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Abstract—This paper deals with the converter control design
under time delay uncertainty in power systems with high share
of converter-based generation. Two approaches for time delay
modeling are proposed using linear fractional transformations
and linear parameter-varying systems, respectively. Subsequently,
two output-feedback synthesis methods are implemented based
on H∞ control theory, and formulated using linear matrix
inequalities: (i) a norm-bounded parametric H∞ controller; and
(ii) a gain-scheduled H∞ control. These robust control principles
are then employed to improve the performance of Voltage Source
Converters (VSCs) under varying measurement delays. Three
novel control strategies are proposed in order to redesign the
conventional inner control loop and improve converter perfor-
mance when dealing with measurement uncertainty. Finally, the
controllers are integrated into a state-of-the-art VSC model and
compared using time-domain simulations.

Index Terms—low-inertia systems, time delay, voltage source
converter (VSC), linear fractional transformation (LFT), linear
parameter-varying (LPV) system, robust stability, H∞ control

I. INTRODUCTION

Conventional synchronous machines are being gradually

replaced by renewable energy sources, interfaced to the grid

through power electronic devices. The loss of traditional gen-

erators comes along with the decrease in total rotational inertia

of the system, thus affecting the system stability margins [1].

This problem has so far been dealt with through advanced

converter AC-side control schemes, such as the virtual syn-

chronous machine [2], machine matching [3] and dispacthable

virtual oscillator control [4]. However, all of the proposed

approaches involve local signal measurements, which are often

subjective to time delays.

The subject of local time delay is often ignored in the area of

power system control due to large time constants of the associ-

ated machine regulators. Nonetheless, with shorter timescales,

characteristic of low-inertia systems, the impact of local

converter measurements might play an important role in the

overall system stability. Different approaches for time-delay

modeling have previously been investigated in [5], concluding

that the Padé approximation and Chebyshev discretization

scheme prevail as the most efficient methods. However, the

focus was set solely on constant measurement delays with no

uncertainty. A probabilistic approach for modelling the delays
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as a random variable and employing Monte Carlo simulations

was used in [6], while [7] proposes a use of Lyapunov

functions for deriving the delay-dependent stability criteria.

The studies in [8] and [9] employ classical H∞ methods

to deal with fixed delays, and [10] suggests a parameter-

dependent H∞ gain-scheduling for delays within a certain

tolerance. Other approaches in the literature consider a use

of Smith predictors [11], adaptive control schemes [12] and

lead-lag compensators [13]. Nonetheless, all aforementioned

studies focus on conventional power systems and the underly-

ing delays in wide-area measurements. While some concerns

regarding the impact of local converter delays in low-inertia

systems have already been raised in [14], it was done for a

simplistic system without considering the delay uncertainty.

The contribution of this work is three-fold. First, we propose

two ways of modelling the delay uncertainty and incorporating

it into the Robust Control (RC) design. Moreover, two different

output-feedback H∞ controllers are employed, each using

a different delay uncertainty model, and compared under

different measurement delay conditions. Finally, three novel

RC strategies for redesigning the conventional Voltage Source

Converter (VSC) control scheme are introduced, and analyzed

using H∞-based techniques.

The remainder of the paper is structured as follows. In Sec-

tion II the necessary RC principles along with the modelling

of uncertain time delays are presented. The state-of-the-art

converter control scheme and the novel robust controllers are

described in Section III. Section IV showcases the detailed

time-domain simulation results of the proposed control designs

and compares their respective performances. Finally, Section V

draws the main conclusions and discusses the outlook of the

study.

II. RC PRINCIPLES UNDER TIME-DELAY UNCERTAINTY

A. Time Delay Modelling

We assume a real parametric uncertainty, and model the

time delays in two different ways: (i) as a Linear Fractional

Transformation (LFT); and (ii) as a Linear Parameter-Varying

(LPV) system. In both cases the delays are modelled as

exponential functions F (s) = e−τds in the Laplace domain

and are approximated using a first-order Padé approximation

of the form:

F (s) = e−τds ≈ 1− 1
2τds

1 + 1
2τds

, (1)
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Fig. 1: Equivalent representation of the delay function F (s):
(a) control block scheme; (b) LFT formulation of the delay

block τ−1
d ; (c) LFT formulation of the delay function F (s).

1) Time Delay as an LFT: The relation between the original

signal w and its delayed counterpart z can be expressed as

z = F (s)w 7−→ z = −w +
2

τds
(w − z) (2)

which corresponds to the block diagram in Fig. 1a. The time

delay parameter τd changes within a 1-dimensional polytope

[τd, τd]. By defining a = 1
2 (τd + τd), b = 1

2 (τd − τd) and

δt ∈ [−1, 1], one can formulate such polytope as τd = a+bδt.

Therefore, the time-delay block τ−1
d can be represented as an

upper LFT of the form Fu(M, δt) shown in Fig. 1b, with

M =

[

−ba−1 a−1

−ba−1 a−1

]

(3)

Substituting Fu(M, δt) in Fig. 1a and performing a set of

mathematical transformations yields the final LFT form de-

picted in Fig. 1c, equivalent to the initial delay function F (s),
where

M̂ =

[

M̂11 M̂12

M̂21 M̂22

]

=
1

−as+ 2b

[

as+ b −2
2bs −s

]

(4)

2) Time Delay as an LPV function: Let us consider a

delayed-input system without the controller. Based on the Padé

approximation from (1), the following state-space representa-

tion of the delay can be derived:

ẋd = − 2

τd
xd +

4

τd
ud

yd = xd − ud

(5)

where ud and yd are the delayed input and output of the

system, and xd is the internal delay state. Substituting q for

τ−1
d yields

[

Ad(q) Bd(q)
Cd(q) Dd(q)

]

=

[

−2q 4q
1 −1

]

(6)

The system in (6) can be rewritten as an affine parameter-

dependent system, with the state-space matrices of the delay

described as affine functions of the parameter q:
[

Ad(q) Bd(q)
Cd(q) Dd(q)

]

=

[

Ad0
+ qAd1

Bd0
+ qBd1

Cd0
+ qCd1

Dd0
+ qDd1

]

(7)
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Fig. 2: General control plant: (a) LFT general plant. (b) LPV

general plant.

B. H∞ Control Design

This section elaborates on the principles of H∞ control. For

the generic linear system described in (8), the H∞ norm is

the maximum gain of the transfer function from exogenous

inputs w to exogenous outputs z over all frequencies and

input directions [15]. When designing H∞ controllers the

system is rearranged into a so-called general control form

illustrated in Fig. 2, where P (s), K(s) and ∆ are the transfer

functions of the plant, controller and uncertainty respectively;

the uncertainty transfer function is not needed for the purposes

of LPV system design. Therefore, without considering the

uncertainty, let P (s) be of the following form:

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u

(8)

with u being the control input and y the control measurement.

The H∞ problem involves designing a controller that stabilizes

the closed loop system and results in
∥

∥Twz(s)
∥

∥

∞
< γ (9)

for a given γ. Depending on the employed control synthesis

method, the closed-loop system will also guarantee a degree

of robustness against model uncertainty.

In order to shape the sensitivity function S(s) and com-

plementary sensitivity function K(s)S(s) of the closed-loop

system, and achieve the desired robustness and performance

targets, a mixed-sensitivity H∞ design depicted in Fig. 3 is

often used, which minimizes
∥

∥

∥

∥

[

W1(s)S(s)
W2K(s)S(s)

]
∥

∥

∥

∥

∞

(10)

The weight transfer function W1(s) is usually a low-pass filter

with the purpose of improving the output disturbance rejection

or reference tracking, whereas W2(s) is a high-pass filter used

for minimizing the control effort at high frequencies [15].

The mixed-sensitivity design is then solved by computing the

augmented plant P (s) from the open-loop transfer function

G(s) and aforementioned weighting functions.

For control analysis, the robustness of the system is cal-

culated through the concepts of robust and quadratic sta-

bility [16]. The former guarantees stability for the whole
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Fig. 3: Mixed sensitivity H∞ design.

uncertainty range and can be determined either through the

structural singular value µ for LFT systems [15], or via a

parameter-dependent Lyapunov function in the case of an

LPV system [17]. Quadratic stability, on the other hand, is a

fundamentally stronger concept of stability since it guarantees

robust stability, as well as the resilience to arbitrary fast

parameter changes [18]. However, it is also more conservative

due to a single Lyapunov function being used for the whole

uncertainty range.

C. Control Synthesis Methods

Two control synthesis methods are used, one for LFT

modeling and another for LPV modeling. Both methods are

defined using Linear Matrix Inequalities (LMIs) and are based

on the concept of quadratic stability [18], [19]. Additional

constraints are specified to place the poles of the closed-loop

system in a specific region of the left-half plane in order to

ensure the prescribed damping ratio requirements [20]. Both

control synthesis problems are solved in MATLAB using the

Yalmip interface [21] and SeDuMi/SDPT3 solvers [22], [23].

1) H∞ Control for Norm-Bounded Parametric Systems:

We aim to solve the H∞ performance problem of the form:

‖Hwz‖∞ < 1 , ∀ ‖∆‖2 ≤ 1 (11)

which is equivalent to the robust stability of the closed-

loop system with a virtual norm-bounded uncertainty

∆P (s)(‖∆P ‖∞ ≤ 1) inserted between the disturbance d and

the error e [18]. Therefore, the overall uncertainty becomes

diag(∆,∆P ). A scaling matrix L = diag(I,
√
ℓI) can be

subsequently introduced to reduce the conservatism of the

small-gain method as follows:

∥

∥

∥
L1/2HzwL

−1/2
∥

∥

∥

∞

< γ (12)

where L is permutable with diag(∆,∆P ).

The scaled H∞ problem is solved if and only if there exist

matrices X > 0, Y > 0, and L, J satisfying the following

conditions:

[

NT
X 0
0 Inw

]





AX +XAT XCT
1 B1

C1X −γJ D11

BT
1 DT

11 −γL





[

NX 0
0 Inw

]

< 0

[

NT
Y 0
0 Inz

]





Y A+ATY Y B1 CT
1

BT
1 Y −γL DT

11

C1 D11 −γJ





[

NY 0
0 Inz

]

< 0

[

X I

I Y

]

≥ 0

LJ = I

(13)

The last equality LJ = I is not convex, but the problem can

be solved using the K-L iteration method proposed in [18].

2) Gain-Scheduled (GS) H∞ Control for LPV Systems:

This problem seeks a controller of the form:

ẋk = Ak(q)xk +Bk(q)uk (14)

yk = Ck(q)xk +Dk(q)uk (15)

When the parameter vector q(t) takes values in a box B ∈ R
n

with N = 2n corners, then the system G(q) is confined within

a matrix polytope defined by vertices G(θi). Given the convex

decomposition

q =

N
∑

i=1

αiθi (16)

the controller state space can be written as

[

Ak(q) Bk(q)
Ck(q) Dk(q)

]

=

N
∑

i=1

αi

[

Ak(θi) Bk(θi)
Ck(θi) Dk(θi)

]

(17)

Subsequently, the controller operating point q is found through

convex interpolation of the LTI vertex controllers:

Ki =

[

Ak(θi) Bk(θi)
Ck(θi) Dk(θi)

]

The gain-scheduling problem can be thus solved by solving

the following LMI problem for symmetric matrices X and Y :

[

N12 0
0 I

]T




A(θi)X +XAT (θi) XCT
1 (θi) B1(θi)

C1(θi) −γI D11(θi)
BT

1 DT
11(θi) −γI





[

N12 0
0 I

]

< 0

[

N21 0
0 I

]





AT (θi)Y + Y A Y B1(θi) CT
1 (θi)

BT
1 (θi)Y −γI DT

11(θi)
C1(θi) D11(θi) −γI





[

N21 0
0 I

]

< 0

[

X I

I Y

]

≥ 0

(18)

with N12 and N21 denoting the bases of the null spaces of

(BT
2 , D

T
12) and (C2, D21) respectively. The optimal controller

K is derived from X and Y .

III. VSC CONTROL DESIGN

A. VSC Control Scheme

We consider a state-of-the-art VSC control scheme previ-

ously described in [24], where the outer control loop consists

of droop-based active and reactive power controllers providing

the output voltage angle and magnitude reference by adjusting

the predefined setpoints (x∗) according to a measured power

imbalance. Subsequently, the reference voltage vector signal
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īs v̄m m

qcpc

ωc
vdc

v̄

vc

ωpll

Inner control loopOuter control loop

it

Fig. 4: General configuration of the implemented VSC control structure. The delayed measurements are denoted in red.

(vc∠θc) is passed through a virtual impedance block, as well

as the inner control loop consisting of cascaded voltage and

current controllers. The output is combined with the DC-

side voltage in order to generate the modulation signal m.

In order to detect the system frequency at the connection

terminal, a synchronization unit in the form of a phased-locked

loop is included in the model. Furthermore, the time delays

are imposed onto the local measurement signals (eg, ig, is),
denoted with a subscript τ in Fig. 4. Since the measurements

are obtained from a single device, we assume the same

time delay for all signals. The complete mathematical model

consists of 15 states, with inclusion of the filter current and

voltage dynamics, and is implemented in a rotating (dq)-
frame and per unit. More details on the overall converter con-

trol structure, employed parametrization, potential operation

modes and respective transient properties can be found in [24].

B. Robust Control Design

The vulnerability of the system to measurement delays is

first evaluated through small-signal stability for a wide range

of time delays. The eigenvalue spectrum illustrated in Fig. 5

indicates a critical delay of τ̂d ≈ 314µs, and suggests the

presence of 4 critical modes. According to the participation

factor analysis, the states with the highest participation in

those modes are the filter current and voltage (is, eg), with

the former having the highest impact. Hence, the inner control

loop can be considered the main cause of instability.

The traditional inner control design consists of a cascade of

PI controllers and feed-forward loops, as follows:

īs =

(

Kv
p +

Kv
i

s

)

(v̄ − eg) + jxfeg +Ki
f ig (19)

v̄
(0)
m =

(

Ki
p +

Ki
i

s

)

∆isτ + jxf isτ +Kv
fegτ (20)

where ∆isτ = īs − isτ , the subscripts p, i and f denote the

respective proportional, integral and feed-forward gains, and

the superscripts v and i refer to the voltage and current control.
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Fig. 5: Root loci spectrum around the imaginary axis computed

using the Padé approximation.

In order to improve the converter performance under mea-

surement delay, we propose three novel control strategies:

v̄
(1)
m =

(

Ki
p +

Ki
i

s

)

∆isτ + jxf isτ +Kv
fegτ −K1(∆egτ )

v̄
(2)
m =

(

Ki
p +

Ki
i

s

)

∆igτ + jxf igτ +Kv
fegτ −K2(∆egτ )

v̄
(3)
m = K3(v̄ − egτ ) (21)

The first two approaches depicted in Fig. 6a consist of adding

an additional damping term K1,2 to the current control based

on the deviation of the voltage across the filter capacitor from

its nominal value (∆egτ ). The latter design also uses different

current input measurement, replacing the switching current isτ
with the grid current input igτ in order to reduce the control

sensitivity to time delay. On the other hand, motivated by the

fact that the states associated with the inner loop have the

highest participation in critical modes, the third configuration

completely redefines this control block and designs a uniform

robust controller K3 that explicitly computes the modulation

voltage setpoint of the converter. Such concept also eliminates
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the need for any current measurement input, as described in

Fig. 6b, thus providing a lower controller order.

Two H∞ output feedback controllers are implemented for

each design: an LFT norm-bounded controller and a GS

controller, previously described in Section II-C. The weighting

transfer functions used in the mixed-sensitivity design of

K1 and K2 are: W1(s) = 0.5s+500
s+5 , W2(s) = 1. Since

the controller K3 tracks the voltage output of the converter,

the weights are chosen such that a good integral control

performance in time domain is achieved. The bandwidth of

the controller is therefore set to 1000 rad/s, resulting in the fol-

lowing weighting functions: W1(s) =
0.5s+1000

s+0.1 , W2(s) = 1.

IV. RESULTS

An overview of the stability performance obtained from

the proposed control designs is presented in Table I. We can

observe that the range of time delays for which the robust

and quadratic stability are guaranteed, as well as the order

of the controllers, vary significantly between different control

approaches. As described previously in Section II, the em-

phasis is put on quadratic stability, as it allows for arbitrarily

fast variation of measurement delays. Understandably, K3 has

the lowest order due to removal of the current measurements

from the control input. It also provides a drastically larger

stability range, both under LFT and GS implementation. This

is a consequence of its conceptually superior design, which

eliminates a majority of the state feedback sensitive to time

delays. Moreover, the GS approach appears to be the more

robust of the two, with the respective critical delay τ̂d reaching

millisecond range.

We now investigate the converter response to a 10% step

increase in active power setpoint, and evaluate its reference

tracking capability under different measurement delay prop-

erties. For this purpose, detailed time-domain simulations in

TABLE I: Stability performance of different control designs.

Control Order QS Range RS Range

K1,LFT 21 [0− 370] µs [0− 420] µs

K1,GS 21 [0− 750] µs [0− 750] µs

K2,LFT 19 [0− 400] µs [0− 660] µs

K2,GS 19 [0− 2] ms [0− 2] ms

K3,LFT 15 [0− 900] µs [0− 1] ms

K3,GS 15 [0− 20] ms [0− 50] ms
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Fig. 7: Response to a step-change in active power setpoint

under constant time delay for different inner control designs:

(i) τd = 150µs; (ii) τd = 500µs; (iii) τd = 1ms;.

MATLAB Simulink have been used. A focus is first set

on constant delays in a range of [150− 1000] µs and the

results are presented in Fig. 7. Under a reasonably small

delay of 150µs all controllers achieve good performance, with

controller K3,GS having the best overall response due to a

combination of its reduced system order and gain scheduling

design. Nonetheless, such level of delay could be withstood by

a conventional inner control, which is not the case in the next

two scenarios. For τd ∈ [500, 1000] µs we observe that certain

control designs are unstable, which can be justified by their

insufficient robust stability range in Table I. More precisely,

K1,LFT has a critical delay threshold below 500µs, whereas

K1,GS and K2,LFT cannot withstand a 1ms measurement delay.

Accounting for time delay variability, a quadratic stability

aspect becomes more relevant, as it ensures resilience to fast

changes in the delay signal. Therefore, we consider a delay

varying as a sinusoidal function of the form τd = Td |sin (ωt)|,
with Td = 1ms. The converter power response illustrated

in Fig. 8 indicates that only the controllers with an accept-

able quadratic stability range can tolerate such an oscillatory

delay nature. As a result, the LFT designs of K1 and K2

underperform whenever τd goes drastically above 370µs and

400µs, respectively. A similar characteristic is noticeable for

K3,LFT, with τ̂d = 900µs being slightly below the delay peak.

Interestingly, the GS configuration reacts differently when

the delays exceed the permissible range, manifested through

stable, but highly oscillatory behavior of K1,GS. Finally, K2,GS

and K3,GS face no instability issues due to very broad quadratic
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under varying time delay for different inner control designs:

(i) varying time delay signal; (ii) converter power output.

stability ranges.

It can be concluded that the K3 concept clearly shows

the best performance, independent of the control synthesis

method. It completely replaces the inner control loop, reduces

the overall control order and ensures excellent robustness to

any type of measurement delay. On the other hand, the K1 and

K2 configurations have an inherent disadvantage of adding an

extra controller to the existing system and increasing complex-

ity. Furthermore, K1 achieves only a minor improvement to the

original design, whereas K2, although significantly better, is

still suboptimal compared to the uniform structure of K3.

V. CONCLUSION

In this paper, the robust control design under time delay

uncertainty in power systems with a high share of converter-

based generation is investigated. Two ways of time delay

modeling are presented, and subsequently used for developing

two output-feedback synthesis methods based on H∞ control

theory. In order to improve the resilience of VSCs to varying

delays in local measurement, three novel control strategies

are proposed and combined with each of the two synthesis

methods. A redesign of the conventional inner control loop

is suggested, which improves converter performance when

dealing with measurement uncertainty. It was found that the

uniform controller performs the best and guarantees quadratic

stability for a wide range of time delays. Furthermore, the

gain-scheduling synthesis appeared to be the more practical

approach of the two. Future work will focus on large-scale

systems, as well as the impact of signal delay in wide-area

measurements involved in centralized power system control

schemes.
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