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The Formation of Pitted Features on the 
International Simple Glass during Dynamic 
Experiments at Alkaline pH 

Adam J. Fisher1, Neil C. Hyatt1, Russell J. Hand1 and Claire L. Corkhill1 

1NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The 

University of Sheffield, S1 3JD, UK.  

ABSTRACT 

The forward rate of dissolution of the International Simple Glass (ISG) was determined under 
alkaline conditions at 40 oC using the Single Pass Flow Through (SPFT) method. Forward 
rates were consistent with those obtained in the literature for this glass composition. The 
formation of altered gel layers and surface pits was observed on the surface of glass particles, 
especially at the very highest pH values, despite the application of high flow rates to prevent 
the build-up of solubility limiting phases. These features could be attributed to preferential 
localized dissolution at sites with a higher alkali concentration or from a separate, less 
durable, vitreous phase. These results may indicate that surface pit and altered gel formation 
occurs under the forward rate of dissolution as imposed by the SPFT method, particularly for 
simplified borosilicate glass materials. 

INTRODUCTION 

 The International Simple Glass (ISG) was developed as a standard material for 

international researchers to use to advance glass corrosion understanding in a coordinated 

approach [1]. The ISG is a six-component, non-radioactive alumino-borosilicate 

reference glass, with a composition simplified from the French inactive surrogate of the 

R7T7 nuclear waste, SON68. The ISG has been studied extensively, with the objective to 

understand glass corrosion mechanisms at a fundamental level and to underpin 

predictions of the long-term durability of nuclear waste glass over geological timescales 

in an underground repository.  

 

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
9.

9
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 IP
 a

dd
re

ss
: 9

2.
18

.2
47

.8
3,

 o
n 

13
 Ja

n 
20

19
 a

t 1
2:

54
:2

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2019.9
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Here, the surface morphology of ISG particles were examined after being 

subjected to dissolution at pH(RT) 7, 9 and 11, at 40°C, using the Single Pass Flow 

Through method [2], which is commonly used to determine the forward rate of glass 

dissolution for input to glass dissolution models.   

 

EXPERIMENTAL DETAILS 

 The ISG was fabricated in 2012 by the MoSci Corporation in several batches 

(Rolla, MO, USA) [3]. The lot number of the batch used in this investigation was L1201 

2601-M1205 0803, which was shown to be x-ray amorphous and single phase [4]. The 

nominal composition is reported as: 56.2 SiO2, 17.3 B2O3, 12.2 Na2O, 6.1 Al2O3, 5 CaO 

& 3.3 ZrO2 wt.% [5]. Crushed glass particles (75 � 150 µm diameter) were produced and 

washed according to the Single Pass Flow Through (SPFT) ASTM C1662-10 standard 

[2].  The SPFT method is a standard dynamic dissolution test where fresh solution 

constantly flows over a sample to maintain dilute conditions. Under such conditions, 

glass dissolution is sustained in the forward rate, negating solution feedback effects and 

preventing alteration layer formation. Experiments were performed at 40 
o
C and in 

buffered solutions [6] at pH(RT) 7, 9 and 11. The solution flow rate (q) to glass surface 

area (S) ratio (q/S, m s
-1

) was selected to sustain glass dissolution of the ISG in the 

forward rate [6, 7]. Table 1 shows the range of conditions applied within the 

experiments, which were performed in duplicate.  

Table 1. Parameters applied during Single Pass Flow Through experiments using the International Simple Glass, and the 

forward dissolution rates determined for boron and silicon. 

 

 

Effluent samples were collected at regular intervals and flow-rates were determined 

gravimetrically. The elemental release was measured by analyzing effluent solution 

for Si, B and Na concentrations using Inductively Coupled Plasma-Optical 

Emission Spectroscopy (ICP-OES, ThermoScientific iCAPDuo6300). All 

experiments were performed until the normalised B, Si and Na dissolution rates 

attained steady-state conditions according to ASTM C1662-1 and where at least 

three dissolution rate measurements near the end of the test did not deviate by 

>15% from their mean value for steady state to be achieved [7]. Additionally, the 

criterion that the sample should not lose more than 30% of its original surface area 

was applied [7]. The mean dissolution rate from Ӌ3 measurements at steady-state 

for each test was then recorded. Dissolution rates were calculated according to: 
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where r0, represents the normalised dissolution rate of element, i, (where i = Si, B or 

Na) in g m
�2

 d
�1

, ci the concentration of element, i, in the effluent solution (mg L
�1

), 

ci,o is the background concentration of element, i, in the input buffer solution (mg L
�

1
), q is the solution flow-rate (m

3
 d

-1
), S the surface area of the glass sample (m

2
) 

and fi the mass fraction of element i in the glass (unitless). Since the surface area, S, 

changes throughout the duration of the experiment as the glass dissolves, a surface 

area correction model [8] was applied to calculate the change in S. This was applied 

to all experimental data. Uncertainty in the experimentally obtained dissolution 

rates was calculated as the standard deviation of the sum of uncorrelated random 

errors [6]. Post-dissolution particles were analyzed by scanning electron microscopy 

(SEM) using a Hitachi TM3030 SEM operating at an accelerating voltage of 15 kV. 

Backscattered electron images were collected.  

RESULTS AND DISCUSSION 

The attainment of steady-state dissolution and forward rates are presented in 

Figure 1 and Table 1, respectively. Steady-state conditions were met after 10 d for boron 

and 25 d for Si at pH(RT) 7 (Fig. 1a). An increase in forward dissolution rate with 

increasing pH values was observed, as expected, due to elevated silica solubility with 

increasing alkalinity. Obtained forward rates were comparable with those reported in the 

literature, also measured by SPFT [7, 9].      

Inspection of ISG particles by SEM after the attainment of steady-state 

dissolution at 40 
o
C at pH(RT) 7 and 9 reveal the presence of dehydration cracking and 

oval shaped pits < 10 ȝm in diameter (Fig 2). These features were also present, but to a 

greater extent, on ISG particles from the experiments at pH(RT) 11, where pits <50 ȝm 

in diameter were observed, in addition to deep curved troughs (Fig. 3). It is postulated 

that the oval shaped pits observed in Fig. 2 are a precursor for the trough features 

observed in Fig. 3, consistent with greater reaction progress at pH 11 when compared 

with pH 7 and 9. The pits formed at pH(RT)11, shown in Fig. 3d, appear to be surface 

pits overlain by an altered gel layer, while the cracks observed at the same pH in Fig. 3a 

are similar in nature to dehydrated silica gels previously observed in glass dissolution 

experiments [10]. 
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 Figure 1. Dissolution rates in g m-2 d-1 as a function of time for (a) pH 7; (b) pH 9 and; (c) pH 11. The shrinking core 

model (SC) was applied in all cases, however, this only had a noticeable impact at pH 11. The steady state (SS) 

dissolution rate is marked at each pH by a red dashed line.  

 Cracked hydrated altered layers have previously been observed on the 

surface of glass particles under SPFT conditions; these were postulated to arise 

from preferential local attack [8, 10]. Gel layers were also observed at the highest 

pH values, indicating that chemical alteration occurs at the surface. The presence of 

gel layers could indicate that the q/S values employed in the SPFT experiments 

were not high enough to prevent the accumulation of silica in solution, especially at 

the highest pH values where its solubility is considerably elevated. It is thus 

possible that these experiments were not in true �forward rate� conditions, however, 
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gel layers were previously observed at the surface of glass particles in SPFT 

experiments in excessively dilute conditions, where flow rates were in excess of 

200 ml d
-1

 [11], 2.5 - 20 times higher than those employed in the present study. The 

absence of a clear plateau in the q/S �sweep�, which would indicate �forward rate� 

conditions for ISG [6, 7], makes it difficult to assess whether our experiments are in 

the �forward rate�. If forward rate conditions were achieved in which elements are 

released from the glass congruently, the hypotheses of Geisler et al.[12], Hellmann 

et al. [13] and Putnis et al. [14] are supported, which propose that a silica-saturated 

boundary layer forms at the surface of the glass. Hence, the presence of an altered 

gel layer does not nec arily preclude the establishment of the forward dissolution 

rate conditions.   Pit and gel formation may be coupled: the pitted features 

may represent sites of lower chemical stability that preferentially dissolve, releasing 

elements to form a gel layer. The appearance of pitted features could be attributed 

to: (1) the dissolution of a separate crystalline or amorphous soluble phase [15]; or 

(2) a local pH increase in the solution trapped at the interface between the gel layer 

and the pristine glass [16-18]. The first possibility can be ruled out from this study 

as no separate soluble phase has been identified in ISG [4]. The second possibility 

could arise as a result of the presence of percolation channels in the medium range 

structural order of a glass (as defined by the modified random network model) as 

previously hypothesised by Jantzen [19]. If high alkali concentrated regions were to 

exist, when leached, they should increase the local leachate pH and fo

ess

rm pits. These 

features could develop into troughs that follow the alkali channels.   

-

1) = -7;  (c) and (d) ISG particulates after 43 days of dissolution at log10(q/S / m s-1) = -8.26 at 40 oC  and pH(RT) 9.  

 

a)  b) 

c)  d) 

Figure 2. SEM images of (a) and (b) ISG particles after 100 days of dissolution at 40 oC and pH(RT) 7, at log10(q/S m s
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b) a) 

d) c) 

Figure 3.  SEM images of ISG particles after 100 days of dissolution at 40 oC and pH(RT) 11 at log10(q/S m s-1) = -6.81 

showing (a) and (b) evidence for dehydration cracking and for localized preferential attack (pits and troughs); (c) trough 

formation possibly from the growth and coalescence of individual pits; and (d) high magnification image of pits covered 

by a dehydrated gel. 

 

CONCLUSIONS 

 This investigation has revealed the presence of altered gel layers and pitted 

features on the surface of ISG particles after sustained dissolution in alkaline 

conditions, nominally at the forward-rate, by deployment of the SPFT methodology. 

This shows that gel layers may be formed in the forward rate of reaction, as 

imposed by this method, and that the formation of pitted features could be an 

intrinsic process in glass corrosion. This may be attributed to the structure of the 

glass network. Further work using grossly phase separated glass compositions could 

be performed to understand such behaviour further.  
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