°C image 
show the pores appear in the fibre). 

 

 To further investigate the morphology of the hybrid fibres, the single component fibres and 

hybrid fibres were treated with dimethyl sulfoxide (DMSO) for 24 h at room temperature with the aim 

to remove the TPU component. During the treatment, TPU fibres were dissolved after 15 mins in 

DMSO. The hybrid fibres and PA6 remained in the fibre form after 24 h of treatment. As shown in Fig. 

7, the morphology of the DMSO-treated hybrid fibres changed when compared with untreated fibres, 

thus proving the presence of the TPU in the as-spun hybrid fibres. The morphology of the hybrid fibres 

after the treatment with DMSO can be assumed as a matrix-disperse phase; with PA6 as the matrix 

while TPU act as the disperse phase. Previous studies show the apparent shape of TPU dispersed in 

polyamide matrix, with the dispersed is in the sphere [28, 31] and sphericity [29] shape.  

 



12 
 

 

Fig. 7 SEM images of hybrid fibres after treated with DMSO for 24 h. (Upper images: cross-
sectional view, bottom images: fibre longitudinal view). The images before DMSO-treatment 

are reported in Fig. 4. 

 

 The PA6-80 hybrid fibres were also produced at different screw speed settings (40, 60 and 80 

rpm) with two take-up winder speeds (24.5 and 40 m min-1) to investigate the influence of processing 

parameters on the morphology of the hybrid fibres. From Fig. 8 and Fig. 9, it could be seen that the 

pores exist in all the fibres independent of the processing parameters. Besides, uneven and groove-like 

fibre surface morphology can be seen on hybrid fibres, compared with the single component fibres that 

have relatively smooth fibre surfaces (Fig. 5). The uneven surfaces can offer higher surface area 

compared to relatively smooth fibres making them highly desirable for technical applications such as 

filtration.  

 

Fig. 8 SEM images of PA6-80 produced with the same winder take-up speed (24.5 m min-1) 
and different screw speed; a) 40, b) 60 and c) 80 rpm. (Upper images: cross-sectional view, 

bottom images: fibre longitudinal view) 



13 
 

 

Fig. 9 SEM images of PA6-80 produced with the same screw speed 80 rpm and different 
winder take-up speed; a) 24.5 m min-1 and b) 40 m min-1. (Upper images: cross-sectional 

view, bottom images: fibre longitudinal view) 

 

Fig. 10 The pore diameter distribution of hybrid fibres. (nPA6-50=1046, nPA6-80=1170, obtained 
from 30 specimens for each blend) 

 

Fig. 11 The fibre cross-sectional area (bulk and true), total pore area of pure and hybrid 
fibres. (n=30) 
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 Owing to non-circular cross-section shape of the as-spun hybrid fibres, the “circular equivalent 
diameter” (CED) of the fibres were calculated by using eq. (4) [16] with ݀  is a fibre diameter and ܣ is 

a fibre cross-sectional area (bulk). The average diameter of PA6, PA6-80, PA6-50 and TPU fibres was 

114±1.2, 136±3.2, 126±1.5 and 151±6 µm, respectively. The diameter of pores developed in the PA6-

80 and PA6-50 fibres were 8 and 7 µm, respectively, calculated using eq. (4). The pore diameter 

distribution is shown in Fig. 10.  

 Fig. 11 shows the bulk and true cross-sectional areas of the fibres, and the average pore areas.  

TPU showed the highest fibre cross-sectional area, followed by PA6-80, PA6-50 and PA6. The true 

cross-sectional areas were measured using eq. (5) and is illustrated in Fig. 12. 

 

Fig. 12 Illustration of bulk and true cross-section area. 

ݏݏݎܿ ݁ݑݎܶ  െ ܽ݁ݎܽ ݈ܽ݊݅ݐܿ݁ݏ ൌ ܽ݁ݎܽ ݈݇ݑܤ  െ  (5) ܽ݁ݎܽ ݏ݁ݎ ݈ܽݐݐ

 

 

 The bulk areas of the hybrid fibres are bigger than that of PA6 and smaller than TPU single 

component fibres. However, the true cross-sectional areas of the hybrid fibres are similar to PA6 fibres. 

It could be assumed that the pores developed in the hybrid fibres make the fibre cross-sectional areas 

expand thus having bigger bulk cross-sectional areas than single component PA6 fibres. The average 

of pore areas in both hybrid fibres were larger than the pore area in TPU fibre with PA6-80 showing 

higher pore area than PA6-50. From Fig. 13, it could be observed that significant pores were developed 

in PA6-80. The number and size of the pores play an important role when considering the end 

application of the fibres such as insulating materials, moisture absorber, filtration and more.  

݀ா ൌ ඨͶߨܣ  
 (4) 
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Fig. 13 Microscope images of pure and hybrid fibres. 

 

Chemical properties 

 

Fig. 14 ATR-FTIR spectra of PA6, TPU and hybrid fibres. 

 

The chemical structure of the hybrid fibres were compared with the single component fibres to identify 

any possible interactions between the two constituent polymers (Fig. 14). The PA6 components (N-H 

(3291 cm-1), C-H (2922 & 2864 cm-1), amide I (1633 cm-1) and amide II (1538 cm-1)) as well as the 

TPU components (C=O (1698 cm-1) and C-O-C (1218 & 1062 cm-1)) were observed in the hybrid fibres.  

 The carbonyl group (C=O, 1698 cm-1) was observed in the hybrid fibres, but the peaks slightly 

shifted to 1705 cm-1 and 1703 cm-1 for PA6-80 and PA6-50, respectively (Fig. 15 normalised at 2866 

cm-1). The carbonyl region of TPU can be related to the crystalline region of urethane and urea groups 
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[51]. The free urea (keto group C=O) in TPU fibres changes to H-bonded urethane in both the hybrid 

fibres. The shifting of this peak can be associated with hydrogen bonding interactions between urea 

group of TPU and amide group of PA6 [31, 41]. The absorbance intensity in the carbonyl region was 

analysed to investigate the effect of the blend to the groups reported in Table 3. The absorbance intensity 

of the hybrid fibres show reduction when compared to TPU fibres, which can be related to the weight 

composition of the TPU in the blends. As this absorbency relates to the crystalline region of the TPU, 

decreasing the amount of TPU in the blend decreases the absorbency intensity.  

 

Fig. 15 The carbonyl region of TPU and hybrid fibres. 

 

Table 3 Absorbance intensity of the fibres referring to carbonyl phase. 

C=O phase Wavenumber (cm-1) Absorbance Intensity 

TPU PA6-50 PA6-80 

Free urethane 1729 1.38 0.86 0.33 

H-bonded urethane 1702 2.33 1.55 0.48 

Free urea 1698 2.46 1.46 0.43 

 

 As discussed earlier in Thermal properties, the crystallinity of the hybrid fibres were lower 

compared to the single component fibres. Į and Ȗ- crystal form of PA6 [41] is shown in Fig. 16 (850 to 

1150 cm-1); the observed peaks at 1630, 1169 and 973 cm-1 indicate the presence of Ȗ-form crystal whilst 

the Į-form crystal peak could be observed at 1202 cm-1. The Ȗ-form observed at 1630 cm-1 can be 

observed in both PA6-80 and PA6-50 hybrid fibres. The Į-form crystal observed at 1202 cm-1 in single 
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component PA6 fibres were not present in the hybrid fibres. The small peak at 1169 cm-1 appears for 

PA6-80 but not for PA6-50; the same is also observed with Ȗ-form peak at 973 cm-1. The blending of 

PA6 and TPU at high temperature might have disordered the PA6 crystal form and affected the 

crystallisation of the hybrid fibres.  

 

Fig. 16 FTIR spectra of Į and Ȗ-crystal form of the fibres. 

Mechanical properties 

 

 

Fig. 17 Tenacity, elongation and Young modulus of PA6, TPU and hybrid fibres. (n=10) 
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Fig. 18 The representative curve of tenacity-breaking elongation of PA6, TPU and hybrid 
fibres. 

 

The blending of two different polymers is likely to alter the mechanical behaviour of the resultant hybrid 

fibre. Morphology and the interfacial surface tension of the polymers are the factors that affect the 

mechanical behaviour of the hybrid fibres [45]. The strength of the hybrid fibres can be controlled by 

selecting the right blend composition, either to produce a matrix-dispersed phase or co-continuous phase 

morphology; the latter can offer better mechanical properties but can pose processing challenges [18]. 

The tenacity and breaking elongation of the single component and hybrid fibres are shown in Fig. 17, 

and the representative tenacity-elongation curves are shown in Fig. 18.  

 As expected, the mechanical behaviour of the hybrid fibres lie between that of the PA6 and TPU 

single component fibres, with PA6-50 exhibiting superior tenacity and elongation than PA6-80. The 

existence of the pores introduce a weak link and this results in the reduction of the mechanical 

performance of the hybrid fibres. This result correspond with the mechanical properties of the PA6:TPU 

blend obtain by Chiu and Chuang [30]. A study  by Baiju et al. showed that coating of TPU film onto 

PA6 fibre delayed the micro-crack formation on the PA6 fibre surface, which consequently improved 

the fibre strength [52]. In this research, the TPU component was dispersed inside the PA6 matrix, as 

demonstrated by immersion of the hybrid fibres in DMSO (Fig. 7). The structural position of the TPU 

within the PA6 matrix did not aid on delaying crack formation on the fibre surface. 

 Besides, the percentage of crystallinity mentioned in the thermal properties discussion can also 

be related to the tensile strength of the fibres. In the analysis of the thermal properties, it was found that 

PA6-80 hybrid fibres exhibit lower crystallinity than PA6-50. Crystallinity relates to the compactness 

of the lamella structure in the polymer, lesser the crystallinity, lower should be the strength of the fibres 

[53]. The development of TPU hard segments crystal also contributes to the strength increment in PA6-

50. 

 The interfacial surface adhesion between PA6 and TPU can also possibly be contributing to the 

strength of the hybrid fibres. PA6 and TPU, as discussed earlier, could form hydrogen bonding; 
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however, the significant number of pores developed in the PA6-80 weaken the structures and decrease 

the tensile strength. 

 The Young’s modulus of hybrid fibres are slightly higher than the single component fibres, and 

the breaking elongations are significantly lower than the PA6 single component fibres; PA6-80 fibres 

particularly show signification reduction in the elongation at break. The strong hydrogen bonding in the 

hybrid fibres restricts the movement of the molecules and therefore reduces the elongation at break [51].  

The strength and elongation of TPU fibres processed at 230oC are 196% and 62%, respectively, lower 

than the fibres processed at 200°C (Fig. 19). The high processing temperature significantly affects the 

strength of TPU. Therefore, it could be concluded that the reduction in the strength of the hybrid fibres 

is also affected by processing PA6 with TPU at high temperature.  

 

Fig. 19 Tenacity and breaking elongation of TPU fibres produce at 200°C and 230°C. 

Conclusions 

This work presents an approach to recycle multi-component blended textile waste for value-added 

applications. Although this research uses PA6 and thermoplastic polyurethane blends, this approach can 

be extended to other waste mixtures to produce hybrid functional fibres. Interconnected multi-pores 

fibres with a non-circular cross-section were produced in this study by blending PA6 and TPU at a 

processing temperature of 230°C; both PA6-80 and PA6-50 hybrid fibres show the existence of multi-

pores. The multi-porous structure in the hybrid fibres were also observed when different take-up speeds 

and screw speeds were used during fibre production. The thermal analysis shows PA6 and TPU might 

develop strong interactions thus affecting the molecular and crystalline structure of the hybrid fibres. 

This was also substantiated with the chemical analysis. The mechanical analysis shows a decrease in 

the hybrid fibre strength compared to PA6 fibres but the hybrid fibres show better strength than TPU 

fibres, processed at the same temperature. The decreasing mechanical behaviour of the hybrid fibres 

compared to the PA6 was expected due to the formation of pores in the hybrid fibres. This study shows 

the feasibility of producing multi-porous high functional fibres using a conventional melt spinning 

method. 
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