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Significant research effort has been devoted to topol-

ogy optimization of two- and three-dimensional struc-

tural elements subject to various design and loading

criteria. While the field of topology optimization has

been tremendously successful over the years, literature

focusing on the optimization of spatially-varying elas-

tic material properties in structures subject to multi-

ple loading states is scarce. In this article, we con-

tribute to the state of the art in material optimization by

proposing a numerical regime for optimizing the dis-

tribution of the elastic modulus in structural elements

subject to multiple loading conditions and design dis-

placement criteria. Such displacement criteria (target

displacement fields prescribed by the designer) may re-

sult from factors related to structural codes, occupant

comfort, proximity of adjacent structures, etc. In this

work, we utilize an inverse problem based framework

for optimizing the elastic modulus distribution consid-

ering N target displacements and imposed forces. This

approach is formulated in a straight-forward manner

such that it may be applied in a broad suite of design

problems with unique geometries, loading conditions,

and displacement criteria. To test the approach, a suite

of optimization problems are solved to demonstrate so-

lutions considering N = 2 for different geometries and

boundary conditions.

1 Introduction

Determination of optimal structural geometries,

shapes, connectivity, cross-sectional area, and void lo-

cations are central themes in topology optimization. In

cases where additional degrees of freedom for structural

optimization are desirable, one may additionally con-

sider the optimization of macroscopic material prop-

erties (such as elastic properties), which is the central

theme of this article. With this said, the ability to op-

timize structural topology – alone – affords designers

substantial freedom by reducing structural weight, in-

creasing adherence to architectural constraints, and pro-

viding an additional means to meet numerous other de-

sign criteria [1–3]. Significant research has been de-

voted to topology optimization over the last thirty years,

often aiming to optimize geometrical aspects of struc-

tural elements (voids, connectivity, thickness, etc.). In

this effort, various topology optimization approaches

including the well-known “solid isotropic material with

penalization” (SIMP) regime [4–6], level-set methods

[7–11], phase-field methods [12–14], and other emerg-

ing regimes have had much success.

Complimenting topology optimization is the opti-

mization of elastic material properties (herein referred

to as simply material optimization), wherein the distri-

bution of elastic material properties is optimized with

respect to the design criteria [15]. Material optimiza-

tion may be broadly viewed as a part of “free material

design” (FMD), which often aims to maximize struc-

tural stiffness by optimizing the material and material

distribution given some design criteria and constraints

[16]. Classically, these criterion are incorporated by

prescribing the cost of design; generally, the cost Π is

is defined by some integral over the domain of interest

Ω as follows

Π =
∫

Ω
Φ(C)dx (1)



where Φ is a scalar function and C is an elastic tensor

in the Cartesian coordinate system x. Arguments incor-

porated with the scalar cost function Φ(·) vary upon the

design criteria, optimization variables, and prescribed

constraints. In cases where only the material thick-

ness, voids, topology, etc. are optimized, the values

of the elastic constants are generally distributed equally

within Ω.

The attractiveness of material optimization is that

it affords designers additional flexibility by increas-

ing the degrees of freedom within Ω – since the mod-

els permit inhomogeneity in the elastic parameters.

Recently, there has been increased interest in mate-

rial optimization (e.g. [17–21]); this may, in part, be

inspired by emerging engineered materials such as

functionally-graded composites, 3D printed materials,

fiber-reinforced cement-based composites, and material

produced using additive fabrication [15, 22]. One po-

tential advantage of these engineered materials is that

their material properties, such as the elastic modulus,

may be inhomogeneous across the structural geome-

try. Therefore, the realization of such technologies may

promote the usage of material optimization in a large

suite of structural applications.

Computational material optimization regimes, of-

ten inter-weaved within FMD frameworks, have been

well-studied since their origins in seminal works (e.g.

[23, 24]), where the authors developed numerical ap-

proaches for optimizing materials to achieve mini-

mum compliance. Soon thereafter, researchers uti-

lized regimes employing material and stress constraints

(i.e. interior-point methods and penalty-barrier meth-

ods), demonstrating improved efficiency in their op-

timization regimes [25–28]. One aim of constrain-

ing the stress during the material optimization pro-

cess is to prevent structural failure occurring at high

stress levels. However, later works showed the diffi-

culties of using stress constraints [29, 30]. The dif-

ficulties in utilizing stress constraints often resulted

from defining suitable failure criterion and technical

complexities in programming stress constraints nested

in optimization algorithms [31]. In overcoming these

challenges, authors [31–33] developed augmented La-

grangian methods, demonstrating their effectiveness in

overcoming obstacles resulting from constraints. Ex-

tending the extensive body of work related to con-

strained materials optimization, researchers in [34, 35]

advanced and broadened the state of the art by propos-

ing generic constraints (including displacement and lo-

cal stress constraints) dependent on design and state

variables. Researchers in, e.g. [36–38], have also re-

cently demonstrated the effectiveness of topology op-

timization regimes incorporating stress constraints cou-

pled with shape sensitivity functions, level-set methods,

geometric projection methods, and much more.

Within recent years, substantial research in mate-

rial optimization has been conducted. Some of the ma-

jor contributions during this time include publications

in isotropic material design (IMD) [39], cubic mate-

rial design (CMD) [40–42], and Young’s modulus de-

sign (YMD) [15]. Broadly, the use of these material

optimization methods, among the many others men-

tioned, may be directly applied in conjunction with

manufacturing processes utilizing, for example, pro-

gramming of cellular materials [43], truss-like cellular

structures [44,45], cement-based materials [46,47], and

functionally-graded materials [48,49]. Moreover, much

attention has also been given to optimization problems

where the primary focus is not purely related to elastic-

ity. Some examples include the optimization of trans-

port properties in porous materials [50–52], optimiza-

tion of vessel geometry to promote fluid flow [53–56],

and topology optimization for heat conduction prob-

lems [57–59].

Although the body of work in material/topology

optimization is quite substantial, often many ap-

proaches consider only a single load case. In prac-

tice, few structural elements experience a unique load-

ing condition through their life cycle. This realiza-

tion was formally addressed in [16], where the authors

proved the existence of a solution to the multi-load op-

timization problem and a regime for solving the prob-

lem with respect to the distribution of the materials as

well as the material properties. Since this seminal ar-

ticle, works aiming to optimize structures under multi-

load conditions have been noted (e.g. [60–65]). In gen-

eral, however, literature focusing on the optimization

of spatially-varying elastic material properties in struc-

tures subject to multiple loading states is scarce.

In this work, we address this gap in research by de-

veloping a generic and straight-forward computational

framework aiming to determine an optimal distribu-

tion of the elastic modulus considering multiple loading

conditions and displacement criteria (target displace-

ment fields prescribed by the designer). We reinforce

that the aim of the proposed approach is not to optimize

the topology or geometry of the structure of interest;

rather, we focus solely on the distribution of the elastic

modulus. Concisely, in this article we aim to accom-

plish the following:

1. Develop a straight-forward and generally-

applicable inverse problem based framework



for optimizing the elastic modulus distribution

considering multiple loading criteria and imposed

forces.

2. Determine the effects optimization parameters, the

geometry of the structural members, and imposed

forces/displacement criteria have on optimized so-

lutions.

3. Analyze the effects that discretization and imposed

constraints have on the regime’s performance and

optimized solutions.

The article is organized as follows. We begin

by presenting the mathematical background of the in-

verse problem and optimization scheme. Following,

we demonstrate the approach with numerical examples

considering different structural geometries subject to

various loading conditions. Thereafter, an analysis of

the the effects of discretization and imposed constraints

is conducted. Finally, discussion and conclusions are

provided.

2 Inverse problem

In this section we propose a regime for optimiz-

ing the elastic properties of structural elements using

methods rooted in solving inverse problems. We begin

by describing inverse problems and how they contrast

with classic topology optimization problems. The aim

of an inverse problem (for one state) is to find the best

parameters ϑ resulting in

F (ϑ) = d (2)

where F is a linear or non-linear operator and d is a

data set. In the case of a discretized elasticity inverse

problem (i) F is a numerical forward model using, for

example the finite element method or finite difference

method and (ii) d is a force vector or, most often, dis-

placement field [71]. To solve such a problem, we aim

to minimize a functional ψ, with the basic form

ψ = ||F (ϑ)−d|| (3)

where || · || represents the appropriate norm for the prob-

lem (commonly the L2 or L1 norm). It is important

to recognize that the structure of the inverse problem

is quite different than the structure of a topology opti-

mization functional, which – in a classical sense – aims

to minimize the compliance

C =UT KU (4)

where U and K are the displacement field and stiffness

matrix for the geometry of interest, respectively. The

fundamental objectives of classical topology optimiza-

tion (TO) and optimization using inverse methods (IM)

may now be directly contrasted:

• TO: minimize C given boundary conditions,

forces, and design constraints.

• IM: minimize ψ given data set d, operator F ,

constraints on ϑ, and prior knowledge related to the

structure of ϑ.

Some advantages of using inverse methods in elas-

ticity optimization problems are their flexibility to in-

corporate (a) prior knowledge related to the spatial dis-

tribution/structure of ϑ (usually incorporated in regu-

larization techniques), (b) stacked models, i.e. simulta-

neous solutions for multiple states, and (c) constraints

on ϑ, which may result from physically-realistic ranges

of a given elastic property or manufacturing limitations.

The ability to use (a-c) in determining optimized solu-

tions of elastic properties is the primary motivator for

proposing the inverse regime herein.

2.1 Problem Statement

The inverse problem is described as follows:

given an unloaded structural geometry Ω, boundary

information ∂Ω, N target displacement fields with

each state’s displacement target concatenated in ∆n =
{∆1,∆2,∆3, . . . ,∆N} (in other words, ∆n is a stacked

vector of displacement fields conforming to any design

constraints for structural state n), and loading condi-

tions Fn = {F1,F2,F3, . . . ,FN}, find the inhomogenous

elastic modulus distributions En = {E1,E2,E3, . . . ,EN},

and simulated displacement fields Un resulting in


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From a more classical viewpoint, we observe that Eq.

5 is equivalent to N systems of concatenated structural

equations with each individual state n defined by

∆n −Un = ∆n −Kn(En)
−1Fn = 0 (6)

where Kn is a stiffness matrix determined numerically.

The concatenated classical model may then be written

in a more classical description using:
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
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In the following subsection, we will formulate the

solution approach to the model problems in Eqs. 5 and

7.

2.2 Inverse Approach

We now aim to use the equivalent model problems

in Eqs. 5 and 7 to formulate a least-squares (LS) min-

imization regime to solve the inverse problem. For il-

lustration purposes, we begin by considering only one

state, where N = 1 and the problem is unconstrained.

In such a case, we aim to determine E1 by minimizing

the functional

Ψ1(E1,F1) =
[

||∆1 −U1(E1,F1)||+ ||ΓE1||
]

(8)

where || · || represents the L2 norm, the superscript
1 denotes the degree of n (1, in this case), λ is the

Tikhonov regularization parameter [66] which will be

detailed later in this subsection, the regularization ma-

trix is given by Γ = λI, and I is the identity matrix.

In general, however, we note that physically-

realistic (non-complex) solutions are realized when

E1 > 0 – or more generally En > 0. Moreover, when

prior information about the material is available, we

may further constrain the problem such that the elas-

ticity modulus is greater than some constant Ec known

a priori. While still considering N = 1, we may rewrite

the functional to be minimized as

Ψ1(E1>Ec,F1) =
[

||∆1 −U1(E1,F1)||+ ||ΓE1||
]

. (9)

The extension of Eq. 9 for N = 2 is straightforward,

and in the case of equal weighting of cost functions for

each state n, is done by summation; i.e. for N = 2 we

aim to minimize

ΨN(En>Ec,Fn) = Ψ1(E1>Ec,F1)+Ψ2(E2>Ec,F2)

=
[

||∆1 −U1(E1,F1)||+ ||ΓE1||
]

+
[

||∆2 −U2(E2,F2)||+ ||ΓE2||
]

.

(10)

In the general case, where N may take any positive

integer, we aim to find the elastic modulus distributions

En
1 that minimizes the following functional

ΨN(En>Ec,Fn) =
N

∑
n=1

ωn

[

||∆n−Un(En,Fn)||+ ||ΓEn||
]

(11)

where ωn is the user-defined weight for each state. The

inclusion of regularization in Eqs. 8 - 11 results from

the ill-posed nature of the inverse problem, meaning

that standard LS approaches may yield non-unique so-

lutions. The form of regularization chosen here (L2

regularization) is known to result in smooth solutions

[67]. The primary advantage of this regularization tech-

nique is its simplicity: the smoothness of solutions is

controlled by the magnitude of λ. For further infor-

mation and discussion on more advanced regulariza-

tion techniques incorporating structural prior informa-

tion, we refer the reader to [68, 69]. We would like to

note that (i) the constraints En >Ec are handled using

the interior point method and (ii) here, each state n is

equally weighted during the minimization of Ψ such

that ∑N
n=1 ωn = 1; however, biased weighting of each

state n may also be employed in a straight-forward man-

ner.

To compute the simulated displacement fields2 Un

we employ the finite element method using

1We remark the En is a vector containing an inhomogeneous

distribution of elastic modulii at each state n. In a discretized prob-

lem (such as herein), the size of En is equivalent to the number of

elements in the discretization.
2Often, Un is denoted the “forward model.”



Un, j =
q

∑
i=1

K(En)
−1
ji Fn,i (12)

where q is the total number of unknown displacements,

j, i denote the column and row locations, and K−1
ji and

Fi are often referred to as the compliance matrix and

force vector, respectively [70, 71]. In this work, we

use piece-wise linear triangular elements and neglect

the effects of out-of-plane displacements (a plate in

plane stress) in generating the stiffness matrix K ji. We

would like to comment that the structure of the well-

known stiffness (or compliance) matrices within the

FEM equations consisting of F = KU or U = K−1F

are positive definite (when properly constructed), which

leads to unique solutions to the forward problem [71].

The ill posedness discussed herein refers to the inverse

problem, wherein solutions (in this case En) to the in-

verse problem are highly sensitive to modeling errors

and outlier data [68].

To solve the optimization problem we use a Gauss-

Newton scheme equipped with a line-search function to

compute the step size sk in the parameterized (stacked)

solution θk = θk−1 + skθ̄ where θk is the current esti-

mate and θ̄ is the LS update at iteration k.Within the pa-

rameterization, we define notation for the stacked vec-

tors as follows: θk = [E1,k,E2,k, . . . ,EN,k]
T and θk−1 =

[E1,k−1,E2,k−1, . . . ,EN,k−1]
T . For example, E1,k refers

to En=1,k or “En=1 at the kth iteration.” Specifically, we

define the stacked parameterizations

θk =


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(13)

and the stacked LS update

θ̄=


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where HEn
and gEn

are the Hessian matrix and gradi-

ent vector, respectively, computed from the cubic poly-

nomial barrier functions (for additional details regard-

ing the implementation of barrier constraints in a LS

framework, like those used herein, we refer the reader

to ( [72, 73]), and JEn
= ∂Un(En)

∂En
is the Jacobian. In this

work, the Jacobian at each state JEn
= ∂Un(En)

∂En
is com-

puted at each iteration using the perturbation method

with central differencing, where the entries are calcu-

lated using

JEn,i j =
Un(En,k−1 + p)−Un(En,k−1 − p)

2p
(15)

where the perturbation p is computed as a function of

the machine precision ε using p = 3

√

ε
2

following [74].

As with many optimization problems, some stop-

ping criteria ϕ must be defined; in this work we found

ϕ = (Ψk −Ψk−5)/Ψk−5 ≤ 10−3 to be satisfactory. In

particular, the use of Ψk−5 was selected to help ensure

that the cost function has reached a stable minimum in

the case there are oscillations at later iterations. Lastly,

the final optimized distribution of the elasticity modu-

lus EΨ must be computed. To be consistent with the

equal weighting employed in the minimization of Ψ in

Eq. 11, we simply compute EΨ using the mean value

for each discretized element in the solution vector θ.

Remark: We would like to mention that the proposed

method is also versatile to optimize other structural and

material parameters. For example, one may modify

Eqs. 11, 12, 13, 14, and 15 in a straight-forward man-

ner to solve the optimization problem with respect to

the Poisson ratio ν, shear modulus G, or plate thickness

t. In cases where multiple parameters, for example E

and t, are optimized simultaneously, one may incorpo-

rate a parameterization regime such as the one proposed

in [75, 76].

3 Numerical examples

The following numerical examples are designed to

test the proposed approach and demonstrate optimized

distributions of the elastic modulus EΨ in structural el-

ements with N = 2. In the first two examples, we ex-

amine the rectangular beam-columns. For the first two

examples, (i) the design displacement targets ∆1 and ∆2

are selected as simple functions in the x,y coordinate

plane and (ii) the constraint Ec was selected such that

the displacement fields were small during the initial it-

erations. In the third example, we study the effect of

mesh size the constraint Ec on the inverse solutions for

an irregular geometry; we also consider the numerical

behavior during minimization of the cost function. In



the examples, we neglect out of plane deformations, i.e.

the structural elements are in plane stress. For simplic-

ity, we use dimensionless units for the deformations,

forces, elastic coefficients, and coordinate system.

In solving each problem, we select λ = 10−3 and

make no further attempt to optimize the regularization

parameter during iterations. Lastly, all problems were

solved using a MATLAB implementation of the algo-

rithm described in section 2 and the choice of the do-

main meshing was selected based on available compu-

tational resources.

3.1 Example 1: non-slender beam column

In this example, we consider a cantilevered beam

clamped at y = 0 with two design displacement targets,

a homogeneous Poisson ratio ν = 0.35, and plate thick-

ness t = 0.2. The first design displacement target takes

the form of a cubic polynomial where the mesh points

of the unloaded beam are displaced by the following

function ∆1(x,y) = [0.005y3 −0.07y2 +0.2y,−], where

the y coordinate refers to the vertical coordinates along

the beam (note that the y-coordinates were intention-

ally not translated). The second target is given by a

pure axial translation of the form ∆2(x,y) = [−,0.01y].
The design displacement targets and loading for each

criterion are shown in Fig. 1 plotted atop the displaced

triangulation consisting of 800 elements. Moreover, in

determining EΨ, we utilized the constraint Ec = 30.

擦層 噺 層┻ 宋

擦匝 噺 層┻ 捜

擦惣 噺 宋┻ 挿捜

擦想 噺 宋┻ 捜【姉

(a) (b)
捲 捲

検

Fig. 1. Example 1: Schematic detailing the external forces and

structural elements deformed by the design displacement targets (a)

∆1, a cubic polynomial translating the x grid coordinates and (b) ∆2,

a pure axial translation along the y-axis.

The solution for this example is shown in Fig.

2, with optimized EΨ plotted atop displaced configu-

rations generated from simulated displacement fields

U1 = U1(EΨ,F1,F2,F3) and U2 = U2(EΨ,F4), which

correspond to displacement targets ∆1 and ∆2, respec-

tively. Results shown in Fig. 2 show a highly inho-

mogenous distribution of the elasticity modulus. This

is a satisfactory and expected result, given (a) the

non-physical nature of ∆1, where the y-components of

the field were not translated as would be observed in

physically-realistic bending case (i.e. ∆1 did not con-

sider rotations) and (b) the applied forces are not con-

gruent with the displacement fields prescribed in ∆1 and

∆2. It is therefore apparent why areas of the beam have

been stiffened and softened to compensate for discrep-

ancies between the forces and prescribed displacement

fields.

(a) (b)
捲 捲

検

Fig. 2. Optimized distribution of EΨ for Example 1, (a) EΨ plotted

atop U1 and (b) EΨ plotted atop U2. The right-hand side color bar

indicates the magnitude of inhomogeneous EΨ in each image.

It is interesting to note that near the location of the

largest applied point force, F2, there is an obvious local

increase in EΨ. This results from local data mismatch

between the smooth field ∆1 and the locally-perturbed

field U1. The local increase in stiffness near F2 is there-

fore consistent with this realization. Moreover, upon

comparing Figs. 1 and 2 we observe that U1 and ∆1

are not a perfect match - despite meeting the minimiza-

tion criterion ϕ. On the other hand, we observe that

U2 and ∆2 compare more favorably. Central reasons

for these observations are (i) the previously noted un-

realistic nature of ∆1 (in contrast to ∆2, which is a re-

alistic description of an axial displacement field), (ii)



the ill-posed nature of the inverse problem, (iii) the in-

creased non-uniqueness in stacked parameterizations of

inverse problems (also noted in [75,76], (iv) the use the

L2 regularization, an uninformative prior model, (v) the

regularization parameter λ was not optimized at each

iteration, and (vi) the effects of weighting the solution

EΨ.

3.2 Example 2: slender beam column

In this example, we consider a slender beam with

t = 0.1 and ν = 0.35. The beam is clamped at y = 0

and pinned at the coordinates (x,y) = [1,10] without the

presence of axial loads. The first displacement target

is quadratic and has the form ∆1(x,y) = [−0.015y2 +
0.15y,−]. The second target is a cubic function given

by ∆1(x,y) = [0.005y3−0.08y2+0.25y,−]. No transla-

tion in the y-direction is prescribed. The target displace-

ment fields and loading for each criterion are shown

in Fig. 3 plotted atop the displaced triangulation con-

sisting of 980 elements. The constraint was chosen as

Ec = 100.
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Fig. 3. Example 2: Schematic detailing the external forces and

structural elements deformed by the design displacement targets (a)

∆1, a quadratic polynomial translating the x grid coordinates and (b)

∆2 a cubic polynomial translating the x grid coordinates.

The solution for this example is shown in Fig.

4, with optimized EΨ plotted atop displaced configu-

rations generated from simulated displacement fields

U1 =U1(EΨ,F1) and U2 =U2(EΨ,F2,F3), which corre-

spond to displacement targets ∆1 and ∆2, respectively.

We again observe a highly inhomogenous distribution

of the solution EΨ, especially in the areas of high cur-

vature. As in Example 1, the local stiffening and soft-

ening observed in EΨ is largely affected by the lo-

cal discrepancies between the simulated displacement

fields and target displacement fields. Of note, signifi-

cant stiffening is observed near the pinned connection

at (x,y) = [1,10] and the negative moment region at the

clamped base as the inverse model is compensating for

localized effects resulting from high deformations gra-

dients.

(a) (b)
捲 捲

検

Fig. 4. Optimized distribution of EΨ for Example 2, (a) EΨ plotted

atop U1 and (b) EΨ plotted atop U2. The right-hand side color bar

indicates the magnitude of inhomogeneous EΨ in each image.

Relative to the beam in Example 1, the beam in this

example is markedly more slender. This led to a signif-

icant differences in the distribution of the elastic mod-

ulus in the solution. Upon observation of Fig. 4, it is

apparent that the variability of EΨ is much higher than

the variability observed in Fig 2. This is most plau-

sibly due to the lower shear stresses occurring in the

more slender beam. In the case of slender beams, dif-

ferences in the simulated and target displacement fields

are most significantly compensated by changes in the

bending stiffness near the top and bottom of the beam

cross sections. On the other hand, solutions for deeper

beams are more dependent on effects near the neutral



axis of the member due to shear effects. Bearing this

realization in mind, is important to note that, while dif-

ferences in the aspect ratio of the member do have im-

portant implications on the global distribution of EΨ,

the effects of external loads and boundary conditions

also have significant local implications on EΨ.

3.3 Example 3: Irregular member considering the

effects of mesh size and constraints

In the final example, we consider an irregular mem-

ber with t = 0.25 and ν = 0.35. The member is

clamped at y = 0. The first target displacement is

of the form ∆1 = [0.005y2,−0.005x2] and the second

target displacement is a linear translation of the form

∆2 = [0.02y,−]. Two discretizations are considered, the

first mesh, denoted the coarse mesh, consists of 67 tri-

angular elements. The second discretization considered

has 247 elements, and is denoted the refined mesh. The

target displacement fields and loading for each criterion

are shown in Fig. 5 plotted atop the displaced triangu-

lations.

The solutions for this example are shown in Fig.

6, with optimized EΨ plotted atop displaced configu-

rations generated from simulated displacement fields

U1 = U1(EΨ,F1) and U2 = U2(EΨ,F2), which corre-

spond to displacement targets ∆1 and ∆2, respectively.

We observe that, in general, the obtained solutions have

similar distributions of EΨ. Indeed, we clearly observe,

in all images, that the column portion of the member

is significantly more stiffened relative to the horizontal

member due to the bending moments resulting from F2.

On the other hand, since the horizontal member is in a

state of axial tension in the second state, the optimized

stiffness for the horizontal component is considerably

lower than the vertical component. This is therefore an

expected result.

In comparing the results obtained using different

discretizations, we note two primary differences in the

solutions: the distribution of the elastic modulus at the

base of the column and near the location of F1. In so-

lutions obtained using the coarse mesh, there is signif-

icant stiffening near the base and nodal force. This ob-

servation results from two realizations, (a) that coarser

meshes are known to decrease model accuracy dur-

ing stiffness integration, in many cases increasing stiff-

ness [70] and (b) coarser meshes decrease the degrees

of freedom for solutions (EΨ) in the inverse problem.

Based on (a), it is no surprise that the increased element

and global stiffness resulting from coarse forward mod-

eling is reflected in the inverse solutions. With regards

to point (b), it is apparent that by reducing the degrees

(a)

(b)
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Fig. 5. Example 3: Schematic detailing the external forces and

structural elements deformed by the design displacement targets ∆1

and ∆2 for (a) a coarse triangular discretization and (b) a refined

triangular discretization.

of freedom in EΨ, the coarse solutions are smoother

since small localized fluctuations of EΨ are not possi-

ble. Solutions obtained with the fine mesh, on the other

hand, do have small fluctuations which may be viewed

as artifacts resulting from the non-uniqueness of the in-

verse problem and the non-optimized regularization pa-

rameter [68].

For results reported in this section, the effect of the

lower constraint Ec on the optimized solutions of EΨ is

more subtle than the effect of discretization. The effect

of Ec was similar for solutions obtained using coarse

and fine meshes: the results were smoother for Ec > 50

than for Ec > 0. The reason for this is that the available

solutions3 of EΨ are more restricted and closer to the

average optimal values of EΨ.

Of particular interest in optimization problems is

3In a rough sense, the degrees of freedom or possibilities for the

elasticity modulus are decreased by constraining the optimization

problem. We would like to remark, however this is not necessar-

ily equivalent to the added spatial degrees of freedom provided by

mesh refinement.
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(b)
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Fig. 6. Optimized distributions of EΨ for Example 3 for (a) the

coarse mesh with Ec > 0, (b) the coarse mesh with Ec > 50,

(c) the refined mesh with Ec > 0, and (d) the refined mesh with

Ec > 50.

the minimization rate of the cost function, which sheds

light on the computational efficiency of the regime.

Here, we compare the minimization rate for both dis-

cretizations and consider the effect Ec has on the final

solution once the stopping criteria is reached. The min-

imization curves for the cost function Ψ as a function

of the iteration number k are shown in Fig.7.

Fig. 7. Minimization curves for the cost function Ψ as a function of

the iteration number k considering the lower constraint Ec and the

discretization.

The minimization curves shown in Fig 7 support

the earlier statements regarding the behavior of the op-

timization problem with respect to the effects of the

constraint Ec and the mesh refinement; this will be dis-

cussed in the following. While the minimization rates

of Ψ for both the discretizations were similar, the re-

fined meshes reached a lower minimum for both Ec > 0

and Ec > 50. Moreover, for both the coarse and fine

meshes, Ec > 0 resulted in lower minimum values of Ψ.

These results indicate that by increasing the degrees of

freedom available for the inverse solution (via decreas-

ing Ec and increasing the spatial degrees of freedom),

the optimized solution for EΨ reached a more globally

optimized solution.

3.4 Discussion

In this section, we examined optimized solutions of

the elastic modulus EΨ for 2D rectangular beams and

an irregularly shaped beam-column considering differ-

ent loading, boundary conditions, target displacement

fields, and aspect ratios using the proposed regime. In

the analysis of the irregularly-shaped beam column,

the effects of the lower constraint Ec and discretiza-

tion were investigated. As a whole, the proposed opti-



mization regime and the solutions obtained were deter-

mined to be physically and intuitively consistent. We

noted multiple factors contributing the inhomgeneity,

variability, and distribution of the optimized solutions.

Some of the important contributors in solution of EΨ

included (in no specific order):

1. Global effects related to the geometry of structural

elements.

2. Local effects resulting from external forces and im-

posed boundary conditions.

3. The (possibly) non-physical nature of prescribed

displacement fields ∆n.

4. Effects from not optimizing the regularization pa-

rameter λ.

5. Effects from weighting EΨ.

6. Local and global effects due to mesh size.

7. Global effects related to the lower constraint Ec.

It is tempting to draw general conclusions as to

which variable contributes most to the optimized so-

lution EΨ or to which parameter the inverse problem

is most sensitive. However, when we consider the

coupled non-uniqueness of the inverse problem, num-

ber of structural states stacked, complexity of bound-

ary/loading conditions, and prior information; we may

surmise that solutions of EΨ are highly application spe-

cific.

We would like to remark that this article has fo-

cused primarily on the numerical regimes, minimiza-

tion techniques, and interpretation of the results in ide-

alized cases. However, it should be noted that current

manufacturing techniques used to generate spatial in-

homogeneity in elastic properties such as the Young’s

modulus or Poisson’s ratio have limitations. In such

cases, we may expect manufacturing processes to have

band-limited ranges and constraints. These constraints

may, indeed, be used within the constrained optimiza-

tion scheme by incorporating upper and lower barrier

functions at the extremes of the manufacturing bounds.

As results of this article have shown, the use of con-

straints decreases the degrees of freedom and may re-

sult in a less optimized solution relative to a problem

contrained to be only physically realistic (e.g. E > 0).

4 Conclusions

In this article, we proposed a constrained least-

squares approach for computationally optimizing the

distribution of the elastic modulus for N states. Each

state was defined by different loading conditions and

target displacement fields that may be prescribed by

the designer. A numerical study was conducted to test

the approach, where 2D structural elements with dif-

ferent aspect ratios, geometries, loading/boundary con-

ditions, and target displacement fields were analyzed.

The approach was tested for N = 2, where results were

demonstrated to be physically-realistic and intuitively

consistent. It was noted that optimized distributions of

the elastic modulus were affected by important factors,

such as the structural geometry, prior information, so-

lution weighting, physically-realistic nature of the tar-

get displacement fields, imposed constraints, discretiza-

tion, and overall non-uniqueness of the inverse prob-

lem.
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