
This is a repository copy of Non-random weight initialisation in deep learning networks for
repeatable determinism.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146436/

Version: Accepted Version

Proceedings Paper:
Rudd-Orthner, R. and Mihaylova, L. (2019) Non-random weight initialisation in deep
learning networks for repeatable determinism. In: 2019 IEEE 10th International
Conference on Dependable Systems, Services and Technologies (DESSERT). 10th
International Conference Dependable Systems, Services and Technologies, 05-07 Jun
2019, Leeds, United Kingdom. IEEE . ISBN 9781728117348

https://doi.org/10.1109/DESSERT.2019.8770007

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The 10h IEEE International Conference on Dependable Systems, Services and Technologies, DESSERT�2019
5-7 June, 2019, Leeds, United Kingdom

978-1-7281-1733-1/19/$31.00 ©2019 IEEE

Non-Random Weight Initialisation in Deep
Learning Networks for Repeatable Determinism

Richard N M Rudd-Orthner1,2, Lyudmila Mihaylova1
1 University of Sheffield, Sheffield, UK, {RNMRudd-Orthner1, L.S.Mihaylova}@sheffield.ac.uk

2 MASS KSA (a Cohort plc company), Riyadh, KSA, {rruddorthner@mass.co.uk}

Abstract�This research is examining the change in

weight values of deep learning networks after learning.

These research experiments require to make measurements

and comparisons from a stable set of known weights and

biases before and after learning is conducted, such that

comparisons after learning are repeatable and the

experiment is controlled. As such the current accepted

schemes of random number initialisations of the weight

values may need to be deterministic rather than stochastic

to have little run to run varying effects, so that the weight

value initialisations are not a varying contributor. This

paper looks at the viability of non-random weight

initialisation schemes, to be used in place of the random

number weight initialisations of an established well

understood test case. The viability of non-random weight

initialisation schemes in neural networks may make a

network more deterministic in learning sessions which is a

desirable property in mission and safety critical systems.

The paper will use a variety of schemes over number ranges

and gradients and will achieve a 97.97% accuracy figure

just 0.18% less than the original random number scheme at

98.05%. The paper may highlight that in this case it may be

the number range and not the gradient that is effecting the

achieved accuracy most dominantly, although there may be

a coupling of number range with activation functions used.

Unexpectedly in this paper, an effect of numerical instability

will be discovered from run to run when run on a multi-core

CPU. The paper will also show the enforcement of

consistent deterministic results on an multi-core CPU by

defining atomic critical code regions aiding repeatable

Information Assurance (IA) in model fitting (or learning

sessions).

Keywords� Repeatable Deep Learning Networks, Real-

Time Single Processor Affinity, Non Random Weight

Initialization, Security and Information Assurance, Safety-

Critical AI, Learning Session Determinism.

I. INTRODUCTION

Artificial Intelligence (AI) has the potential for growth
in many areas, particularly the use of Deep Learning
Networks and frameworks, but applications for Mission
Critical and Safety critical software has additional
challenges in security in terms of Information Assurance
(IA). It may be argued that the application of Artificial
Intelligence and Deep Learning Networks in particular
have goals for replicating or challenging human abilities
against a human performance baseline. Although, Mission
Critical and Safety Critical software has goals of

completeness, correctness and repeatability making it
rigorous both in the development and in the deployed
application performance, arguably to reach a performance
that is "more than human", in that it reduces human error.
With this consideration the application of deep learning
networks has challenges when applied to Mission Critical
and Safety Critical software in terms of gaining
understanding and confidence for verification and
validation of the machine learnt generalisation model, and
that is a challenge for Information Assurance both in the
formed generalisation model but also in the processes that
formed that model. There has already been research in
this area for a number of years with a number of papers,
some of the most relevant to safety critical applications
are in unmanned air vehicles [1], the automation of space
missions [2] and also in space mission telecoms fault
tolerance [3].

An advantage of the deep learning network approach,
is that it has the ability to form generalisation models that
can perform tasks that may be considered intractable by
traditional approaches. However, without controls can
form a solution that is not compliant to known
understanding or real world physics. For mission critical
and safety critical systems repeatability and determinism
are desirable features for verification and validation, both
for the processing to form the generalisation model, and
when making a prediction with the model when deployed.
As both repeatable and deterministic aspects are desirable
attributes and also form an experimental control, one
aspect that may make a disruption to this is the use of a
random number initialisation state of weights before
learning. This paper looks at different number ranges and
gradients for a weight initialisation scheme to be used in
place of a random number initialisation state. Three main
non-random initialisation weight schemes are
experimented with: constant value, uniform linear ramp
and sinusoid. In each non-random scheme the number
range and gradient are changed: the constant value scheme
has no gradient and no number range, the linear ramp
scheme has a constant gradient and controlled number
range, and lastly the sinusoidal scheme has constant
variations in the gradient with a controlled number range.
The three schemes employed provide discriminations
between number ranges used and the gradient slope of
those values used in those schemes.

The research contribution that this paper is seeking to
provide is to answer a research question, that is: "Are
random number initialisation weight values required as the
initial state before learning to have high accuracy in
predictions or can a non random scheme also have
comparable performance in those predictions".

This paper is a foundation environment for subsequent
research experimental work that will examine changes and
adaption to weight and bias matrixes before and after
learning model fitting sessions. The foundation
environment is using Anaconda Python, NumPy and
Keras with TensorFlow deep machine learning framework
accessed through the Jupyter Notebook web services
environment.

This work was required to establish a repeatable result
with a defined known initial state that has comparable
performance to the existing random initialisation schemes
used currently. The experiment's initial state before
learning is to be defined, known and predictable such that
it may be controlled and accounted for in results as a
deterministic initial state that forms an experiment control.
In the experiments a well understood problem that is
published will be used. The MNIST dataset in TensorFlow
with Keras and NumPy. This is an application of
recognising hand written text characters and although in
itself may not be a mission critical problem it is a mature
reviewed solution.

II. ORIGINAL BASELINE CODE EXAMPLE

This example is familiar to researchers and is being
used to demonstrate weight initialisations that are not using
random number sequences.

Figure 1. Architectures of the Baseline Example.

The code specimen in Appendix A (A.1) is used as an
open source example [4], it is known as the hello world of
Neural Networks. When this code is run the output from
the evaluate command provides both Loss and Accuracy
figures, from five consecutive reset runs it is noted that the
losses and accuracies vary from run to run in each
learning session.
[0.06606189897235017, 0.9805] [0.07090263138680603, 0.9788]
[0.06552187514795223, 0.9815] [0.07510031864168705, 0.9769]
[0.06914228669836302, 0.979]
Figure 2: Hello World example results.

 There is a variation in both the loss and the accuracy
figures, which presumably means that there is some
variation in the prediction performance depending on the

model Fitting using Shuffles and the initialisation of
weights. From the five runs the mean average loss is
0.069345802 and the mean average accuracy is 0.97934.
The reasoning for this variation run to run may be
considered to be due to the random number initialisation
values present in the weight values and the shuffle
ordering of the dataset before each learning session,
Therefore setting the random number seed values before
each learning session should make the random number
sequence repeatable and therefore the accuracy and loss
values results the same from each run to run.

III. SEEDING THE RANDOM NUMBER GENERATOR

Running the same model with the no shuffle added to
the fit command, and again using the evaluate command's
loss and accuracy figures the results are gathered. At this
point the number of epochs is reduced to one to reduce the
runtime duration. Tensor Flow and NumPy random seeds
have been set to form a baseline value from one epoch that
should make the random number sequence defined. The
code for seeding the random number generators [5] and
the modified fit command are shown in Appendix A
(A.2): The five run results are as follows:
[0.09898285598997027, 0.971] [0.1022148139256984, 0.969]
[0.09992996315583587, 0.9699] [0.09846471949797124, 0.9709]
[0.10279747271370143, 0.9693]
Figure 3: Single epoch random number seeded baseline results

From these five results we can see that the variation is
still present, although arguably the mean accuracy may
have lowered by a 0.9% with mean values for loss and
accuracy of 0.100477965 and 0.97002. These values
without the shuffle and with the single epoch form the
comparison baseline for further measurement
experiments. This might be an indicator that this variation
run to run is not attributable to the initialisation of the
weights alone. But changing the model construction code
so that the random initialize values can be substituted with
fixed values is shown in Appendix A (A.3):

Three initialisation schemes will be experimented with
and these are: constant values, linear ramps and sinusoids,
these will test different numerical aspects from values,
gradients to number ranges.

IV. CONSTANT VALUE SCHEME

Now starting with a weight initialized array of
28*28*512 in the second layer and 512*10 weight values
in the fourth layer that are all containing a constant value
1.0. The code in Appendix A (A.4) was used to initialise
those weights, and was run five times and provided these
results.

 {+1.0�+1.0}
Figure 4: Constant Value (1.0) weight initialisation tensor

The five run results are as follows:

[14.490169499206543, 0.101] [14.490169499206543, 0.101]
[14.490169499206543, 0.101] [14.490169499206543, 0.101]
[14.490169499206543, 0.101]
Figure 5: Constant Value (1.0) results

 This time the accuracy and loss values are
deterministic, but the accuracy is very much lower, about
86% lower than the baseline perhaps indicating that
learning is not occurring, also the loss is greater than the
baseline values. But the values have no or very low
variance run to run but perhaps are due to the loss in
learning. So using the code in Appendix A (A.5) the
initialized weight values are set to zeros instead, and gains
the following results from the five runs.

 {0.0�0.0}
Figure 6: Constant Value (0.0) weight initialisation tensor

The five run results are as follows:
[2.3011608791351317, 0.1135] [2.301160814285278, 0.1135]
[2.30116091003418, 0.1135] [2.30116091003418, 0.1135]
[2.3011607849121094, 0.1135]
Figure 7: Constant Value (0.0) results

Again the accuracy values have no variance but the
loss has a small variance run to run but is stable. Again
the mean accuracy is much reduced and is about 86%
lower than the baseline perhaps indicating that the loss in
learning may be due to drop outs and saturations with
those values. Looking into the Keras code [6] it is noted
that the random initialisation value would have been
between -0.05 and +0.05. So using a fixed constant value
of +0.05 as an experiment the code in Appendix A (A-6)
is used:

 {+0.05�+0.05}
Figure 8: Constant Value (0.05) weight initialisation tensor

The five run results are as follows:
[1.8057675338745116, 0.2667] [1.7881868183135987, 0.2766]
[1.7912575538635254, 0.2739] [1.7899974334716797, 0.2739]
[1.7860924480438232, 0.2817]
Figure 9: Constant Value (0.05) results

 At the +0.05 value the variances of the loss and
accuracy in the five runs has increased again and the mean
accuracy is about 70% less than the baseline mean,
however, when an initialisation value of 1.0 was used
there was no variance, this appears to change if the final
layer's SoftMax activation function is replaced with ReLU
and using the code in Appendix A (A-7) the five runs are
repeated using ReLU:

The five run results are as follows:
[2.3025851249694824, 0.0978] [2.3025851249694824, 0.0978]
[2.3025851249694824, 0.0978] [2.3025851249694824, 0.0978]
[2.3025851249694824, 0.0978]

Figure 10: Constant Value (0.05) results with ReLU in place of SoftMax

The variance in the loss and accuracy has diminished
again. Although the accuracy is now 86% lower than the
baseline, it is possible that the SoftMax function that uses
summations of exponential numbers is having significant
bit representation issues but the ReLU may be less
vulnerable to that and has a consistent result. Possibly the
run to run variations could be an effect of task scheduling
and may be creating variations in the resultant numbers
depending on if the CPU processor's internal 80bit
extended precision floating point register [7] is
interrupted. Upon which it may truncate the calculation to
32bits or 64bits when the value is stored by the task
scheduler and cause a lower number of significant bits to
be passed on to the next calculation when the task is next
scheduled, However, this is not proven. But it is also
noted that the ReLU is not allowing the learning to occur
and has broken the model, so the SoftMax is put back in
and more experiments are conducted using the other
extreme of the original random number range, the -0.05
value is used as a constant value with the code in
Appendix A (A-8) and the SoftMax put back into the final
layer.

 {-0.05�-0.05}
Figure 11: Constant Value (-0.05) weight initialisation tensor

The five run results are as follows:
[2.301160791397095, 0.1135] [2.3011607082366945, 0.1135]
[2.3011608280181886, 0.1135] [2.3011609703063964, 0.1135]
[2.301160668563843, 0.1135]
Figure 12: Constant Value (-0.05) results

 Again the loss value has low variance run to run and
the accuracy is deterministic but is a much lower
accuracy. This compares with the constant zero value
experiment although the +0.05 constant has a higher mean
accuracy. This implies there is a sensitivity to the
initialisation value and that the initial value as a potential
to allow learning but also cause differences in the results
depending on the value used. A summary table follows of
the experiments with the single epoch baseline and the
constant value weight initialisation schemes:
Experiment Loss and Accuracy Comment

Constant
1.0 values

[14.490169499206543, 0.101]
[14.490169499206543, 0.101]
[14.490169499206543, 0.101]
[14.490169499206543, 0.101]
[14.490169499206543, 0.101]

No Variances in Loss
and Accuracy. also
seen if the SoftMax
was replaced with
ReLU, 87% lower
accuracy in this case.

Constant
0.0 values

[2.3011608791351317,0.1135]
[2.301160814285278, 0.1135]
[2.30116091003418, 0.1135]
[2.30116091003418, 0.1135]
[2.3011607849121094,0.1135]

Accuracy stable but
Variances in Loss at
the 7th significant
place, 86% lower
accuracy similar
accuracy to the -0.05
experiment.

Constant +
0.05 values

[1.8057675338745116, 0.2667]
[1.7881868183135987, 0.2766]
[1.7912575538635254, 0.2739]

Variances in Loss at
the 2nd significant
place and Accuracy

[1.7899974334716797, 0.2739]
[1.7860924480438232, 0.2817]

unstable, 70% lower
accuracy. But is the
highest accuracy of
the constant value
experiments.

Constant -
0.05 values

[2.301160791397095, 0.1135]
[2.3011607082366945,0.1135]
[2.3011608280181886,0.1135]
[2.3011609703063964,0.1135]
[2.301160668563843, 0.1135]

Accuracy stable and
Variances in Loss at
the 7th significant
place, 86% lower
accuracy like the zero
number experiment.

Figure 13: Constant Value summary table

It may appear that although there is an unexplained
variance run to run and given that the random number
generator had been seeded there is still an unexplained
variation in results. It also may appear that using a
constant number as an initialised value has a large impact
on the resultant accuracy, and that some of that accuracy
may be connected to the value used. It may be that the
value 1.0 may have caused some arithmetic problems with
number representations, and values between -0.05 and
+0.05 as per the current random number initialisation
range showed variances in results but very much lower
accuracy. The values greater than zero had higher
accuracy and lower loss but that may be because of the
use of the ReLU in the second layer and a value 0.0
perhaps coursing drop outs, and that variation may be and
effect of SoftMax in the final layer. These results may of
course only pertain to this model and particularly if there
explanation intuition is based on that models activation
function architecture, but it shows a concern with 32bit
number floating point significant bits, and noticing that
the input data is positive image values in the scale 0 - 255
which is rescaled to 0 - 1 and the weight initialisation
value of +0.05 is two significant places different. Where a
five significant place difference is experienced in the
computation this will begin to effect a 32bit calculation
representation accuracy. Although the 32bit number
accuracy is not conclusively proven, it is a concern and
may be supported by the experiment that excluded the
SoftMax activation function, as the SoftMax function
divides a number by the sum of an exponential number.
Alternatively this may be solved by using a 64bit number
for the accumulator in the sum or the use of pre and post
scaling of the number scales before and after the
calculations. It should also be noted that results show a
lower mean accuracy are shown with constant weight
initialisation values used. Perhaps the learning is more
uniformly effecting adjacent neurons by a similar amount
and it could be expected by initial weight values that have
no gradient or number range variation at the outset of
learning and the next set of experiments should have a
number range as a linear ramp to have a number range and
fixed gradient.

V. LINEAR RAMP SCHEME

Using a linear ramp between -0.05 and +0.05 as the
initial values of the weights to provide areas of the neural
network that will have different dominance towards an
output from the outset of learning, and a gradient of values

and number range in those initial weights may be higher
performing. The initialisation weight value code is in
Appendix A (A-9):

 {-0.05�+0.05}
Figure 14: Linear Ramp (-0.05 to +0.05) weight initialisation tensor

The five run results are as follows:
[0.1565102383375168, 0.9523] [0.15511292833536863, 0.9546]
[0.1435071627393365, 0.9561] [0.15252709869667888, 0.9552]
[0.1440581636864692, 0.956]
Figure 15: Linear Ramp (-0.05 to +0.05) results

It seems that a gradient and number range of values
may be helpful and the accuracy is just 2% less than the
baseline results. However, taking the -0.05 constant value
case that was low performing and the higher performing
+0.05 constant value the ramp will be modified from +/-
0.05 to be 0.0 to 0.1 to have a different number range but
the same gradient. The initialisation code is in Appendix
A (A.10):

 {0.0�+0.1}
Figure 16: Linear Ramp (0.0 to 0.1) weight initialisation tensor

The five run results are as follows:
[0.24299218244701623, 0.9236] [0.2762062883064151, 0.9141]
[0.2508674868822098, 0.9212] [0.23018671630620957, 0.9275]
[0.2593486599966884, 0.9187]
Figure 17: Linear Ramp (0.0 to 0.1) results

It seems that the results are similar but a little reduced
then the ramp over 0 and is 5% lower than the baseline in
accuracy. The gradient was unchanged but the number
range was slid to positive numbers only, but that number
range reached a number range greater than the original
initialisation codes value range of the +0.05 value. In the
next experiment the number range and gradient are
changed to a ramp in the number range 0.0 to +0.05, and
is using the initialisation code in Appendix A (A.11):

 {0.0�+0.05}
Figure 18: Linear Ramp (0.0 to 0.05) weight initialisation tensor

The five run results are as follows:
[0.2146800939079374, 0.934] [0.21725718629658222, 0.9339]
[0.2175400296010077, 0.9317] [0.21510434658303856, 0.9319]
[0.22056258716955782, 0.932]
Figure 19: Linear Ramp (0.0 to 0.05) results

 These results are very similar but it would be worth
trying the negative value range -0.05 to 0.0 for
completeness as there may be a difference between the

SoftMax and ReLU layer's activations and the benefit of
each activation function needs from the initialisation
values. The initialisation code for this experiment is in
Appendix A (A-12):

 {-0.05�0.0}
Figure 20: Linear Ramp (-0.05 to 0.0) weight initialisation tensor

The five run results are as follows:
[2.301160803604126, 0.1135] [2.301160865020752, 0.1135]
[2.3011607265472414, 0.1135] [2.301160787200928, 0.1135]
[2.301160820388794, 0.1135]
Figure 21: Linear Ramp (-0.05 to 0.0) results

 The results are very much lower almost like the
negative values that were seen with the constant values
perhaps suggesting that layer 2 ReLU activations may
have drop outs. A summary table of the results follows:
Experiment Loss and Accuracy Comment

Ramp -
0.05 to
+0.05

[0.1565102383375168, 0.9523]
[0.15511292833536863,0.9546]
[0.1435071627393365, 0.9561]
[0.15252709869667888,0.9552]
[0.1440581636864692, 0.956]

Variance in numbers,
but only 2% lower
accuracy from the
baseline in this case.

Ramp 0.0
to +0.1

[0.24299218244701623,0.9236]
[0.2762062883064151, 0.9141]
[0.2508674868822098, 0.9212]
[0.23018671630620957,0.9275]
[0.2593486599966884, 0.9187]

Variance in numbers,
5% lower accuracy
from the baseline in
this case.

Ramp 0.0
to +0.05

[0.2146800939079374, 0.934]
[0.21725718629658222,0.9339]
[0.2175400296010077, 0.9317]
[0.21510434658303856,0.9319]
[0.22056258716955782,0.932]

Variance in numbers,
4% lower accuracy
from the baseline in
this case.

Ramp -
0.05 to 0.0

[2.301160803604126, 0.1135]
[2.301160865020752, 0.1135]
[2.3011607265472414,0.1135]
[2.301160787200928, 0.1135]
[2.301160820388794, 0.1135]

No variances in the
accuracy and in Loss
at the 7th significant
place, the Accuracy
stable. 86% lower
accuracy to the
baseline but similar
accuracy to the zero
number experiment,
perhaps 0 or negative
numbers don't match
the layer 2 ReLU.

Figure 22: Linear Ramp summary table

From these results negative number ranges seem to be
low performing and positive values higher performing
although the range between -0.05 to +0.05 was the highest
performing in terms of accuracy. The gradient changed
between the experiments with 0.0 to +0.05 and 0.0 to +0.1
but had little difference in results, but the number range
and gradient were changed together. In the next set of
experiments the gradient and number range are changed
independently using a sinusoid.

VI. SINUSOIDAL SCHEMES

A moving gradient is used starting with the scale -0.05
to +0.05 in a sinusoidal form such that the number range
is the same but the gradient is changing with respect to the
linear ramp experiment of the same range. The

initialisation code is in Appendix A (A-13).

0.05 sin (x)
Figure 23: Sinusoid (-0.05 to 0.05) weight initialisation tensor

The five run results are as follows:
[0.14248031044751405, 0.9575] [0.14802057081907988, 0.9561]
[0.15482748659588397, 0.9546] [0.14560777206234635, 0.9565]
[0.15966865147389472, 0.9535]
Figure 24: Sinusoid (-0.05 to 0.05) results

 The results are similar to the linear ramp over the
same number range which was also only 2% lower than
the baseline, Using the positive figure experiment with
the same sinusoidal pattern in the range 0 to 0.1 the
initialisation code is in Appendix A (A-14):

0.05 sin (x) + 0.05
Figure 25: Sinusoid (0.0 to 0.1) weight initialisation tensor

The five run results are as follows:
[0.2765421679884195, 0.9159] [0.27466120897680524, 0.916]
[0.274703558498621, 0.9164] [0.2757590222135186, 0.9156]
[0.27346776156574487,0.9172]
Figure 26: Sinusoid (0.0 to 0.1) results

 The accuracy is 6% lower than the baseline. The next
experiment also uses positive values, but only in the range
0.0 to +0.05 with the same sinusoidal form using the
initialisation code in Appendix A (A-15).

0.025 sin(x)+ 0.025
Figure 27: Sinusoid (0.0 to 0.05) weight initialisation tensor

The five run results are as follows:
[0.18291570566408336, 0.9453] [0.19241121173687278, 0.942]
[0.18905000345483422, 0.9418] [0.1834044139198959, 0.9446]
[0.1803453653005883, 0.9448]
Figure 28: Sinusoid (0.0 to 0.05) results

 Slightly lower results at almost 3% less than the
baseline, but for completeness the sinusoidal range of -
0.05 to 0.0 is provided below with the initialisation code
in Appendix A (A-16).

 0.025 sin (x) - 0.025
Figure 29: Sinusoid (-0.05 to 0.0) weight initialisation tensor

The five run results are as follows:
[2.301160641479492, 0.1135] [2.301160855102539, 0.1135]
[2.301160636138916, 0.1135] [2.3011608177185057, 0.1135]
[2.3011608085632322, 0.1135]
Figure 30: Sinusoid (-0.05 to 0.0) results

 The summary of these experiments using sinusoidal
patterns are shown below:
Experiment Loss and Accuracy Comment

sin -0.05 to
+0.05

[0.14248031044751405,0.9575]
[0.14802057081907988,0.9561]
[0.15482748659588397,0.9546]
[0.14560777206234635,0.9565]
[0.15966865147389472,0.9535]

Same score as the
same number range
with the ramp
experiment.

sin 0.0 to
+1.0

[0.2765421679884195, 0.9159]
[0.27466120897680524,0.916]
[0.274703558498621, 0.9164]
[0.2757590222135186, 0.9156]
[0.27346776156574487,0.9172]

Almost the same
score as the same
number range with
the ramp experiment
but 1% lower at 6%
lower than the
baseline.

sin 0.0 to
+0.05

[0.18291570566408336,0.9453]
[0.19241121173687278,0.942]
[0.18905000345483422,0.9418]
[0.1834044139198959, 0.9446]
[0.1803453653005883, 0.9448]

Almost the same
score as the same
number range with
the ramp experiment
but 1% higher at 3%
lower than the
baseline.

sin -0.05 to
0.0

[2.301160641479492, 0.1135]
[2.301160855102539, 0.1135]
[2.301160636138916, 0.1135]
[2.3011608177185057, 0.1135]
[2.3011608085632322, 0.1135]

This result also
coincides with the
ramp of the same
number range.

Figure 31: Sinusoid summary table

Taking the highest score of the sinusoid number range
of -0.05 to +0.05 and re-running with the five epochs and
enabling the shuffle provides the following results as a
comparison to the original code:
[0.06944945766797755, 0.9792] [0.07057002582962159, 0.9793]
[0.0718287119449582, 0.9803] [0.07078138581812382, 0.9809]
[0.07259123737227055, 0.9789]
Figure 32: 5 epoch and shuffle with high score sinusoid

In comparison with the original untouched code, the
results are shown below and the variance run to run is
similar and the accuracy is about the same as the baseline
but is not using random weight initialisations:
[0.06606189897235017, 0.9805] [0.07090263138680603, 0.9788]
[0.06552187514795223, 0.9815] [0.07510031864168705, 0.9769]
[0.06914228669836302, 0.979]
Figure 33: Original code 5 epoch and shuffle with random init weights

However, although these results seam to show that an
non-random initialisation state can be just as high
performing in prediction accuracy as the random
initialisation state, the run to run variation in results is
masking the accuracy measurements and needs to be
tackled to improve the measurement accuracies made for
both the experiment and the baseline values.

VII. TACKLING THE REPEATABILITY RUN TO RUN

There is still a variance run to run in the results even
using the seeded random numbers with non random
weight value initialisations but taking into account the
possibility of the scheduling causing variations in number
representations. An experiment to try an invoke the real-
time priority of the windows scheduler [8] with an affinity
to one processor [9] as an attempt to deny or reduce

interruption of the task thread and uses the code in
Appendix A (A-17). However, the variation in the five
runs is still present, and under investigation it seems to
show that real-time priority is not being set and it is
being set to high priority instead. It turns out that you

need to run Jupyter notebook in a cmd console as

administrator such that the real-time priority can be
selected and then it becomes completely repeatable in
each of the five runs. This supports the theory that task
scheduling is interrupting and truncating calculations in
the internal CPU 80bit extended precision floating point
register [7], as now the python task is running on one
processor uninterrupted. This provides an accurate
repeatable figure for the highest scoring sinusoid scheme.
[0.07358874179359991, 0.9772] [0.07358874179359991, 0.9772]
[0.07358874179359991, 0.9772] [0.07358874179359991, 0.9772]
[0.07358874179359991, 0.9772]
Figure 34: high score sinusoid, on a single processor

Now that the runs are consistent the highest score
number ramp scheme with a range of -0.05 to 0.05 is re-
run with no variance in the results and they are similar
suggesting that the initialisation is providing repeatability:
[0.0668453144104511, 0.9784] [0.0668453144104511, 0.9784]
[0.0668453144104511, 0.9784] [0.0668453144104511, 0.9784]
[0.0668453144104511, 0.9784]
Figure 35: high score linear ramp, on a single processor

It appears that the ramp is a very slightly better
initialisation scheme then the sinusoid of the same number
range dismissing the effect of initial varying gradients
being of a benefit to the resultant accuracy and loss, at
least in this case. Although repeatable results that a
comparable score to the baseline is achieved the earlier
concern of numerical stability of the SoftMax activation
function is investigated.

VIII. CUSTOM NUMBER SCALED SOFTMAX FUNCTION

However, also an experiment of the SoftMax
activation function used in the final layer, the code in
Appendix A (A-18) is used to define a SoftMax with a
rescaling for numerical stability [10] as was suggested as a
possible concern earlier. But there is still no variance in
the results and they are similar suggesting that the
numerical stability is having a minor effect although this
is the highest accuracy score yet, except for the original
baseline, see below for the five results:
[0.06786308663240634, 0.9787] [0.06786308663240634, 0.9787]
[0.06786308663240634, 0.9787] [0.06786308663240634, 0.9787]
[0.06786308663240634, 0.9787]
Figure 36: high score sinusoid, on a single processor replaced SoftMax

A very marginal increase in accuracy, but now that the
model can be run repeatedly, the original code is run in
real-time priority with a single processor affinity and with
the random number initialisation of the weights but
seeded.
[0.061059941675240405, 0.9805] [0.061059941675240405, 0.9805]
[0.061059941675240405, 0.9805] [0.061059941675240405, 0.9805]
[0.061059941675240405, 0.9805]
Figure 37: Baseline, on a single processor

The baseline perfected value is 98.05% which is only
0.18% better than using the best linear ramp with a
modified SoftMax, or just 0.21% better then the best

linear ramp initialisation with the original SoftMax
function and also just 0.33% better than using the best
sinusoidal ramp weight initialisation.

IX. CONCLUSION

In summary the initial original code has a accuracy of
about 98.05% and using random numbers, conventional
thoughts might be that the weight values and random
numbers were responsible alone for the variations in
successive results run to run. However, when the random
seeds are set to a defined seed value the variation in the
results continues run to run. The paper was able to
establish a stable result making the processing
deterministic but the exact cause of the variations in
successive runs is not proven, but could be a numerical
stability given calculations using 32bit or 64bit floating
point maths but would need to be combined with another
effect like task scheduling truncating the stored values
between schedules. The solution to the variation run to
run suggests that it may be task scheduling truncating a
CPU internal 80bit extended precision register used for
floating point maths used even with 32bit or 64bit
calculations and will truncate a calculations result to
32bits or 64bits if interrupted by the task scheduler. It
may be that this variation is only seem on multi core
CPUs and GPUs may be immune.

The paper also tested a variety of initialisation
schemes and they were experimented with and 0.18% less
accuracy than the original code was achieved with a non-
random number weight initialization pattern and in that
case was a linear ramp in the numerical range -0.05 to
+0.05 with a modified SoftMax function. But it should be
noted that more optimal non-random schemes may exist
but the paper has shown that random number initialisation
is not an imperative requirement. It also may be that the
number range could be optimised but we may expect that
these may also couple with the activation function used in
that layer. It is also possible that the 32bit or 64bit
number representation may be contributing to a
regularisation effect to help to not over fit a model by
reducing significant bit resolution. It may follow that
initialisation schemes could be set depending on the layer
type, the activation function and the regularisation scheme
used. The 80bit floating point representation could
conceivably have benefits to achieved accuracy with an
optimal number range but also has benefits to determinism
in successive run results and that may have benefits to
make a Deep Learning network capability accessible to
mission and safety critical systems. However, the paper
has demonstrated deterministic repeatable results in
successive runs without random initialisations meaning
that mission and safety critical applications may have the
test and qualification determinism required by those
applications and the test environment is viable for further
experimentation control.

It has not been experimented with in this paper, but it
is also possible that re-compiling the tensor flow backend

with strict IEEE compliance could provide all cores hyper
threading with run to run repeatability determinism. But
this might not provide the 80bit extended precision
benefits to accuracy in learning sessions and the SoftMax
experiment might indicate that number representation is a
feature that could affect regularisation. Thus the current
implementation with the real-time single processor
affinity provides the flexibility to define critical regions
during learning and evaluation. But it was the research
question of "Are random number initialisation weight
values required as the initial state before learning to have
high accuracy in predictions or can a non random scheme
also have comparable performance in predictions" and the
answer is that it is possible to use non random sequences
and random numbers in this case it may not be an
imperative requirement for accuracy performance.
Although, it is also possible that coupling in those
schemes may connect with: the deep learning architecture,
the layer type and the activation function used. Also the
absence of random numbers with the use of alternative
non-random number schemes can be used to provide
repeatable deterministic results from learning session to
learning session, and that might be a support to mission
and safety critical system's verification and validation
obligations going forward.

X. REFERENCES

[1] Ernest et al, N. (2019). Genetic Fuzzy based Artificial Intelligence
for Unmanned Combat Aerial Vehicle Control in Simulated Air
Combat Missions. [online] Research Gate. Available at:
https://www.researchgate.net/profile/Nicholas_Ernest/publication/30
1944635_Genetic_Fuzzy_based_Artificial_Intelligence_for_Unman
ned_Combat_Aerial_Vehicle_Control_in_Simulated_Air_Combat_
Missions/links/576c4e5408ae193ef3a9a384/Genetic-Fuzzy-based-
Artificial-Intelligence-for-Unmanned-Combat-Aerial-Vehicle-
Control-in-Simulated-Air-Combat-Missions.pdf [Accessed 29 Jan.
2019].

[2] Freitas Jr. et al, R. (2019). Advanced Automation for Space
Missions1. [online] Rfreitas.com. Available at:
http://www.rfreitas.com/Astro/AASMJAS1982.htm [Accessed 29
Jan. 2019].

[3] Lawson, D. and James, M. (2019). SHARP: A multi-mission
artificial intelligence system for spacecraft telemetry monitoring and
diagnosis. [online] Ntrs.nasa.gov. Available at:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900009128.p
df [Accessed 29 Jan. 2019].

[4] Google, TensorFlow. (2019). TensorFlow. [online] TensorFlow.
Available at: https://www.tensorflow.org/tutorials/ [Accessed 1 Jan.
2019].

[5] Brownlee, J. (2019). How to Get Reproducible Results with Keras.
[online] Machine Learning Mastery. Available at:
https://machinelearningmastery.com/reproducible-results-neural-
networks-keras/ [Accessed 2 Jan. 2019].

[6] Allaire, J. (2019). rstudio/keras. [online] GitHub. Available at:
https://github.com/rstudio/keras/blob/master/R/initializers.R
[Accessed 2 Jan. 2019].

[7] Herf, M. (2000). stereopsis: know your FPU. [online]
Stereopsis.com. Available at: http://stereopsis.com/FPU.html
[Accessed 29 Jan. 2019].

[8] Niederberger, B. (2019). Set Process Priority In Windows « Python
recipes « ActiveState Code. [online] Code.activestate.com. Available
at: https://code.activestate.com/recipes/496767-set-process-priority-
in-windows/ [Accessed 2 Jan. 2019].

[9] Shimao (2019). What process controls the CPU affinity of new
python processes. [online] Super User. Available at:

https://superuser.com/questions/1273705/what-process-controls-the-
cpu-affinity-of-new-python-processes [Accessed 2 Jan. 2019].

[10] Alvas (2019). How to implement the Softmax function in Python.
[online] Stack Overflow. Available at:
https://stackoverflow.com/questions/34968722/how-to-implement-
the-softmax-function-in-python [Accessed 2 Jan. 2019].

XI. APPENDIX A

The code has been included for repeatability and to allow
other researchers to overcome the numerical instability of
task scheduling.
A.1 Original Code specimen [4] Experiment 1
import tensorflow as tf

mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) =
mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential ([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
A.2 Random Number Seeding code change [5] Experiment 2
from numpy.random import seed

from tensorflow import set_random_seed

seed(1)

set_random_seed(2)

...

model.fit(x_train, y_train, epochs=1 , shuffle=False)
A.3 Modification for Init code insertion Experiments 2-20
model = tf.keras.models.Sequential ([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512,
kernel_initializer=tf.constant_initializer (initval1), bias_initializer =

'zeros', activation = tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, kernel_initializer=tf.constant_initializer

(initval2), bias_initializer = 'zeros', activation = tf.nn.softmax)])
A.4 Constant value Initialisation code Experiment 3
initval1 = np.ones(28*28*512)
initval2 = np.ones(512*10)
A.5 Constant value Initialisation code Experiment 4
initval1 = np.zeros(28*28*512)
initval2 = np.zeros(512*10)
A.6 Constant value Initialisation code Experiment 5
initval1 = np.zeros(28*28*512) + 0.05
initval2 = np.zeros(512*10) + 0.05
A.7 Code change for ReLU Experiment 6
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512, kernel_initializer = tf.constant_initializer
(initval1), bias_initializer = 'zeros', activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, kernel_initializer = tf.constant_initializer
(initval2), bias_initializer = 'zeros', activation=tf.nn.relu)])
A.8 Constant value Initialisation code Experiment 7
initval1=np.zeros(28*28*512) - 0.05

initval2=np.zeros(512*10) - 0.05
A.9 Ramp Initialisation code Experiment 8
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.1-0.05
initval2=np.arange(0,512*10,1)/(512*10-1)*0.1-0.05
A.10 Ramp Initialisation code Experiment 9
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.1
initval2=np.arange(0,512*10,1)/(512*10-1)*0.1
A.11 Ramp Initialisation code Experiment 10
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.05
initval2=np.arange(0,512*10,1)/(512*10-1)*0.05
A.12 Ramp Initialisation code Experiment 11
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.05-0.05
initval2=np.arange(0,512*10,1)/(512*10-1)*0.05-0.05
A.13 Sinusoid Initialisation code Experiment 12
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)*0.05
initval2=np.sin(np.arange(0,512*10,1) /(512*10-1)*np.pi*2)*0.05
A.14 Sinusoid Initialisation code Experiment 13
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)*0.05
+0.05
initval2=np.sin(np.arange(0,512*10,1)/(512*10-1)*np.pi*2)*0.05+0.05
A.15 Sinusoid Initialisation code Experiment 14
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-
1)*np.pi*2)*0.025+0.025
initval2=np.sin(np.arange(0,512*10,1)/(512*10-
1)*np.pi*2)*0.025+0.025
A.16 Sinusoid Initialisation code Experiment 15
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)*
0.025-0.025
initval2=np.sin(np.arange(0,512*10,1)/(512*10-1)*np.pi*2)*0.025-0.025
A.17 Real-Time single Core Affinity code [8] [9] Experiments 17 - 20
import psutil

psutil.Process().cpu_affinity([0,0,0,0])

def setpriority(pid=None,priority=1):

import win32api,win32process,win32con

priorityclasses = [win32process.IDLE_PRIORITY_CLASS,

 win32process.BELOW_NORMAL_PRIORITY_CLASS,

 win32process.NORMAL_PRIORITY_CLASS,

 win32process.ABOVE_NORMAL_PRIORITY_CLASS,

 win32process.HIGH_PRIORITY_CLASS,

 win32process.REALTIME_PRIORITY_CLASS]

if pid == None:

 pid = win32api.GetCurrentProcessId()

 handle = win32api.OpenProcess(

win32con.PROCESS_ALL_ACCESS, True, pid)

win32process.SetPriorityClass(handle, priorityclasses[priority])

setpriority(None, priority=5)

model.fit(x_train, y_train, epochs=5, verbose=1, shuffle=True)
setpriority(None,priority=2)

setpriority(None, priority=5)
model.evaluate(x_test, y_test, verbose=1)
setpriority(None,priority=2)
A.18 Modified SoftMax function change [10] Experiment 19
from keras.layers import Activation
from keras import backend as K
from keras.utils.generic_utils import get_custom_objects

def custom_activation(x):
 exps = K.exp(x - K.max(x))
 return exps / K.sum(exps)

get_custom_objects().update({'custom_activation':
Activation(custom_activation)})

lj jj j

