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Abstract—This paper presents a novel virtual synchronous
machine controller for converters in power systems with a high
share of renewable resources. Using an interval-based approach,
the emulated inertia and damping constants are adaptively
adjusted according to the frequency disturbance in the system,
while simultaneously keeping the frequency within prescribed
limits. Furthermore, the sufficient stability conditions for control
tuning are derived. The proposed design is integrated into a state-
of-the-art converter control scheme and tested through time-
domain simulations. A comparative study against the existing
approaches in the literature verifies the control effectiveness.

Index Terms—virtual synchronous machine (VSM), voltage
source converter (VSC), swing equation, adaptive control

I. INTRODUCTION

In the light of evergrowing integration of renewable energy

sources as well as the current trends of phasing-out traditional

synchronous generators, the problems associated to low-inertia

systems are becoming a reality [1]. The loss of rotational

inertia can have devastating effects on system dynamics, with

large frequency deviations potentially triggering undesirable

events such as load-shedding and large-scale blackouts. With

the apparent need for an adequate system-level service, the

provision of fast frequency support by grid-scale energy stor-

age devices appears to be a viable solution. Furthermore, such

support can be incorporated within an existing control scheme

of a grid-forming Voltage Source Converter (VSC) [2].

Despite numerous approaches in the literature, almost all

VSC control strategies can be formulated as a Virtual Syn-

chronous Machine (VSM) equivalent, an emulation technique

based on a swing equation of a synchronous machine [3].

However, a vast majority of such designs assumes an infinite

amount of power and energy on the converter’s DC-side, thus

neglecting the dynamical limitations of the capacitor, which

might be an issue for real-world applications [4]. This problem

was addressed in [5] with a distributed virtual inertia approach

that regulates the DC-link voltages such that the capacitors are

aggregated into a large unit for frequency support. However, it

is implemented via a basic proportional frequency controller

that limits its responsiveness. Such obstacle is usually resolved

with inclusion of a derivative control term corresponding

to the Rate-of-Change-of-Frequency (RoCoF) measurement.

Several strategies for providing fast frequency regulation based
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on the RoCoF signal have been proposed, varying from a

simple PD frequency control [6], to more complex heuristic

[7] and optimization-based [8]–[10] VSM tuning. Moreover, a

subgroup of so-called interval-based controllers emerged [11],

[12], where a sign of the trigger signal ̺ = (∆ω)(dω/dt)
is used to indicate whether the unit is in the accelerating

or decelerating mode, and subsequently adjust the VSM

parameters in a gain-scheduling fashion. Nonetheless, all con-

cepts mentioned above focus solely on the overall frequency

improvement, while disregarding the energy resources required

for such regulation. We tackle this issue by proposing an

adaptive VSM control design that simultaneously keeps the

frequency within prescribed limits and minimizes the needed

control effort.

The contribution of this work is two-fold. First, we present

a novel, frequency-constrained adaptive VSM controller using

an interval-based approach. Moreover, we derive the sufficient

tuning conditions for ensuring stable system operation. Sec-

ondly, the proposed VSM strategy is implemented within a

state-of-the-art converter control scheme and compared against

the existing concepts in the literature.

The remainder of the paper is structured as follows. In

Section II, the frequency dynamics of a generic low-inertia

system are derived analytically. Section III describes the

interval-based adaptive VSM design and proposes a novel

formulation, together with the respective stability conditions.

Section IV showcases the time-domain simulation results and

compares the methods, whereas Section V draws the main

conclusions and discusses future work.

II. SYSTEM FREQUENCY DYNAMICS

A. Primary Frequency Control in Low Inertia Systems

The first goal is to derive a simplified, but sufficiently

accurate, uniform frequency response model of a low-inertia

system. We study a system comprised of traditional (i ∈ Ng)

and converter-based (m ∈ Nc) generators as depicted in

Fig. 1. The generator dynamics are described by the swing

equation, with Mg and Dg denoting the normalized inertia

and damping constants corresponding to the Center-of-Inertia

(CoI) of the generators. The low-order model proposed in

[13] is used for modelling the governor droop and turbine

dynamics; Tgi are the turbine time constants, Rgi and Kgi

are the respective droop and mechanical power gain factor,

while Fgi refers to the fraction of total power generated by

the synchronous machine i. Furthermore, we incorporate the
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Fig. 1: Uniform system frequency dynamics model.

impact of grid-forming converters, as they are the only type

of PE-interfaced units providing frequency support [2], [14].

A particular focus is set on droop (j ∈ Nd) and VSM-

based (k ∈ Nv) control schemes, as these are two of the

currently most prevalent emulation techniques in the literature

[15], which in fact have equivalent properties in the forming

mode of operation [16]. Here, Tcm are the time constants

of the converters, Rcj and Kcj are the respective droop and

mechanical power gain factors, whereas Mck and Dck denote

the normalized virtual inertia and damping constants of VSM

converters.

B. Analytic Formulation of Frequency Metrics

From Fig. 1 we can now derive a transfer function G(s) of

a general-order system dynamics, as follows:

G(s) =
∆f

∆Pe
=

(

(sMg +Dg) +
∑

i∈Ng

Kgi(1 + sFgiTgi)

Rgi(1 + sTgi)
︸ ︷︷ ︸

traditional generators

+
∑

j∈Nd

Kcj

Rcj (1 + sTcj )
︸ ︷︷ ︸

droop converters

+
∑

k∈Nv

sMck +Dck

1 + sTck

︸ ︷︷ ︸

VSM converters

)−1

(1)

Assuming similar time constants (Tgi ≈ T ) of all synchronous

machines, usually 2-3 orders of magnitude higher than the

ones of converters, justifies the approximation T ≫ Tcm ≈ 0.

Now we can transform (1) into the following expression:

G(s) =
1

MT

1 + sT

s2 + 2ζωns+ ω2
n

(2)

where the natural frequency (ωn) and damping ratio (ζ) are

computed as

ωn =

√

D +Rg

MT
, ζ =

M + T (D + Fg)

2
√

MT (D +Rg)
(3)

and the respective parameters M , D, Rg and Fg are computed

as weighted system averages described in [10].

Assuming a stepwise disturbance in the electrical power

∆Pe(s) = −∆P/s, the time-domain expression for frequency

deviation (ω(t) ≡ ∆f(t)) can be derived as:

ω(t) = −
∆P

MTω2
n

(4)

−
∆P

Mωd
e−ζωnt

(

sin (ωdt)−
1

ωnT
sin (ωdt+ φ)

)

with the introduction of new variables

ωd = ωn

√

1− ζ2 , φ = sin−1
(√

1− ζ2
)

(5)

The time instance of frequency nadir (tm) can be determined

by observing the RoCoF, i.e., finding the instance at which the

derivative of the frequency is equal to zero:

ω̇(tm) = 0 7−→ tm =
1

ωd
tan−1

(
ωd

ζωn − T−1

)

(6)

Substituting tm into (4) and conducting a set of mathematical

transformations yields the value of frequency nadir as:

ωmax = −
∆P

D +Rg

(

1 +

√

T (Rg − Fg)

M
e−ζωntm

)

(7)

whereas the maximum RoCoF occurs at the disturbance in-

stance t0 and is equal to ω̇max = ω̇(t+0 ) = −∆P
M . Furthermore,

the frequency settles at the steady-state value of ωss =
∆P

D+Rg
.

The accuracy of the proposed uniform model in (1)−(7) has

already been rigorously investigated and verified in [10].

We can conclude that the frequency metrics of interest are

directly dependent on total inertia and damping constants, and

can thus be regulated through adaptive VSM control gains:

RoCoF and steady-state value explicitly as ω̇max ∼ M−1 and

ωss ∼ D−1, and nadir through a highly non-linear function

ωmax = fω (M,D) given in (7).

III. INTERVAL-BASED ADAPTIVE CONTROL DESIGN

In this section, we explain the general concepts of an

interval-based adaptive VSM approach. Moreover, the existing

control approaches in the literature are discussed and a new

controller with an improved performance is proposed, together

with the sufficient stability conditions.

A. Theoretical Concept

Let us observe a frequency response to a step disturbance

described in (4) and illustrated in Fig 2. The system response

consists of alternating accelerating and decelerating intervals,

similar to the power-angle curve of a typical synchronous
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Fig. 2: Frequency response of a traditional power system.

Shaded areas indicate the respective accelerating (green) and

decelerating (red) intervals of the response.

machine. These phases are determined by the sign of the

product ̺, as follows:

̺(t) = (ω(t)− ωss
︸ ︷︷ ︸

∆ω(t)

)ω̇(t)

{

> 0 7→ accelerating phase

< 0 7→ decelerating phase

which suggests that the same direction of frequency deviation

and RoCoF would lead to an acceleration of the virtual

machine and vice versa. Therefore, signal ̺ can be employed

as a control input for adaptive regulation of the converter

control gains, more specifically Mc and Dc for VSM and Rc

for droop-based converters. For simplicity, we will solely focus

on the former control strategy in this study.

B. Existing Control Schemes

The beneficial aspects of the interval approach have first

been emphasized in [11] with the proposition of a bang-bang

(KBB) inertia control strategy, based on alternating the inertia

constant of the VSM between two discrete values: the high

value M c and the low value M c, while preserving the default,

pre-disturbance damping D∗
c :

Mc(t) =

{

M c, ∀t : ̺(t) > 0

M c, ∀t : ̺(t) ≤ 0
, Dc(t) = D∗

c

However, a single degree of freedom restricts the controller

performance and the bang-bang characteristic leads to an

oscillatory behavior. These issues have been addressed in

[12], which extends on the concept by including the adaptive

damping and a more practical control algorithm. Governed by

the aforementioned notions of ω̇ ∼ M−1 and ∆ω ∼ D−1, the

so-called self-adaptive inertia and damping controller (KSA)
improves on KBB by adjusting Mc and Dc proportionally to

the respective RoCoF and frequency deviation:

Mc(t) =

{

M∗
c + kM |ω̇(t)|, ∀t : ̺(t) > 0 ∧ |ω̇(t)| > εM

M∗
c , ∀t : ̺(t) ≤ 0 ∨ |ω̇(t)| ≤ εM

Dc(t) =

{

D∗
c + kD|∆ω(t)|, ∀t : ̺(t) ≤ 0 ∧ |ω̇(t)| > εD

D∗
c , ∀t : ̺(t) > 0 ∨ |ω̇(t)| ≤ εD

with kM and kD being the virtual inertia and damping

feedback gains. Thresholds εM and εD are employed to cancel

out the adaptive components as soon as the system approaches

equilibrium, thus preventing unwanted oscillations and insta-

bility. Nonetheless, while drastically better than the bang-

bang approach, this strategy still preserves several inherent

flaws such as: (i) the individual adaptive control of either

inertia or damping, which is suboptimal for regulating the

frequency nadir in (7); (ii) a discontinuous response resulting

from a combination of the control scheme and a RoCoF-based

threshold trigger.

C. Optimal Frequency-Constrained Control (KOFC)

In this work, we improve on the existing strategies by

simultaneously regulating the VSM control gains, which is

justified by the fact that both Mc and Dc contribute to the

limitation of frequency nadir during a disturbance. Further-

more, we aim at minimizing the necessary control effort,

more precisely the energy utilization of the associated DC-

side buffer, in order to keep the frequency within prescribed

ENTSO-E thresholds: ω̂max = 0.2Hz, ˙̂ωmax = 1Hz/s [17]. This

is achieved via a gain-scheduling approach, where the optimal

VSM feedback gains (∆M∗
c ,∆D∗

c ) for the first accelerating

phase, computed using Algorithm 1, are selected based on the

measured disturbance ∆P , with Tc being a given time constant

of the virtual machine. Subsequently, during the decelerating

interval, the adaptive inertia component is neutralized, whereas

the adaptive damping is set to decay with time as

∆Dc(t) =
∆ω(t)

ωmax − ωss
∆D∗

c + kDω̇(t) (8)

and is limited within a range [−D∗
c , ∆D∗

c ] such that the total

damping Dc(t) preserves a positive, decaying trend. Finally,

the proposed adaptive VSM strategy is of the form:

Mc(t) =

{

M∗
c +∆M∗

c , ∀t : ̺(t) > 0 ∧ C (ω̇(t), ω̈(t))

M∗
c , ∀t : ̺(t) ≤ 0 ∨ ¬C (ω̇(t), ω̈(t))

Dc(t) =

{

D∗
c +∆D∗

c , ∀t : ̺(t) > 0 ∧ C (ω̇(t), ω̈(t))

D∗
c +∆Dc(t), ∀t : ̺(t) ≤ 0 ∨ ¬C (ω̇(t), ω̈(t))

with C (ω̇(t), ω̈(t)) = |ω̇(t)| > ε1 ∧ |ω̈(t)| > ε2 representing

the logical threshold based on RoCoF and its first derivative

that ensures a smooth control transition. Although obtaining an

accurate ω̈(t) measurement introduces a time delay, it does not

hinder the control performance since both maximum RoCoF

and nadir occur before the respective trigger activation.

Algorithm 1 Iterative computation of optimal control gains

1: Initialize k = 0 ⊲ M
(0)
c = −∆P/ ˙̂ωmax , D

(0)
c = M

(0)
c /Tc

2: while ω
(k)
max < ω̂max do

3: k = k + 1
4: Update frequency nadir threshold in (7): ⊲ ω

(k)
max

5: Marginal gain increase: ⊲ M
(k)
c = M

(k−1)
c + δMc

⊲ D
(k)
c = D

(k−1)
c + δDc

6: end while

7: Return ∆M∗
c = M

(k)
c −M∗

c ,∆D∗
c = D

(k)
c −D∗

c



D. Stability Assessment

In this section, we focus on deriving the sufficient stability

conditions for adaptive VSM design. Based on the Lyapunov

stability theorem, the stability of the system is guaranteed if

the following tuning conditions are included in Algorithm 1:

∆M∗
c ≤ 2M + 2(D + Fg)T

∆D∗
c ≥ 2

M

T
− 2(D + Fg)

(9)

Proof. We start the proof by finding an appropriate candidate

Lyapunov function of a nonlinear open-loop system. Similar

to the stability analysis of a synchronous generator in [18],

we obtain the respective energy function from the state-space

representation of the system as follows:

V =

∫ ω̇

0

Mω̇dω̇ +
1

T

∫ ω

ωss

((D +Rg)ω −∆P )dω (10)

=
1

2
Mω̇2 −

1

T
[∆P (ω − ωss)−

1

2
(D +Rg)(ω

2 − ωss
2)]

where V (ω, ω̇) represents the transient energy of the system in

(ω, ω̇) coordinates after a step disturbance ∆P . It can easily be

shown that the proposed Lyapunov function has a stationary

point at the system equilibrium i.e., ∇V (x∗) = 0, as well

as that it is positive definite in the vicinity of that equilibrium

point, thus validating V as an appropriate Lyapunov candidate

function. In order to guarantee stability in a closed-loop form,

V̇ = ∂V/∂t has to be negative semi-definite ∀t ∈ [0,∞):

V̇ =
∂V

∂ω̇

∂ω̇

∂t
+

∂V

∂ω

∂ω

∂t
+

∂V

∂M

∂M

∂t
+

∂V

∂D

∂D

∂t
(11)

= −(
M

T
+D + Fg)ω̇

2 +
1

2

∂M

∂t
ω̇2

︸ ︷︷ ︸

νM (t)

+
1

2T

∂D

∂t
(ω2 − ω2

ss)
︸ ︷︷ ︸

νD(t)

which is conservatively subsumed in νM (t)+νD(t) ≤ 0, ∀t ∈
[0,∞). The non-smooth characteristic of νM (t) and νD(t) can

be resolved by observing different segments of the response

indicated in Table I, and subsequently approximating ∂M/∂t
by its average value at the points of switching, i.e., ∆M∗

c /T ,

which implies the first condition in (9). Furthermore, it sug-

gests that ensuring ν̂D(t) ≤ 0 after the frequency nadir has

been reached would guarantee stability, thus resulting in an

inequality condition of the form:

ν̂D(t) =
1

2T

∆D∗
c

ωmax − ωss
ω̇(t)(ω(t)2 − ω2

ss) ≤ 0 (12)

with the damping component kDω̈(t) ≈ 0 considered negligi-

ble. Since ω̇(t) and (ωmax−ωss) terms are of opposite sign, the

TABLE I: Values of νM and νD throughout the response.

Interval νM (t) νD(t)

pre-disturbance 0 7→ (∂M/∂t = 0) 0 7→ (∂D/∂t = 0)

disturbance > 0 7→ (∂M/∂t ↑) 0 7→ (ω2 − ω2
ss ≈ 0)

pre-nadir 0 7→ (∂M/∂t = 0) 0 7→ (∂D/∂t = 0)

nadir 0 7→ (∂ω/∂t ≈ 0) 0 7→ (∂D/∂t = 0)

post-nadir 0 7→ (∂M/∂t = 0) ν̂D(t)
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Fig. 3: Transient energy trajectory after a step disturbance.

problem in (12) corresponds to |ω(t)| ≥ |ωss|, i.e., the system

being critically damped or overdamped throughout the post-

nadir interval. Mathematically speaking, the damping ratio in

(3) must suffice ζ(t) ≥ 1, ∀t ∈ [tm,∞). Having in mind that

during this interval ∂D/∂t < 0 and T ≥ M/D(t), as well as

Rg ≈ Fg , one can observe that ζ(t) is a decaying function:

∂ζ

∂t
=

√

T

M

∂D

∂t

TD(t) + T (2Rg − Fg)−M

4 (D(t) +Rg)
3/2

< 0

Therefore, combining ζ(tm) ≥ ζ(tss) ≥ 1 with (3) yields the

second stability condition in (9) and concludes the proof. �

The results shown in Fig. 3 confirm that V (ω, ω̇) remains

positive, with transient energy trajectory preserving a decaying

trend throughout the disturbance period and converging to the

same equilibrium as the open-loop VSM approach (K0).

E. System Modeling and Control Implementation

The proposed adaptive VSM controller is implemented

within a state-of-the-art VSC control scheme previously de-

scribed in [19]. The outer control loop consists of active and

reactive power controllers providing the output voltage angle

and magnitude reference by adjusting the predefined setpoints

according to a measured power imbalance. Subsequently, the

reference voltage vector is passed through a virtual impedance

block, as well as the inner control loop consisting of cascaded

voltage and current controllers. The output is combined with

the DC-side voltage in order to generate the modulation signal.

The complete mathematical model consists of 13 states, and

is implemented in a rotating (dq)-frame and per unit. More

details on the overall converter control structure, employed

parametrization, potential operation modes and respective tran-

sient properties can be found in [14], [16], [19].

For synchronous generators, we consider a traditional model

equipped with a prime mover and a TGOV1 governor. Further-

more, the automatic voltage regulator based on a simplified

excitation system SEXS is incorporated, together with a PSS1A

power system stabilizer [20]. Internal machine dynamics are

characterized by the flux linkage dynamics of the rotor circuits,

which together with 6 controller states and swing equation

dynamics yield a standard 12th order system [21].

IV. RESULTS

As proof of concept, we test the proposed control design

on a modified version of the well investigated Kundur’s 2-



25 km 10 km 25 km10 km

25 km

110 km

11
0

km

110
km

1

2

3 4

5

6

78

910 11

12

1570 MW

1000 MW
100 Mvar

567 MW
100 Mvar

400 MW 490 MW

611 MW
164 Mvar

1050 MW
284 Mvar

719 MW
133 Mvar

350 MW
69 Mvar

700 MW
208 Mvar

700 MW
293 Mvar

2
0
0

M
v
ar

3
5
0

M
v
ar

Fig. 4: Topology of the investigated 3-area test system: the

converter-based generation is placed at nodes 2, 6 and 10.

area system illustrated in Fig. 4, comprised of 3 areas and

6 generators. The same test case has been previously used in

several studies on placement and effects of inertia and damping

in low-inertia systems [22], [23]. Furthermore, we consider a

scenario where three traditional generators are replaced with

converter-based units, and simulate a 100MW load increase

at node 12 using a detailed time-domain model developed

in MATLAB Simulink. For clarity, only the center-of-inertia

frequency is presented in this section.

The system response under different VSM control designs

is depicted in Fig. 5. Understandably, the investigated con-

tingency leads to unacceptable frequency excursion under

the open-loop control K0, indicated by the frequency nadir

of 0.33Hz. While KBB and KSA reduce this deviation, it

is still kept above the admissible ENTSO-E threshold. On
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Fig. 5: System response under different VSM control designs:

(i) frequency; (ii) RoCoF; (iii) inertia; (iv) damping.
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retuned such that they meet the prescribed ENTSO-E criteria:

(i) frequency; (ii) RoCoF; (iii) inertia; (iv) damping.

the other hand, KOFC ensures that the frequency nadir is

preserved within the given bounds, and provides the smoothest

response; KBB has a high settling time due to insufficient

damping, whereas the KSA is characterized by a discontinuity

at the instance of frequency nadir. Moreover, the latter designs

are inherently suboptimal, as they presume independent and

inefficient temporal regulation of either inertia or damping.

More precisely, KBB tends to activate high levels of inertia

at wrong time instances, leading to a sluggish response,

whereas KSA control strategy increases damping when ω is

at its peak, resulting in the aforementioned power spike. In

contrast, the proposed VSM approach immediately employs

both the proportional (D) and derivative (M) control gains for

preserving frequency within the given bounds. The efficiency

of such approach can be observed in Fig. 6, with the inertia

gains of KBB and KSA retuned such that ωmax = 0.2Hz. As

a result, the swing time constant T = M/D increases, which

makes up for a very high control effort and an unacceptably

slow response.

Some insightful conclusions regarding the described control

schemes can be drawn from the energy content of the con-

trol effort presented in Fig. 7, with respective energy terms

computed as ∆EM =
∫
∆Mω̇dt and ∆ED =

∫
∆Dωdt.

First of all, it justifies the proposed concept of compensating

inertia with damping during high RoCoF instances, since the

∆EM term would have a predominant impact on the total

energy utilization. Moreover, it can be observed that KOFC

reduces the total energy of the adaptive control by 20% and

40% compared to KBB and KSA, respectively. Moreover, it
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Fig. 7: Energy utilization for containing the frequency within

limits: (a) activation of individual control components over

time; (b) total contribution of additional control effort.

predominantly employs the proportional droop-like response,

with ∆ED contributing to 70% of the total energy. The acti-

vation of individual control components in Fig. 7a reveals the

distinctive nature of the three algorithms. The existing interval-

based controllers are restricted solely to adaptive inertia as

a mean of frequency regulation during the initial response,

which directly acts on RoCoF through the explicit Mω̇ term.

The effectiveness of such approach is however limited, since

the impact of inertia decays over time, together with ω̇. As

a result, the inertia gain is overdimensioned, leading to high

depletion of energy. In contrast, the combined effort of inertia

and damping in KOFC achieves a qualitatively similar system

performance with a more natural frequency response and less

energy consumption. We therefore conclude that KOFC is both

a more efficient and practical approach for adaptive VSM

design.
V. CONCLUSION

The presented paper introduces a novel distributed VSM

concept for converters in power systems with high shares of

renewable resources. Using an interval-based approach, the

emulated inertia and damping constants are adaptively adjusted

according to the frequency disturbance in the system, while si-

multaneously preserving stable operation and frequency within

prescribed limits. The proposed control design is integrated

into a state-of-the-art converter control and compared against

the existing VSM approaches, showcasing a superior perfor-

mance in terms of frequency regulation and energy utilization.

It is verified that the simultaneous control of both inertia and

damping throughout the whole system response achieves a

drastically smoother frequency characteristic at a lower cost.

Future work will focus on improving the optimality of the

control design, as well as extending it onto no-inertia power

systems.
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