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The dynamics of a conducting liquid film flowing down a cylindrical fibre, subjected to
a radial electric field, is investigated using a long-wave model (Ding et al. JFM 752,
2014). In this study, to account for the complicated interactions between droplets, we
consider two large droplets in a periodic computational domain and find two distinct
types of travelling wave solutions, which consist of either two identical (type-I) or two
slightly different droplets (type-II). Both are ‘relative’ equilibria, i.e. steady in a frame
moving at their phase speed, and are stable in smaller domains when the electric field is
weak. We also study relative periodic orbits, i.e. temporally recurrent dynamic solutions
of the system. In the presence of the electric field, we show how these invariant solutions
are linked to the dynamics, where the system can evolve into either, one of the steady
travelling wave states, an oscillatory state, or a “singular-structure” (Wray et al. JFM
735, 2013; Ding et al. JFM 752, 2014). We find that the oscillation between two similarly-
sized large droplets in the oscillatory state is well represented by relative periodic orbits.
Varying the electric field strength, we demonstrate that relative periodic solutions arise
as the dynamically important solution once the type-I or type-II travelling wave solutions
lose stability. Oscillation can be either enhanced or impeded as the electric field’s strength
increases. When the electric field is strong, no relative periodic solutions are found and
a spike-like singular structure is observed. For the case where the the electric field is
not present, the oscillation is instead caused by the interaction between a large droplet
and a nearby much smaller droplet. We show that this oscillation phenomenon originates
from the instability of the type-I travelling wave solution in larger domains, and that the
oscillatory state can again be represented by an exact relative periodic orbit. The relative
periodic orbit solution is also compared with experimental study for this case. The present
study demonstrates that the relative periodic solutions are better at capturing the wave
speed and oscillatory dynamics than the travelling wave solutions in the unsteady flow
regime.

Key words: Liquid film, Relative periodic solution, Electric field

1. Introduction

Over the past few decades, due to the vast number of applications in coating technol-
ogy, liquid film flows have received much attention. Many experimental and theoretical
works have focused on a liquid film flowing down a flat plane (Oron, Davis & Bankoff
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1997; Craster & Matar 2009) and a cylindrical surface (Quéré 1999). A liquid film coat-
ing a cylindrical surface has potential applications in oil recovery and biological flows,
particularly in connection with the drawing of fibres from liquid baths. The well-known
Plateau-Rayleigh mechanism modulated by the gravity driven flow gives rise to many
interesting dynamical phenomena, e.g. organized sliding beads and the breakup of liquid
films, which have attracted much experimental and theoretical attention (De Ryck &
Quéré 1996; Duprat et al. 2007; Ruyer-Quil et al. 2008; Duprat et al. 2009).

To investigate the dynamics of a liquid film coating the exterior surface of a vertical
fibre at low Reynolds number, most theoretical works have employed a reduced-order
model. Pioneering work on a very thin film was carried out by Frenkel (1992), who derived
a thin film model and showed that the liquid film is linearly unstable due to azimuthal
curvature. The nonlinear dynamics of the thin film model has been examined to account
for droplet formation by Kalliadasis & Chang (1994); Chang & Demekhin (1999).
Kliakhandler et al. (2001) investigated a much thicker film, where the thin film model
can no longer be applied, and observed three different flow regimes, labelled “a”,“b”
and “c”. In flow regime “a”, where the flow rate is high (∼ 22mm3/s), large droplets
maintain their shape, travel at a constant speed and are separated by a flat film. At
moderate flow rates (∼ 11mm3/s), flow regime “b” labels a necklace-like structure, i.e.
close and regularly spaced droplets. Flow regime “c” corresponds to an oscillatory state
observed at low flow ratess (∼ 5mm3/s), in which a big droplet coexists with several small
beads. The large droplet catches up with and consumes small beads at its front, before
breaking up into small beads at its rear. The thick film model retaining the full surface
curvature proposed by Kliakhandler et al. (2001) failed to find a solution similar to flow
regime “a” in numerical simulations. Craster & Matar (2006) reduced the curvature
asymptotically and showed that the travelling wave solutions of the asymptotic model
captures the correct wave speed of flow regime “a”. Neither the thick film model nor
the asymptotic model, however, capture the wave speed of the necklace-like structure in
flow regime “b”. This perhaps is because the long-wave assumption of the reduced-order
models does not hold in flow regime “b”. The flow regime “c” is not steady but oscillates
due to the droplet coalescence and breakup process. Recent experimental studies of flow
regime “c” have confirmed that it is a time-periodic state (Sadeghpour, Zeng & Ju 2017;
Zeng et al. 2017). In most previous studies, steady travelling wave solutions have been
computed and compared with the flow regime “c” (Craster & Matar 2006; Ruyer-Quil
et al. 2008; Novbari & Oron 2009). However, it is questionable whether or not a travelling
wave solution should be used to compare with the oscillating flow regime “c”, when one
is steady and the other is unsteady. It is natural to ask whether there is an unsteady
solution, i.e. a relative periodic orbit solution, that can not only capture the dynamics
of the oscillation, but also the wave speed of flow regime “c”.

When inertial effects are taken into account, two coupled equations governing the film
thickness and the flow rate can be derived, such as the integral-boundary-layer model
(Trifonov 1992; Sisoev et al. 2006; Shkadov et al. 2008), energy integral model (Novbari
& Oron 2009) and the weighted-residual model (Ruyer-Quil et al. 2008). A short-coming
of the integral boundary layer model is that it fails to predict the correct linear stability of
a film flowing down a moderately tilted plane, which can be addressed by the weighted
residual model (Ruyer-Quil & Manneville 1998). The energy integral model and the
weighted-residual model are more accurate than the thick film model and the asymptotic
model. For instance, a small capillary ripple in front of the big droplet predicted by
the asymptotic model is not obvious in experiment, but is eliminated in the weighted-
residual model (Ruyer-Quil et al. 2008). Pradas, Tseluiko & Kalliadasis (2011), however,
has shown that this small capillary ripple can have an important effect on the formation of
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bound states, which consist of several different-sized pulses moving together. The bound
states can be either steady or oscillatory (Pradas, Tseluiko & Kalliadasis 2011). Very
recently, Blyth et al. (2018) showed that there are countably infinite sets of bound states
in an electrified liquid film flowing down an inclined plane.

For industrial applications, it is interesting to design an active control method to
modify the interfacial instability to induce pattern formation. The application of an
electric field has been a successful candidate for this purpose (Papageorgiou 2018), e.g.
using an electric field to control pattern formation in a liquid film on a flat plane (Schäffer
et al. 2000; Craster & Matar 2005) and droplet production from liquid jets (Wang et al.
2011; Conroy et al. 2011). The idea of using an electric field was also transplanted into the
control of instability of liquid film flows on vertical fibres (Wray et al. 2012, 2013a,b; Ding
et al. 2014; Liu, Chen & Ding 2018). The asymptotic model was used to investigate the
dynamics of the electrified films (Wray et al. 2012, 2013a,b; Ding et al. 2014; Liu, Chen &
Ding 2018). Recently, other control methods, e.g., varying the nozzle size (Sadeghpour,
Zeng & Ju 2017) or using a countercurrent gas flow (Zeng et al. 2017), have been used
to modulate the pattern formation in liquid films on vertical fibres.
When the liquid is a leaky dielectric, the electric field can suppress the Plateau–

Rayleigh instability or attract the liquid to the electrode, leading to the ‘touch-down’
structure (Wray et al. 2012, 2013a,b), where the liquid interface is attracted to the fi-
bre (the inner electrode). When the liquid is perfectly conducting, instead, a spike-like
structure is observed (Ding et al. 2014; Liu, Chen & Ding 2018), where the liquid inter-
face touches the outer electrode. Self-similarity analysis has shown that the minimal film
thickness in touch-down state scales as (∆t)1/3 (Wray et al. 2013a), and the spike-like
structure develops as (∆t)1/6 (∆t = ts − t with singularity formation time ts)(Liu, Chen
& Ding 2018). The interested reader may consult the review paper by Saville (1997) for
more details on the dielectric models of liquids. When the electric field was not strong,
both a saturated travelling wave state and an oscillatory state were observed in these
studies. The oscillation can either be periodic or chaotic in the presence of an electric
field. Further, the oscillation between large droplets that are close in size can occur.
Oscillatory behaviour is different in non-electrified film flow (Ding et al. 2014), where

oscillations occur only through the interaction between a large droplet and a much smaller
droplet. The travelling wave solution for a single droplet shows that a large droplet moves
faster than a small droplet, and therefore a conclusion of the theoretical study is that
a big droplet catches up with, and consumes, a smaller droplet. The resulting bigger
droplet can be unstable, breaking up into smaller droplets, leading to an oscillatory or
chaotic state (Craster & Matar 2006; Ding & Wong 2017). Travelling wave solutions
of a non-electrified film flow of slightly different sized droplets can move as a bound
state (Trifonov 1992; Sisoev et al. 2006; Ruyer-Quil & Manneville 1998), which do not
exhibit oscillation. Moreover, experimental study of a non-electrified film has also shown
that slightly different-sized droplets can also move in a stable bound state (Duprat et al.
2007). These theoretical and experimental studies imply that oscillation is unlikely to
occur through the interactions between large droplets, without the help of an electric
field. A minor point to address, however, is that it is not clear how the electric field
induces the oscillation between large droplets in the electrified film flow on a vertical
cylinder. A related question is how the oscillation influences the wave speed. Does the
oscillation accelerate or slow down the motion of droplets? A quick answer to this question
can be found in figure 4(b-d), where in general it is seen that the oscillation slows down
the droplet.

Travelling wave solutions cannot provide a full understanding of the dynamics of a liq-
uid film flowing down a vertical cylinder, in particular, the oscillatory phenomenon. From
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Figure 1. Geometry of the system. The mean radius of the liquid film is h0.

the viewpoint of dynamical systems theory, travelling wave solutions are called ‘relative’
equilibria of the phase space. Their integral properties are constant and do not capture
the dynamics of unsteady flows. Travelling waves, however, can be unstable to a Hopf
bifurcation, leading to the emergence of relative periodic orbits (Cvitanović, Davidchack
& Siminos 2010; Chantry, Willis & Kerswell 2014). These ‘relative’ periodic orbits are
periodic orbits in a frame with non-zero phase speed. (A periodic orbit of the original
system must have exactly zero phase shift after one period, but the probability of such
a shift is zero for a homogeneous system, unless the solution carries a reflectional sym-
metry.) Indeed, relative period orbits are thought of as the building blocks of a chaotic
attractor in turbulent flows, e.g. turbulent Couette flow (Viswanath 2007), Kolmogrov
flow (Chandler & Kerswell 2013) and pipe flow (Budanur et al. 2017). This paper is
therefore inspired by recent research in transitional turbulence. We aim to explore rel-
ative periodic solutions in liquid film flows down a vertical fibre. In contrast to steady
travelling wave solutions, we believe that relative periodic solutions should provide a
better understanding of the oscillatory dynamics of the electrified film, and in particular,
the regime “c” of non-electrified flow.

A synopsis of this paper is as follows. §2 formulates the problem and a long-wave
model is derived. Numerical methods for extracting steady travelling wave and relative
periodic solutions are provided in §3. The oscillation caused by electric field is discussed
in §4.1, which is followed by a discussion of oscillation in an non-electrified film in §4.2.
A conclusion is made in §5.

2. Mathematical formulation

We consider an axisymmetric perfectly-conducting liquid film of constant density ρ and
dynamic viscosity µ. The flow down a vertical fibre, modelled by a cylinder, is driven by
gravity g and subjected to a radial electric field (see figure 1). The annular flow system
is enclosed in a co-axial cylindrical electrode. A high electric voltage φ0 is applied at
the outer electrode, while the central metal fibre is grounded. Throughout this paper,
the surrounding dielectric gas is considered to be inviscid and its dynamics is therefore
neglected. The outer cylinder cannot be neglected, however, as it is required to impose
a uniform electric field.

We assume that the mean radius to the surface of the fluid ring h0 is much smaller than
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its characteristic length L in the axial direction and define a small parameter ǫ = h0/L .
Craster & Matar (2006) took the length scale L to be related to the capillary length:
L = γ/ρgh0, so that the dimensionless equations would not rely on the fluid thickness
being small relative to the fiber radius, but instead small relative to a dynamic length
scale. The small parameter is then ǫ = ρgh2

0/γ, which is also known as the Bond number
Bo, and in experiment is typically small, Bo ∼ 0.3 or so (Craster & Matar 2006). We non-
dimensionalize the system by introducing the length scales r = h0r

′, z = L z′, pressure
scale p − pg = ρgL p′, electric potential φ = φ0, velocity scales w = Ww′, u = ǫWu′,
t = L /Wt′ ( W = ρh2

0g/µ, pg is the pressure of the gas phase). This paper considers
the leading order dynamics, and the evolution equation of the interfacial shape h(z, t)
derived by Ding et al. (2014) is adopted:

ht +
1

h

[

1− pz
4

(

h4 ln

(

h

α

)

+
(α2 − h2)(3h2 − α2)

4

)]

z

= 0, (2.1)

where p = −Ebφ
2
r/2 + 1/h − ǫ2hzz and the electrostatic force φ2

r = h−2[ln(h/β)]−2 at
the leading order approximation. The dimensionless radii are α = a/h0 and β = b/h0.
Eb = ǫεφ2

0/ρgh
3
0 is the electric Weber number and ε the electric permittivity. When

the electric field is turned off, (2.1) reduces to the model of Craster & Matar (2006)
immediately.

In this paper, to seek for the recurrent solutions, i.e. relative equilibria (travelling
waves) and relative periodic orbits, we solve for the local cross-sectional area S = h2

rather than the liquid radius h:

St + 2

(

(1− pz)

[

S2

4
ln

(

S1/2

α

)

+
(3S − α2)(α2 − S)

16

])

z

= 0 (2.2)

where

p =
1

S1/2
− ǫ2

(

1

2
S−1/2Szz −

1

4
S−3/2S2

z

)

− Eb

2
S−1

(

1

2
lnS − lnβ

)

−2

.

It follows from mass conservation that S is temporally conserved:

〈S〉 = 1

L

∫ L

0

Sdz = 1, (2.3)

where L is the axial length of the domain. The equations for S are numerically more
convenient than those for h: when using a Newton method to update S, where S is
expressed as a Fourier expansion, the mean mode is fixed by the constraint (2.3), while
changes to the coefficients of the other modes do not affect (2.3).

For visualisation purposes, we introduce an energy-like norm E = 〈S2/2〉. Then, the
energy balance in the system is

Ė = I − D , (2.4)

where

I =
1

2

〈

S−3/2S2
zQ

〉

,

D =

〈

ǫ2
(

1

2
S−1/2SzSzzz +

3

8
S−5/2S4

z − 3

4
S−3/2SzzS

2
z

)

Q

〉

+

〈

Eb/2S
−1

(

1

2
lnS − lnβ)−2

)

z

SzQ

〉

,
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with Q = S2 ln(S1/2/α)/4 + (3S − α2)(α2 − S)/16. We will project the solution onto
the energy production I and energy dissipation D plane. For travelling waves (hereafter
TWs), the dissipation equals the production D = I; and for relative periodic orbits
(hereafter, referred to as RPOs), the orbits in the I vs. D are closed loops with a temporal
average centered on D = I.

3. Recurrent solutions: dynamical systems approach

Recurrent solutions of the dynamical system (2.2) satisfy

S(z + l, t+ T ) = S(z, t), (3.1)

where l is a spatial shift along the axis of the fibre and T is a period. Each relative
periodic orbit (RPO) has its particular period T , while for a travelling wave (TW) the
period T may be freely chosen, and the shift is related to the phase speed by c = l/T . If
T is large, then we may need to account for the periodicity, c = (l + nL)/T , where n is
an integer. For an RPO solution, we use a c̄ to represent its mean speed.

The solution of Eq.(2.2) is approximated by a Fourier expansion:

S(z, t) =

N
∑

j=−N+1

Ŝj(t) exp

(

ij
2π

L
z

)

. (3.2)

Derivatives in z are computed in the Fourier space, and nonlinear terms are evaluated
on a uniform grid in real space. For the calculations of this paper we have used 256−320
Fourier modes. An implicit Gear’s method in time is implemented, and the error after
T/∆t timesteps of size ∆t is less than 10−6 relative to the solution for ∆t → 0 (Ding
et al. 2014).

Given an initial guess (S0, l, T ), using Newton’s method to find a root of (S − S0),
where S = S(z + l, t + T ) and S0 = S(z, t), a better guess (S0 + δS0, l + δl, T + δT ) is
given by

∂S

∂S0
δS0 +

∂S

∂l
δl +

∂S

∂T
δT − δS0 = −(S − S0) . (3.3)

As there are 2N +2 unknowns δS0, δl and δT , we need two more constraints to close the
system. We impose that δS0 has no component that shifts the solution in the z direction
or the t direction (Viswanath 2007),

δS0
∂S0

∂z
= 0, (3.4)

δS0
∂S0

∂t
= 0. (3.5)

For TWs we drop the second condition in (3.5) and we take T fixed. Equations (3.3),
(3.4), (3.5) constitute the following system:

A x = b , (3.6)

where x = (δS0, δl, δT ) and b = (S − S0, 0, 0). The system (3.6) can be solved using the
GMRES method, which approximates the solution in the Krylov subspace spanned by
Km = {b,A b,A 2

b, . . . ,A m−1
b}. Typically Km is small, m = O(10). To evaluate the

result of multiplication by the Jacobian, we use the approximation

∂S

∂S0
δS0 ≈ S(z, T ;S0 + e δS0)− S(z, T ;S0)

e
, (3.7)



Relative periodic solutions in liquid films 7

t

T

20 40 60 80 100

5

10

15

20

25

30

0.4

0.2

0.1

0.09

0.07

0.05

0.03

0.01

0.009

0.007

0.005

0.003

0.001
B

A

C

Figure 2. Example of Rd(t, T ) at Eb = 2 and L = 4 contoured over t ∈ [20, 100] and T ∈ [0.2, 30]
Minimal value of Rd ∼ 10−3 is found near T = 26. The three marked points, labeled A, B, C,
are used as initial guesses for the Newton–Krylov iteration, and only point A converges.

wherein e is an empirical small parameter. We set e such that e ‖δS0‖/‖S0‖ = 10−4.
We terminate the GMRES iterations when ‖A x − b‖/‖b‖ 6 10−3. For the Newton
step, the iteration is terminated when ‖S − S0‖/‖S0‖ < 10−6 and typically the relative
error is O(10−8) for the solutions presented in this paper. Failure of Newton method
is commonplace when the initial guess is not good enough. To improve the domain of
convergence, we applied a “hook-step” to move (δS0, δl, δT ) within a trust region. For
more information on the numerical method, excellent descriptions of the Newton–Krylov-
hookstep method can be found in Viswanath (2007); Chandler & Kerswell (2013). The
Newton–Krylov code is validated by recomputing the TW solutions by a direct Newton
code of Ding et al. (2014) (see figure 4).

An good initial guess for the Newton–Krylov code is required in order to stand a
good change of convergence to solution. In this paper, we follow Cvitanović & Gib-
son (2010) and search for near recurrences by calculating normalized difference between
states, namely Rd(t, T ), which is minimized over continuous shift in z direction, after
each interval of t = 0.1 or t = 0.2:

Rd(t, T ) = min
06l6L

‖S(t+ T, z + l)− S(t, z)‖
‖S(t, z)‖ . (3.8)

We consider cases where Rd < 10−2 as candidates. Figure 2 illustrates a good initial
guess at around 40 < t < 100 with T ≈ 26. A snapshot of S(z, t) taken from “A” was
used as an initial guess and converged to an RPO discussed in §4.1. Once an RPO is
obtained, we used parametric continuation to track solutions.

4. Results and discussion

In the following discussions, we first explore RPOs in an electrified film in §4.1, which
aims at providing insight into the oscillation caused by interactions between two big
droplets. When the electric field is turned off, however, interactions between big droplets
do not cause an oscillatory flow. Instead, oscillation is due the complicated interaction
between a large droplet and a much smaller droplet. And we will demonstrate this os-
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TWs

Spikes

RPOs

Figure 3. Phase diagram of solution regimes in the L vs. Eb plane. The boundaries separating
different solution regimes are obtained starting from RPOs and tracking where they undergo
transition to spikes or TWs.

cillation caused by a large droplet and a small droplet can be represented by an RPO
in §4.2. In particular, the flow regime “c” in the experimental study (Kliakhandler et al.
2001) is compared with an RPO solution.

4.1. Invariant solutions in an electrified film

This section examines the oscillatory phenomenon in an electrified film. Previous nu-
merical simulations have shown that an oscillation between big droplets can occur when
subjected to an electric field (Wray et al. 2013a; Ding et al. 2014). Stability analysis of
a uniform film, S = 1, has shown that for β < exp(1) the electric field can enhance the
linear instability. For β > exp(1), however, the electric field impedes the linear insta-
bility, but is destabilising with respect to finite amplitude perturbations. The flow then
proceeds to the formation of an oscillatory state or spike-like singular state, dependent on
the value of β (Ding et al. 2014). In this paper, we are interested in the oscillatory state
and therefore fix the radius of the outer electrode at β = exp(1.1). In the following dis-
cussion, we fix the small parameter ǫ, and the radius of the fibre α at (ǫ, α) = (0.2, 0.25)
following previous studies, e.g. Craster & Matar (2006); Liu, Chen & Ding (2018). To
understand the oscillation dynamics between big droplets, we consider a periodic compu-
tational domain that is large enough for two big droplets. To determine an appropriate
domain size L, we refer to the linear stability analysis by Ding et al. (2014), where the
wave length of the most unstable mode in the electrified film is

2
√
2ǫπ

√

1 + Eb(1−ln(β))
ln3(β)

∼ 2. (4.1)

We therefore start with domain sizes of L ∼ 4 for 0 6 Eb 6 4 to allow two big droplets.
Figure 3 shows the type of solution observed in simulations for the range 4 6 L 6 5. For
L > 6, we expect three or more big droplets to form in the domain.

Initially, to find stable states in simulations, we perturb the trivial solution S = 1 by
harmonic waves

S(z, 0) = 1 + 0.1 cos

(

n
2π

L
z

)

, (4.2)

with n = 1 or n = 2 and with Eb small. For L = 4, we find that the system evolves



Relative periodic solutions in liquid films 9

(a)

-2 0 2

0

5

10

15

20

r

z/ϵ c

0 2 4 6 8
0.7

0.8

0.9

1

1.1

E
b

c

0 1 2 3 4 5
0.8

0.9

1

1.1

1.2

1.3

c

0 1 2 3 4 5 6
0.6

0.7

0.8

0.9

1

type-I
type-II
RPO

GMRES

(b)

(c)

(d)

L=4

L=4.5

L=5

Figure 4. (a) The profiles of the “two different/identical droplets” (type-I/type-II) illustrated
by “blue/red” lines for Eb = 1, L = 4. (b-d) The wave speed c vs. the electric number Eb for
L = 4, 4.5, 5 respectively. The type-I TW branch for L = 5 stops at Eb = 2.76 after turns back,
as the singular structure appears. Curves for TWs are obtained by a direct Newton–Raph-
son iteration using the code of Ding et al. (2014). Curves for RPOs in (b-d) are obtained
from the Newton–Krylov method implemented in this work. Stable/unstable TW branches are
solid/dashed lines. The Newton–Krylov method is validated by re-producing the TW solution
as marked by diamonds in (b). The bullets indicates where the type-II TW connects with type-I
TW.

into one of two stable TW states. For n = 2, two identical droplets form, hereafter called
type-I. Their spatial period is L/2, but they are stable to small disturbances of n = 1
type. Starting with n = 1 in (4.2), two slightly different droplets form, hereafter referred
to as type-II. The two forms of TW solution are illustrated in figure 4(a). Starting from
these non-oscillatory solutions at L = 4, Eb = 0, pseudo-arclength continuation with the
code of Ding et al. (2014) has been used to track the TW solutions and the wave speed
c against the electric Weber number Eb, shown in figure 4(b-d). For the case of type-II
TW, the c vs. Eb curve is shown in figure 4(b), which folds back at Eb ≈ 1.94 for L = 4,
while the curve stops at around Eb = 4.3 for L = 4.5. Thus, for both L = 4 and L = 4.5
this indicates that the type-II TWs do not exist when the electric field exceeds some
critical value. For L = 5 neither type of solution exists for Eb & 4.

Numerical simulations of TW solutions show that they lose stability to an oscillatory
bound state when Eb exceeds a critical value. (See figure 5(a)). The oscillation suggests
the existence of RPOs, which will be discussed presently. For larger Eb, we observe
that two droplets start to merge, and the minimal gap between the liquid interface and
outer electrode reduces quickly — Ding et al. (2014) showed that the outer electrode
attracts the interface, and the liquid interface becomes unstable. It is quickly attracted
to the outer electrode when the gap is small, leading to the formation of the spike-
like structure. (An example of the spike-like structure can be found in figure 5(b).) It
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Figure 5. (a) Evolution of the energy norm E = 〈S2/2〉 at different electric number subject to
the initial condition S(z, 0) = 1 + 0.1 cos(πz/2) where z ∈ [0, 4]. For Eb = 0, 1.9, steady type-II
TWs are obtained (see that E becomes invariant). (b) The spike-like structure plotted at t ≈ 8.5
at Eb = 4, L = 4.

is natural to examine whether the oscillatory solutions are linked to the TW solutions
through oscillatory bifurcations.

The two leading eigenvalues (either two real or a complex pair) of the type-I TWs
are plotted against Eb in figure 6 for (a,b) L = 4, (c,d) L = 4.5 and (e,f) L = 5. The
eigenvalues for the type-II TW for these parameters are shown in figure 7.
At L = 4 the type-I TW becomes unstable when Eb > 0.66, but the unstable mode is

not oscillatory until Eb & 1.94. Numerical simulation show that type-I TWs lose stability
and evolve into type-II TWs for 0.66 < Eb < 1.94, and the type-II TWs is stable over
this range. For Eb > 1.94 the dynamics develop into an RPO.
For L = 4.5, figures 6(c,d) show that the oscillatory eigenmode is always stable, and

the unstable mode is always real. In this case, RPOs do not originate from the instability
of type-I TWs, but instead comes from the instability of type-II TWs when Eb > 2.6 as
demonstrated by figure 7(a). Figure 4(c) shows that the RPO branch connects with the
type-II TW branch.

For L = 5, type-I TWs are unstable to a real mode when Eb < 0.92 or Eb > 3.92
while the mode is unstable and oscillatory for 2.23 < Eb < 3.92. It should be stressed
that the type-II TW is a stable attractor when 2.23 < Eb < 2.52 at L = 5 and numerical
simulation confirms that type-II TWs rather than RPOs are observed in this range. For
type-II TWs, figure 7(a,b) show that the type-II TWs become unstable to an oscillatory
mode for Eb > 2.52. Hence, for L = 5, RPOs may be born from the instability of either
type-I or type-II TWs for Eb > 2.52.

For the Eb where there are oscillations, time series of the energy norm E are found to
be periodic, implying the existence of RPOs. Using a snapshot of S(z, t0) at some t0 from
the numerical simulations as initial guess for our Newton–Krylov code, an exact RPO
solution can be obtained. Typical profiles of the RPOs at L = 4 are shown in figure 9(a,b).
A spatio-temporal diagram of the film radius h in figure 9(c) illustrates the oscillating
behaviour for two different sized droplets. A more clear picture of the oscillation can be
seen in our supplemental video. The dynamics of the RPOs is projected into the I − D
vs. D plane in figure 10(a). TWs are fixed points on the horizon axis I = D, while RPOs
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are closed loops that cross this axis. For L = 4, using a parametric continuation method,
RPOs are found for Eb up to Eb ≈ 4. Further increasing in Eb leads to the formation of
the spike-like structure. When the length of the computational domain is increased for
fixed Eb = 3, RPOs are found up to around L = 4.75, shown in figure 10(b). Further
increasing L also leads to formation of the spike-like structure.
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The period of the RPOs, T , is plotted against the electric Weber number Eb in figure
8(a). The electric field has dual effects on the oscillation. For L = 4, 5, the oscillation be-
comes faster (T decreases) as Eb increases initially. However, beyond some critical point,
the oscillation becomes slower (T increases). For L = 4.5, the dynamics is a bit more
complicated. The oscillation becomes slower (T increases) as Eb increases from the bifur-
cation point Eb ≈ 2.6. Then, the oscillation becomes faster (T decreases) as Eb > 2.78.
However, as Eb increases further, the oscillation becomes slower (T increases). Referring
to figure 4(b-d), the RPO runs faster/slower when the oscillation is slower/faster. The
RPO is slower than the type-I TW, which might be faster than type-II TW (see figure
4(c) and 15(b)).

For L = 4, as Eb is reduced towards 1.94 we find that T → ∞ and our Newon-
GMRES code stops converging, due to the break down of the linearisation (3.7) for
large T . We are able to get to sufficiently large T , however, to identify that the RPO
connects to the type-I TW. The divergence of T is in agreement with the linear stability
analysis where λi → 0 as Eb → 1.94+ (figure 6(b)). For L = 4.5, a Hopf bifurcation
occurs at Eb ≈ 2.6 for the type-II TW (figure 7(a)). The eigenvalue at the bifurcation
point Eb = 2.6 predicts a period T = 2π/λi = 2π/0.34 ≈ 18.48. The RPO branch is
quite contorted as it approaches the type-II branch, but at the last points computed on
the branch, the period of the RPO is ≈ 18.70 and decreasing, in good agreement with
the linear stability calculation. For L = 5, we have been unable to identify a connection
between the RPO and the TWs (see figure 4(d)), as far as we are able to reliably perform
the calculations.

To summarise the results in this section, the solution regimes are constructed in figure
3, and in particular, the oscillatory bound states are represented by RPOs. We have
demonstrated that the two large droplets cannot survive in a steady bound state but in
an oscillatory bound state when Eb exceeds a critical value (e.g. Eb = 2 and see figure
5(a)). It indicates that we may expect to see steady travelling waves, relative periodic
solutions or spike-like structures in experimental study, depending on the strength of
electric field and droplet spacing. When the electric field is weak, we should observe the
formation of steady liquid viscous bead train due to the Rayleigh-Plateau mechanism.
The steady wave train will lose stability and an the oscillating state will emerge as
the strength of electric field increases. The spike-like structure should appear when the
electric field is strong.

4.2. Invariant solutions in a non-electrified film

In the absence of an electric field, it is observed that droplets can either move in a
stable or unstable bound state (Duprat et al. 2007), but this oscillation is different from
that discussed in §4.1 – here, experimental and numerical studies have shown that the
oscillation is caused by the interaction between a large droplet and a much smaller droplet
(Craster & Matar 2006; Duprat et al. 2007). The large droplet eats small droplets, which
can then break up into small droplets. Such a process is cyclical, and we will demonstrate
that it can be represented by RPOs.

Space-time diagrams at L = 12 are shown in figure 11. Actually, for L = 12, other
types of solutions do exist, e.g. a one-droplet solution, a three-droplet solution, and so
on. The multi-droplets solutions can be stable or unstable bound states. Here we only
consider two big droplets in the computational domain so as to isolate the oscillation
dynamics. The leading eigenvalues of type-I and type-II TWs are tracked against the
domain size L, shown in figure 12. Results in figure 12(a) show that type-II TWs are
stable when L . 6.7. Type-I TWs are unstable when 4.4 . L . 5.2 or L & 6.3. However,
type-I TWs do not lose stability to RPOs when 4.4 . L . 5.2, as λi = 0. Figure 12(a,b)
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Figure 11. The space-time diagram for type-II TW (a), and type-I TW (b). The bright/dark
shading indicates elevated and depressed regions. The dependent parameters are Bo = ǫ = 0.2,
α = 0.25, L = 12.
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Figure 12. (a,b) The leading eigenvalue vs. the domain size for type-I, type-II TWs. The
dependent parameters are Bo = ǫ = 0.2, α = 0.25.

demonstrate that the most unstable modes are oscillatory when L & 6.7 for both type-I
and type-II TWs, suggesting the existence of RPOs. Interestingly, the sawtooth λi − L
curve originates from the mode switching in the system: the growth rate λr of higher
frequency modes increases faster than that of the low frequency modes, leading to the
switching. Therefore, the frequency of most unstable mode jumps as L increases, leading
to the sawtooth structure of the λi − L curve.

Numerical simulations were performed to in order to obtain initial guesses for the
RPOs. We fixed L = 12 and obtained three converged exact RPOs, namely RPO1, RPO2,
RPO3, whose space-time diagrams are shown in figure 13. We expect that it is possible to
find more RPOs of longer period, but we have not pursued this in the present study. The
profiles of the three RPOs at some instants in time are shown in figure 14(b). For RPO1,
between the two main big droplets, the film is unstable and develops into a ripple-like
structure. For RPO2, the unstable film between the two main droplets evolves into two
small droplets. For RPO3, there are three small droplets between the two main droplets.
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liquid films for the RPOs. The dependent parameters are Bo = ǫ = 0.2, α = 0.25. Three movies
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As there are more small droplets between the two main droplets, the mean distance
between the big droplet and its nearby small droplet decreases. Therefore, it takes less
time for the big droplet to consume the nearby small droplet and the oscillation becomes
faster, i.e. the periods decrease from RPO1 to RPO3 (see figure 15(a)). We observe that
the big droplet eats the front small droplet or ripple and itself is unstable at the rear
region which breaks up into new ripples or small droplets. The breakup of big droplet
at its rear region is due to the Plateau-Rayleigh mechanism. Such a cycle process (also
confirmed in figure 14(a)) is self-sustaining, which gives the birth of exact RPOs in the
non-electrified film.

It is interesting to investigate how the period and wave speed of the RPO depend on
the domain size. Figure 15(a) shows that the period T becomes longer as the domain
size L increases. We speculate that this is because the distance between big droplet and
its front small droplet (the closest one to the big droplet) becomes larger, and therefore
longer time is required for the coalescence process. The domain sizes of the three observed
different flow regimes in Kliakhandler et al. (2001) are within the current computation,
and we do not investigate longer domains in the present study.
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Different solution regimes are shown in figure 15(a). RPO1 is not detected when L <
6.85. The curve for RPO1 in figure 15(b) connects with the type-I TW solution at L ≈
6.85. We have verified that the spatial form for RPO1 is very similar to the type-I TW at
L = 6.85, where the ripple between the two big droplets is very small. This indicates that
RPO1 is born from the instability of the type-I TW, and explains why we do not detect
RPO1 below L = 6.8. RPO2, RPO3 were not detected for L . 8.7, 10.7 respectively.
A possible reason why they do not exist in smaller domains may due to insufficient
space for varying numbers of small beads or ripples. The wave speed c̄ reduces for a
stronger oscillation (RPO1 is faster than RPO2, and RPO2 is faster than RPO3). As the
domain size L increases, the wave speed of RPOs increases (see figure 15(b) and figure
16(c)). This is because the average height of the large droplet increases and therefore
a faster wave (Craster & Matar 2006). When the domain size is large, although these
RPOs can be tracked using numerical continuation, they lose stability and the system
is typically chaotic, hence we expect a host of RPOs to describe the droplet coalescence
and breakup processes discussed by Craster & Matar (2006). A selection of the shortest
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Figure 16. (a) A snapshot of exact RPO. (b) Regime “c” adapted from Kliakhandler et al.
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(c) Wave speed of the RPO vs. domain size, in which there is only one big droplet. A video for the
RPO in the supplemental material demonstrates the unsteady flow. The dependent parameters
ǫ = 0.178, α = 0.3262, L = 8.185 for regime “c” were taken from Craster & Matar (2006).

orbits, however, is expected to be sufficient to capture most of the dynamics (Budanur
et al. 2017).

Finally, we revisit the experimental study of the flow regime “c” in Kliakhandler et al.
(2001), where there is a large droplet with some small ripples at its front. In contrast
to the “steady” flow regime “b”, the flow regime “c” is an essentially unsteady state
due to the droplet coalescence and breakup process Craster & Matar (2006). Although
the TW solution excellently captures the dynamics of flow regime “b”, it is questionable
whether or not we can compare a “steady” TW with flow regime “c”. Craster & Matar
(2006) observed that the large droplet oscillates in the experiment and proposed that
flow regime “c” is a superposition of a steady TW and small perturbations. However,
their numerical experiment does not compare well with the experimental study, not only
in the wave speed but also in the wave profile. In Ruyer-Quil et al. (2008), the streamwise
dissipation effect was considered, which leads to a smaller wave speed (c = 0.94) than
Craster & Matar (2006). Novbari & Oron (2009) used an energy integral model and
predicted a bit higher phase speed than Craster & Matar (2006), c = 1.48, and the
streamwise dissipation effect was neglected by them (The wave speeds by Ruyer-Quil
et al. (2008); Novbari & Oron (2009) are rescaled by W = ρh2

0g/µ here.). Indeed,
Novbari & Oron (2009) has realized that flow regime “c” is not a TW because it was
unsteady, although they compared it with a TW. All these TWs, however, do not capture
a correct film profile: there are no small beads co-existing with the large droplet. Within
our set of periodic orbits we have found profiles of the film very much like experimental
observation, figure 16. It should be stressed here that the small droplets/ripples in the
front of the big droplet in figure 16 are captured by the RPO, which are not seen in the
TW. Kliakhandler et al. (2001) simulated flow regime “c” using their thick film model
and showed that these small droplets can survive with big droplets in an unsteady state.
The large droplet catches up with and consumes the small droplets in the front, and the
rear region of the large droplet breaks up into small droplet. Such a process recurs in
the system, i.e. the profile in figure 16(a) appears periodically, which is striking similar



18 Z. Ding and A. P. Willis

to that in flow regime “c”. Furthermore, the period of the obtained RPO in figure 16(a)
is T = 1.7156. However, no experimental study on RPOs in this film flow was reported,
and the period of flow regime “c” in experiments remains unknown. The wave speed of
this RPO c̄ = 1.34 is a little smaller than the wave speed of the TW, c = 1.36 (Craster
& Matar 2006), and is closer to the experimental observation c = 0.93. Hence, the RPO
captures the dynamical scenario, i.e. oscillation, the wave speed of flow regime “c”, and
the film profile better than the steady TWs, which provides a better understanding of
this unsteady state than the TW solution. The mean wave speed predicted by the RPO,
however, is still about 30% higher than the measured one. Note that, the wave speed
of flow regime “a” is correctly predicted by Craster & Matar (2006). It can be inferred
that the 30% difference is not caused by dropping the inertia term because the Reynolds
number in flow regime “c” is much smaller than in flow regime “a”. As is shown by Ruyer-
Quil et al. (2008), the streamwise viscous dissipation effect can significantly improve the
prediction of the wave speed of steady TWs. This suggests that the streamwise diffusion
is important when the Reynolds number is small, which is the reason why the predicted
wave speed by the asymptotic model is higher than the experimental value.

5. Conclusions

We have investigated a perfectly-conducting liquid film flowing down a vertical fibre
subject to a radial electric field. The dynamics of the liquid film was examined using
a long-wave model. The dynamical systems approach was employed to extract recur-
rent solutions, i.e. travelling waves (TWs) and relative periodic solutions (RPOs). The
Newton–Krylov-hookstep method was used to find the RPOs presented in this paper.
Two cases were discussed: an electrified film and a non-electrified film.

For the case with an electric field, we investigated the interactions between two big
droplets. Numerical simulation showed that the system can evolve into a steady TW state
when the electric field is weak. Steady TW solutions, either in the form of two identi-
cal droplets (type-I TW) or two slightly different droplets (type-II TW) were tracked.
Linear stability analysis shows that the TW solutions become unstable as the electric
field exceeds some threshold, and oscillatory instabilities of the TWs develop into RPO
solutions. In the oscillatory state, the two droplets are slightly different in size, while
two identical droplets do not cause an oscillation unless they are unstable. Interestingly,
RPOs were also found through the instability of steady TW solutions in an electrified
liquid film flowing down an inclined plane very recently (Lin et al. 2018).

We have also demonstrated that electric field has dual effects on the oscillation: the
oscillation can be accelerated or decelerated by the electric field. When the electric field
is strong, the two droplets merge together, leading to spike-like singular structure.

When the electric field is turned off, several RPOs were found in the non-electrified
film. Indeed, steady TWs are also unstable when the domain size exceeds a critical value.
RPOs are then found after the instability of the steady TWs. Interestingly, the RPO
represents the self-sustaining droplet coalescence and breakup process. The periods and
wave speeds of RPOs increase as the domain size increases. An interesting observation
is that the wave speed of RPO is lower than the type-I TW, and the motion of droplets
is slowed down by the oscillation, no matter if the electric field is imposed or removed.

In addition, the RPO captures well not only the dynamical scenario, but also captures
the temporal variation of the wave speed. We find a snapshot of the RPO solution re-
markably similar to experimental observation. Together, our results indicates that the
RPO provides a better model of the unsteady flow regime in the film flow than steady
TW solution.
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