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numerical radii of restricted shifts
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Abstract

This paper gives a new approach to the calculation of the numerical
radius of a restricted shift operator by linking it to the norm of a
truncated Toeplitz operator (TTO), which can be calculated by various
methods. Further results on the norm of a TTO are derived, and a
conjecture on the existence of continuous symbols for compact TTO is
resolved.
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1 Introduction

Given a bounded operator T on a Hilbert space the numerical range of T is
defined by

W (T ) = {⟨Tx, x⟩ : ∥x∥ = 1}.
For operators on spaces of dimension 2 the elliptical range theorem [28, 34]
tells us that the numerical range of T is elliptical with foci at the eigenvalues
a, b of T and minor axis of length

(

tr(T ⋆T )− |a|2 − |b|2
)1/2

.

For operators on spaces of larger dimension, it is usually difficult to describe
the numerical range explicitly, though it can be done in many special cases.
The numerical range plays an important role in applications such as the sta-
bility of linear systems (see, e.g., [2, 13]), in part because it always contains
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the eigenvalues of the operator T . Even computing the numerical radius of
T , denoted w(T ) and defined by

w(T ) = sup{|ω| : ω ∈W (T )},

is difficult but useful; for example, it gives us bounds on the norm of the
operator:

1

2
∥A∥ ≤ w(A) ≤ ∥A∥,

and more general estimates for analytic functions of the operator. The au-
thors of this paper were motivated to study the numerical radius partly
because of its possible connections to the following:

Crouzeix conjecture. For every polynomial p and matrix A, we have

∥p(A)∥ ≤ 2max{|p(z)| : z ∈W (A)}.

This question was first stated in 2004 [8] and important recent progress has
been made [9], but at the time of this writing the question remains open.

In this paper we focus on a particular class of operators known as com-
pressions of the shift operator and consider the numerical radius of the
operators in this class, where little is known. Much more is known about
the geometry of the numerical range of these operators and we refer the
reader to [10, 23, 24, 25, 26, 35]. Though the work in these papers may also
be used to solve some of the problems mentioned here, our goal is to add
other methods that may be useful.

We turn to the class of operators of interest. Let L2 denote the Lebesgue
space on the circle T = ∂D, H2 denote the classical Hardy space on the
open unit disk D, and S : H2 → H2 defined by (Sf)(z) = zf(z) the shift
operator. Let P− denote the orthogonal projection of L2 onto L2 ⊖H2. An
inner function is a bounded analytic function with radial limits of modulus
1 almost everywhere. Beurling’s theorem tells us that the closed, nontrivial,
invariant subspaces for S are precisely those of the form uH2, with u a
nonconstant inner function. Thus, the nontrivial invariant subspaces for the
adjoint of S, denoted S∗, are precisely the ones of the form Ku = H2⊖uH2.
In this paper, we consider compressions of the shift operator: Let u be an
inner function and Su : Ku → Ku be defined by Su = PKu

S|Ku
, where PKu

is the projection of L2 onto Ku. On H2 we have

PKu
(f) = f − uP+(uf) = uP−(uf).
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If the symbol u of the compression of the shift is a discontinuous inner
function, then w(Su) = 1. Thus, as we study compressions of the shift
operator, we focus on continuous inner functions; that is, we consider finite
Blaschke products as the symbol when we try to determine the numerical
radius of Su.

The first main result in this paper allows us to compute the numerical
radius of SB when B is a finite Blaschke product and all zeros are real.
This gives precise formulas for w(SB) for Blaschke products of degree up
to 4 and an algorithm for computing w(SB) when B has degree greater
than 4. The proof is accomplished by using an algorithm developed by
Foias and Tannenbaum ([14], see also [15] and Section 3) together with a
result that connects the numerical range to the norms of certain closely
related truncated Toeplitz operators. Then, via interpolation, we are able
to produce an algorithm that involves computing the zeros of a special class
of polynomials. In theory, then, the numerical radius is obtained via these
zeros.

Note that every finite matrix A that defines a contraction with spectrum
in the unit disk satisfying rank(I − A∗A) = 1 is unitarily equvalent to an
operator SB for B a finite Blaschke product (see [25]), so that our results
apply in (formally) more general situations.

In Section 4, we discuss more general truncated Toeplitz operators with
symbol φ ∈ L2, or Auφ, defined on the dense subset Ku ∩ L∞ of Ku by

Auφ(f) = PKu
(φf), where u is an inner function.

Work in the earlier sections focuses on the study of the distance from (1+az)
to BH∞ where B is a finite Blaschke product, while the results of later
sections consider the distance to the Sarason algebra, H∞ + C(T); that
is, we consider ∥g + B(H∞ + C(T))∥ where g ∈ H∞ + C(T) and B is an
interpolating Blaschke product. We obtain asymptotic distance estimates
for a function f ∈ H∞ + C to B(H∞ + C(T) when B is an interpolating
Blaschke product, with more precise results in the case when the Blaschke
product is a thin interpolating Blaschke product. Then we generalize a result
of Ahern and Clark on compactness of truncated Toeplitz operators and
conclude the paper with an example that provides an answer to a question
stated in [7], constructing a compact truncated Toeplitz operator with no
continuous symbol.
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2 Notation

For B a finite Blaschke product with zeros aj ∈ D, the corresponding repro-
ducing kernels

kaj (z) =
1

1− ajz

lie in KB, and in fact form a basis for KB when the zeros of B are distinct.
When the zeros are distinct, we obtain an orthonormal basis by applying
the Gram–Schmidt process to the reproducing kernels. This is called the
Takenaka–Malmquist basis. In order for the matrix to be upper triangular,
we find the matrix representation with respect to this basis in the reverse
order and we note that we also will need to reorder the zeros of the Blaschke
product. This can also be adjusted for non-distinct zeros and does not affect
the matrix representation we give. In any event, the matrix representing the
compression SB when B is a finite Blaschke product with zeros (aj) can be
written as

aij =







aj if i = j,
(
∏j−1
k=i+1(−ak)

)
√

1− |ai|2
√

1− |aj |2 if i < j,

0 if i > j.

(1)

For φ ∈ L∞, letMφ : L2 → L2 denote the multiplication operator defined by
Mφf = φf . The Toeplitz operator Tφ : H2 → H2 is defined by Tφ = P+Mφ

and the Hankel operator Hφ : H2 → L2 ⊖H2 is Hφ = P−Mφ. It should be
noted that Hφ = Hψ if and only if φ − ψ ∈ H∞. The Hankel operator Hφ

is compact if and only if φ is in the algebra

H∞ + C(T) := {f + c : f ∈ H∞, c ∈ C(T)},

where C(T) is the algebra of continuous functions on the unit circle. This
algebra is often called the Sarason algebra, in honor of D. Sarason who
proved that it is a closed subalgebra of L∞.

By considering operators defined on dense subsets, it is possible to con-
sider Toeplitz, Hankel and multiplication operators defined on L2. In this
spirit, for φ ∈ L2 we may define the truncated Toeplitz operator Auφ on the
dense subset Ku ∩ L∞ of Ku by

Auφ(f) = PKu
(φf).

Recent surveys on truncated Toeplitz operators can be found in [7, 19] and
related results appear in [4, 6].
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3 The norm computation

3.1 Links with Hankel operators and interpolation

Theorem 3.1 below can be used to compute the numerical radius w(T ) of a
bounded operator T . If we maximize ReW (eiθT ) over all θ with 0 ≤ θ < 2π,
we will obtain w(T ) (see also [33]).

Theorem 3.1. [5, Thm. 5, p. 17] Let T be an operator. Then

max{Reλ : λ ∈W (T )} = lim
a→0+

1

a
{∥I + aT∥ − 1} .

We are now able to rephrase the numerical radius computation in terms
of a computation of the norm of an operator, which can be handled by the
algorithm in [14] that we describe in Section 3.2.

We first consider a Blaschke product with distinct zeros. Let a > 0.
We want ∥I + aSB∥ = dist((1 + az)/B(z), H∞), the norm of a truncated
Toeplitz operator, which is also well known to be the norm of the Hankel
operator with symbol (1 + az)/B(z) as in [37, Prop. 2.1].

Similarly, for a general complex t we may consider the norm of the Hankel
operator with symbol (1 + tz)/B(z). Since a finite Blaschke product is
continuous, HB is compact when B is a finite Blaschke product. When the
norm is attained and takes the value γ we have

1 + tz = B(z)g(z) + γh(z),

where h ∈ H∞ and ∥h∥∞ ≤ 1 (in fact it is a Blaschke product). Equivalently,
we can solve the interpolation h(zk) = (1+ tzk)/γ for each k where h ∈ H∞

with ∥h∥∞ ≤ 1 and the zk are the zeros of B.
By Nevanlinna–Pick theory (see, for example [36]) this is possible if and

only if the matrix M with (j, k) entry

1− (1 + tzj)(1 + tzk)/γ
2

1− zjzk
(2)

is positive semi-definite. In the case that the zk are real, writing t = |t|eiθ,
this becomes

1− (1 + |t|2zjzk + |t|(zj + zk) cos θ + i|t|(zj − zk) sin θ)/γ
2

1− zjzk
.
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3.2 The algorithm of Foias and Tannenbaum

We now recall the algorithm from [14] and [15] as applied to the situation de-
scribed above. By restricting to the special case that gives us the numerical
radius, we may make some simplifications, as follows. For the convenience
of the reader we shall mostly use the same notation as in [14].

For ρ > 0, let

Pρ = I − 1

4ρ2
(I + aSB)(I + aS∗

B)

and let
µ∗(z) = 1−B(z)B(0).

The basic idea of [14] is that Pρ will become singular for various values
of ρ and the largest ρ is the norm of (I + aSB)/2. Combining this with
Theorem 3.1 we will be able to provide the estimates necessary to compute
the numerical radius of SB where B is a finite Blaschke product. We intro-
duce the relevant notation and then recall the main theorem of [14] here for
convenience.

Recalling the notation (x⊗ y)(w) := ⟨w, y⟩x for x, y, and w in a Hilbert
space H, we note that I − SBS

∗
B = µ∗ ⊗ µ∗ on KB, see [39].

Write ν∗(ρ) = P−1
ρ µ∗ and

ν(ρ) := trace(I − SBS
⋆
B)P

−1
ρ = ⟨ν∗(ρ), µ∗⟩.

The following is the main result of [14].

Theorem 3.2. Let I be an inner function, R a rational function, and let
ρs = max{|R(z)| : z ∈ σ(SI) with |z| = 1} (ρs is the essential spectral radius
of R(SI)). Consider ν(ρ) as a function of ρ in the interval J := (ρs, 1]. If
ν(ρ) is defined on all of J , then we have ∥R(SI)∥ = ρs. Otherwise, there
exists an interval (ρ, 1] with ρs < ρ < 1 such that ν(ρ) → ∞ as ρ→ ρ+ and
∥R(SI)∥ = ρ.

In the case at hand, I is a finite Blaschke product and the operator we
consider is finite rank so, consequently, ρs = 0. Thus we focus on solving
for ρ. Foias and Tannenbaum give an explicit algorithm to find ρ, which we
recall here.

A computation shows that
(

I − 1

4ρ2
(

I + aSB + aS∗
B + |a|2(SBS∗

B − I) + |a|2I
)

)

ν∗(ρ) = µ∗.
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But
(I − SBS

∗
B)ν∗(ρ) = ν(ρ)µ∗,

so we have
((

1− 1

4ρ2
− |a|2

4ρ2

)

I − a

4ρ2
SB − a

4ρ2
S∗
B

)

ν∗(ρ) =

(

1− |a|2
4ρ2

ν(ρ)

)

µ∗. (3)

Since Bν∗(ρ) ⊥ H2 we may write Bν∗(ρ) = ν−1z + o(z2). Then

S∗
Bν∗(ρ) = z(ν∗(ρ)− ν∗(ρ)(0)),

SBν∗(ρ) = zν∗(ρ)−Bν−1,

and note that ν∗(ρ)(0) = ν(ρ).
Substituting these into (3), we get
(

1− 1

4ρ2
− |a|2

4ρ2
− a

4ρ2
z − a

4ρ2
z

)

ν∗(ρ) +
aB

4ρ2
ν−1 +

a

4ρ2
zν(ρ) (4)

=

(

1− |a|2
4ρ2

ν(ρ)

)

µ∗.

Now we see that the coefficient of ν∗(ρ) is 0 (on the unit circle) if

az2

4ρ2
− z

(

1− 1

4ρ2
− |a|2

4ρ2

)

+
a

4ρ2
= 0.

Let the roots be z1, z2, so that z1z2 =
a
a and

z1 + z2 =
4ρ2 − 1− |a|2

a
. (5)

Upon substituting these zeros into (4), we then have for k = 1, 2

azkB(zk)

4ρ2
ν−1 +

(

a

4ρ2
+

|a|2
4ρ2

zkµ∗(zk)

)

ν(ρ) = zkµ∗(zk).

We have two unknowns, ν−1 and ν(ρ), and solving for the latter from
these two simultaneous equations gives

ν(ρ)
(

(a+ |a|2z1µ∗(z1))z2B(z2)− (a+ |a|2z2µ∗(z2))z1B(z1)
)

= 4ρ2(z1µ∗(z1)z2B(z2)− z2µ∗(z2)z1B(z1)).

We may now consider the case that Pρ is singular (and ρ = ρ > ρs), which
happens when

a(z2B(z2)− z1B(z1)) + |a|2z1z2(µ∗(z1)B(z2)− µ∗(z2)B(z1)) = 0.

7



On using the facts that z1z2 = a/a and µ∗(z) = 1−B(z)B(0), this simplifies
to

z2B(z2)− z1B(z1) + a(B(z2)−B(z1)) = 0. (6)

This is the key equation for determining z1 and z2, but in the special
case that a is real and the zeros of B are also real, we can go further, since
we have B(z) = B(z) and (6) is simply

Im(z1B(z1)) + a ImB(z1) = 0.

As a→ 0, the norm of (I+aSB)/2 → 1/2, so we are interested in values
of ρ near 1/2. Note that for ρ = (1 + δ)/2 where δ is small, and a real, we
see from (5) that

Re z1 = Re z2 =
(1 + δ)2 − 1− a2

2a
=

2δ + δ2 − a2

2a
.

The equation for z1 = z2 reduces to

Im(zB(z)) = −a Im(B(z)),

and as a→ 0, we have Im zB(z) → 0 so zB(z) → ±1.

These formulae will be used extensively in the rest of this section.

Remark 3.3. The Foias–Tannenbaum approach can be used in principle to
calculate the norm of more general functions of SB, namely, R(SB) for R a
rational function, rather than simply R(z) = 1 + az. The details are more
complicated, but these ideas may shed some light on the Crouzeix conjecture.

3.3 Blaschke products with real zeros

We now apply this to Blaschke products with distinct real zeros and end
this section with several detailed examples. Theorem 3.4 allows us to obtain
the numerical radius of I + aSB from the limit appearing in Theorem 3.1.

Theorem 3.4. Let B be a Blaschke product with distinct zeros z1, . . . , zn ∈
R. Then w(SB) is attained on the real line.

Proof. Suppose that the zeros, z1, . . . , zn with n ≥ 2 are real and lie in the
line segment [a, b]. Rotating the line segment, if necessary, we may assume
that |a| ≤ b. From the discussion above we know that for t > 0

∥I + teiθSB∥ = ∥(1 + teiθz) +BH∞∥.
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We claim that it is enough to show that if we can solve the interpolation
problem f(zk) = 1 + tzk, for small t > 0, and ∥f∥∞ ≤ γ, where

γ = γ(t) = 1 + ct+ o(t),

then we can solve h(zk) = 1 + teiθzk with ∥h∥∞ ≤ γ + o(t). If this is the
case then we know that for eiθ with 0 < θ < 2π,

∥(1 + teiθz) +BH∞∥ ≤ ∥h+ (1 + teiθz − h) +BH∞∥ ≤ ∥h∥ ≤ γ + o(t).

Since we take t→ 0, this together with Theorem 3.1 yields the result.
We first note that SB can have no eigenvalues on the boundary ofW (SB).

Though this is well known, see [11], in this special case, we can give a short
independent proof: If zj is an arbitrary zero of B, we can reorder the zeros
so that zj and zk, with j ̸= k, are the first two zeros. The upper-left 2 × 2
corner of the matrix representing SB (see (1)) is then upper triangular and
the (1, 2) entry is m :=

√

1− |zj |2
√

1− |zk|2 > 0. The numerical range of
this 2× 2 block, which is an elliptical disk with foci at zj and zk and minor
axis m, is contained in W (SB). Since the minor axis has nonzero length,
the elliptical disk is nondegenerate and the foci cannot lie on the boundary.
Therefore c > b.

Choose an automorphism ψ of γD with ψ(1) = 1 that takes the point
1 + λt to 1 + eiθλt+O(t2) for λ ∈ [a, b] and all small t. (In fact, the image
of this interval lies on a circular arc that meets γT twice at right angles.)
By the chain rule, the derivative of ψ at the fixed point is the unimodular
constant eiθ. Therefore,

ψ(z) = ψ(1) + ψ′(1)(z − 1) +O(t2) = 1 + eiθ(z − 1) +O(t2).

Thus, for λ ∈ [a, b],

ψ(1 + λt) = 1 + eiθλt+O(t2).

Now consider h := ψ ◦ f . Then ∥h∥ ≤ γ + o(t) and h(1 + tzk) = 1 +
eiθtzk+O(t2). By adding on another analytic function of norm O(t2), where
the bound depends on n but not on t, we can solve the exact interpolation
problem.

If the zeros of B are not distinct, we may approximate B uniformly by
Blaschke products Bn of the same degree with distinct zeros. In this case,
the numerical radii of SBn

converge to the numerical radius of SB and we
obtain the result for general finite Blaschke products.
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3.4 Degree-2 Blaschke products

We may now use Theorem 3.4 and the algorithm presented in Section 3
to compute the numerical radius of compressions of the shift operator with
Blaschke products with real zeros. We begin with a simple example.

Example 3.5. If B is a degree-2 Blaschke product with real zeros, a1 and
a2, then the numerical radius of SB is

max

{∣

∣

∣

∣

a1 + a2 − a1a2 + 1

2

∣

∣

∣

∣

,

∣

∣

∣

∣

a1 + a2 + a1a2 − 1

2

∣

∣

∣

∣

}

. (7)

We are looking for the points at which zB(z) = ±1. In general,

z3 − (a1 + a2)z
2 + a1a2z = ±(1− (a1 + a2)z + a1a2z

2).

If the zeros are real and we let z1, z2, z3 denote the three solutions to this
equation, in one case we have

z1 = −1 and Re z2 = Re z3 =
a1 + a2 + 1− a1a2

2

and in the other case we have

z1 = 1 and Re z2 = Re z3 =
a1 + a2 − 1 + a1a2

2
,

which yields (7).
We can check this result: In the event that the zeros of B are both real,

it follows from the elliptical range theorem that the numerical range is an
elliptical disk with foci at a1 and a2 and major axis of length |1 − a1a2| =
|1− a1a2|, in this case. Thus, we obtain the correct result.

In particular, consider

B(z) = z

(

z − 1
2

1− z
2

)

.

We find the three solutions to zB(z) = 1 are −1, 3/4 − i
√
7/4 and 3/4 +

i
√
7/4, and the solutions to zB(z) = −1 are 1,−1/4 + i

√
15/4,−1/4 −

i
√
15/4. Thus we see that w(SB) = 3/4, and indeed one may verify that

∥1 + tSB∥ = 1 +
3

4
t+ o(t),
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as t→ 0+. In fact, we know that in this case the numerical radius of SB is
the maximum real value of the ellipse with foci 0 and 1/2 and major axis of
length 1: this is the center of the ellipse plus the length of the semi-major
axis, which is 3/4.

Now, there is an alternative way of calculating ∥1 + tSB∥, namely, to
find the largest γ that makes the Pick matrix singular, see [36, Section 2.1].
Again we take z1 = 0, z2 = 1/2, for which we have seen that the numerical
radius is 3/4. Take t > 0.

The Pick matrix, as given in (2), is

(

1− 1/γ2 1− (1 + t/2)/γ2

1− (1 + t/2)/γ2 1−(1+t/2)2/γ2

3/4

)

and is singular if

4

3
(γ2 − 1)(γ2 − x2)− (γ2 − x)2 = 0,

where x = 1 + t/2. This gives

γ4 + γ2(−4 + 6x− 4x2) + x2 = 0.

So

γ2 =
2 + t+ t2 ±

√

(2 + t+ t2)2 − 4(1 + t+ t2/4)

2
= (1 + t/2)± t+O(t2),

and ∥1 + tSB∥ = 1 + 3t/4 +O(t2), as expected.

Example 3.6. A second simple example is the Blaschke product B(z) = zn.
In this case, SB is represented by a nilpotent Jordan block of size n with zeros
on the diagonal. The numerical radius is cos(π/(n + 1)), see for example,
[29].

To show this without referring to known results, we solve zB(z) =
zn+1 = ±1 and take the two values with the largest and smallest real parts.
The cases of n even and n odd need to be considered separately, but we ob-
tain the two sets of points with real part cos(π/(n+1)) and − cos(π/(n+1)),
establishing the result. Since all zeros are real no matter how we rotate, we
see that the numerical range is the closed disk of radius cos(π/(n+ 1)).
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3.5 Degree-3 Blaschke products

Very little is known about the numerical radius of SB for high degree
Blaschke products, but for low degrees (namely degree 3 and degree 4)
we can often compute w(SB) explicitly. Gaaya [17] analyzed the numeri-
cal radius of compressions of the shift operator in the particular case that

B(z) =
(

z−a
1−az

)n
. Our techniques also apply to such Blaschke products,

since we may assume that the zero a is real. In this section, we analyze the
numerical radius of all SB with B degree 3 having real zeros.

Example 3.7. We now compute the numerical radius of SB when B is a
Blaschke product of degree 3 with real zeros a, b, and c. In fact, letting
α = a+ b+ c+ abc and β = ab+ ac+ bc, we see that w(SB) is

max

{
∣

∣

∣

∣

∣

α+
√

α2 − 8(β − 1)

4

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

α−
√

α2 − 8(β − 1)

4

∣

∣

∣

∣

∣

}

.

Proof. This can be handled in the same way as the degree-2 case. First
we solve zB(z) = ±1. The equation we need is zB(z) = −1, because the
other has 1 and −1 as a root and therefore the tangent lines do not give the
maximum real part. So we solve

z(z − a)(z − b)(z − c) + (1− az)(1− bz)(1− cz) = 0. (8)

The left-hand side is

1− (a+ b+ c+ abc)z + 2(ab+ ac+ bc)z2

− (a+ b+ c+ abc)z3 + z4 = 1− αz + 2βz2 − αz3 + z4.

Since all coefficients are real the roots must occur in conjugate pairs, the
roots must be of the form x± iy and u± iv with x, y, u, v real and x2+ y2 =
u2 + v2 = 1. Thus, (8) becomes

(z2 − 2xz + (x2 + y2))(z2 − 2uz + (u2 + v2)) = 0,

and therefore

2(u+ x) = a+ b+ c+ abc and ab+ ac+ bc = 1 + 2ux.

So,
2(ux+ x2) = (a+ b+ c+ abc)x

12



and thus

2x2 − (a+ b+ c+ abc)x+ (ab+ ac+ bc− 1) = 0. (9)

Now we can solve the general problem for a degree-3 Blaschke product with
all zeros real:

x =
(a+ b+ c+ abc)±

√

(a+ b+ c+ abc)2 − 8(ab+ ac+ bc− 1)

4
. (10)

The maximum modulus of the two values of x is the numerical radius of
SB.

We work one particular case in detail. Let B have real zeros at 0, a and
b. Then our computations require us to solve zB(z) = ±1. From (10) we
see that the real parts of the roots satisfy

r2 − (a+ b)r

2
+
ab− 1

2
= 0,

or

r =
a+ b±

√

(a+ b)2 − 8(ab− 1)

4
.

By Theorem 3.4 the numerical range is attained on the real axis. Using the
algorithm from Section 3.2, we know the maximum will occur at

max

{
∣

∣

∣

∣

∣

a+ b+
√

(a+ b)2 − 8(ab− 1)

4

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a+ b−
√

(a+ b)2 − 8(ab− 1)

4

∣

∣

∣

∣

∣

}

.

(11)
We can check that this is correct in particular cases, one of which we do
below.

If a = b, we would like to check that the numerical radius of SB

w(SB) = max

{
∣

∣

∣

∣

∣

a

2
+

√
2− a2

2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a

2
−

√
2− a2

2

∣

∣

∣

∣

∣

}

, (12)

where

B(z) = z

(

z − a

1− az

)2

.

In this case,

zB(z) = z2
(

z − a

1− az

)2

13



is a composition of two degree-2 Blaschke products. By [26, Theorem 3.6]
(see also [16])W (SB) is an elliptical disk and the foci are chosen from among
the zeros of B. Writing zB(z) = C(D(z)) with C(0) = D(0) = 0, the zero
of D(z)/z is the one that is not a focus. Therefore, we see that of the
three zeros 0, a, and a of B, the foci must be 0 and a. From (1) the matrix
representation for SB as





a
√

1− |a|2
√

1− |b|2 −b
√

1− |a|2
√

1− |c|2
0 b

√

1− |b|2
√

1− |c|2
0 0 c





with a = b and c = 0. It follows from the main theorem of [32] that the
length of the minor axis is

(

tr(A⋆A)− |a|2 − |b|2 − |c|2
)1/2

,

which is
(

2(1− a2)
)1/2

in this case. So the length of the minor axis is
√

2(1− a2). The center of the ellipse is a/2 and the foci are 0 and a, so the
major axis has length

√
2− a2. This agrees with (12).

3.6 Degree-4 Blaschke products

There is some work in [22] on numerical ranges of 4× 4 matrices, although
only in the case of an elliptical disk. The computations are extremely com-
plicated, but here we may take a more transparent approach.

We consider a Blaschke product with real zeros a, b, c, d, where things
are necessarily more complicated. Once again, we must solve

z(−a+ z)(−b+ z)(−c+ z)(−d+ z)± (1− az)(1− bz)(1− cz)(1− dz) = 0.

For the case

z(−a+ z)(−b+ z)(−c+ z)(−d+ z)− (1− az)(1− bz)(1− cz)(1− dz) = 0,

a computation shows that this is equivalent to

(−1+z)(1−(−1+a+b+c+d+abcd)z+((−1+c)(−1+d)+b(−1+c+d+cd)+

a(−1+c+d+cd+b(1+c+d−cd)))z2−(−1+a+b+c+d+abcd)z3+z4) = 0.

For

z(−a+ z)(−b+ z)(−c+ z)(−d+ z) + (1− az)(1− bz)(1− cz)(1− dz) = 0,

14



a computation shows that this is equivalent to

(1+z)(1−(1+b+c+d−a(−1+bcd))z+((1+c)(1+d)+b(1+c+d−cd)+
a(1+c+d−cd−b(−1+c+d+cd)))z2−(1+b+c+d−a(−1+bcd))z3+z4) = 0.

Noting that the techniques used in the solution in Section 3.5 can be
applied here, we see that if we let α denote the negative of the coefficient of
z and β half the coefficient of z2 we obtain:

(1 + z)(1− αz + 2βz2 − αz3 + z4) = 0.

By the techniques in the previous section

x =
α±

√

α2 − 8(β − 1)

4
. (13)

There is also a standard procedure to solve a quartic (see http://www.

sosmath.com/algebra/factor/fac12/fac12.html for a complete descrip-
tion) and in this case we obtain exact solutions using this process (or Math-
ematica).

4 Norms of Truncated Toeplitz Operators

In this section, we look at more general truncated Toeplitz operators.
Recall that for u an inner function Pu denotes the orthogonal projection

of L2 onto Ku. For φ ∈ L2 the truncated Toeplitz operator

Auφf := Pu(φf), f ∈ Ku

is densely defined on K∞
u := H∞ ∩ Ku. When φ(z) = z, we have the

compression of the shift operator, Su.
In [18, Corollary 2], the authors provide a general lower bound for ∥Auφ∥

for φ ∈ L2 and obtain the following as a corollary: If u is an inner function
with zeros accumulating at every point of T and φ is a continuous function
on T, then ∥Auφ∥ = ∥φ∥∞. The authors note that the hypothesis can be
weakened to the following:

Proposition 4.1. Let u be an inner function that is not a finite Blaschke
product. Let ξ be a limit point of the zeros of u. If φ ∈ L∞ is continuous
on an open arc containing ξ with |φ(ξ)| = ∥φ∥∞, then ∥Auφ∥ = ∥φ∥.
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We present a short proof of their general result in Proposition 4.2 and
show how these same techniques allow the result to be generalized.

Recall that C(T) denotes the algebra of continuous functions on the unit
circle. We let M(H∞) denote the maximal ideal space of H∞, or set of
nonzero multiplicative linear functionals with the weak-⋆ topology. Then,
identifying a point z ∈ D with the linear functional that is evaluation at
that point, we may think of D as contained in M(H∞). Carleson’s corona
theorem says that D is dense in M(H∞). Let

M(H∞ + C(T)) =M(H∞) \ D

be the maximal ideal space of the (closed) algebra H∞ + C(T).
Let Z(u) denote the zeros of an inner function u in M(H∞) and ZD(u)

the zeros of u in D. If the function f /∈ H∞, we write f(z) for the Poisson
extension of f evaluated at a point z. Note that the proposition below does
not require u to have zeros in D and can thus be applied readily to inner
functions with a nontrivial singular inner factor.

If u is a bounded harmonic function and v the harmonic conjugate of u
and we let h = eu+iv, then u extends to a continuous function on M(H∞)
defined by û = log |ĥ|, see [30, Lemma 4.4]. Thus, for f ∈ L∞ we see that f̂
is continuous on M(H∞). There is another way to look at this: Recall that
the maximal ideal space of L∞ is the Shilov boundary of M(H∞). Then for
f ∈ L∞ and x ∈M(H∞) we have

x(f) = f̂(x) =

∫

suppµx

f̂dµx,

where f̂ denotes the Gelfand transform of f and suppµx denotes the subset
of M(L∞) that is the support set for the representing measure µx of x. It is
common to write f in place of f̂ . In this way, we may think of the Gelfand
transform of f as a continuous function on M(H∞), see [31, p. 184]. The
support set of x ∈M(H∞) is known to be a weak peak set for H∞ (see [31,
p. 207]).

Proposition 4.2. Let u be an inner function not invertible in H∞+C(T).
For f ∈ L∞, if f̂(x) = ∥f∥∞ for some x ∈ Z(u), then

dist(f, uH∞) = ∥f∥∞.

Proof. If x ∈ D, then x is a zero of u and it is clear that

dist(f, uH∞) ≥ |f(x)| = ∥f∥∞.
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Since dist(f, uH∞) ≤ ∥f∥∞ the result holds. So we may suppose that
x ∈ M(H∞) \ D and x(f) = ∥f∥∞. Since dµx is a probability measure, f
must be constant on the support set of x and that constant must be ∥f∥∞.
Therefore,

dist(f, uH∞) ≥ |f(x)| = ∥f∥∞,
which completes the proof.

Note that the assumption in Proposition 4.1 implies the assumption in
Proposition 4.2: In Proposition 4.1 we have φ ∈ L∞ continuous on an open
arc about ξ for which |φ(ξ)| = ∥φ∥∞ and ξ is a limit point of the zeros of
u, so we may choose x ∈ M(H∞ + C) in the closure of the zeros of u with
φ̂(x) = ∥φ∥∞.

To see that Proposition 4.2 extends Proposition 4.1, we use Corollary 1
of Garcia and Ross’s paper [18] to note that if φ ∈ L2, then

sup
{λ∈D:u(λ)=0}

|φ̂(λ)| ≤ ∥Auφ∥.

Therefore, if φ ∈ L∞ and x ∈M(H∞+C) with x in the closure of the zeros
of u, and |φ̂(x)| = ∥φ∥∞, then

∥φ∥∞ = |φ̂(x)| = sup
{λ∈D:u(λ)=0}

|φ̂(λ)| ≤ ∥Auφ∥ ≤ ∥φ∥∞.

We now consider the so-called thin interpolating Blaschke products (de-
fined below). While one can follow the procedure below to obtain estimates
for other interpolating Blaschke products, the estimates will not be as good.
In any event, this gives us information about the essential norm of a Hankel
operator.

Recall that a Blaschke product B is interpolating if the zero sequence
(zn) of B is an interpolating sequence for H∞; that is, given a bounded
sequence of complex numbers, (wn), there exists f ∈ H∞ with f(zn) = wn
for all n. Carleson showed that this is equivalent to the existence of δ > 0
such that

inf
n

∏

m ̸=n

∣

∣

∣

∣

zm − zn
1− zmzn

∣

∣

∣

∣

≥ δ.

Let

δn :=
∏

m ̸=n

∣

∣

∣

∣

zm − zn
1− zmzn

∣

∣

∣

∣

.
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If δn → 1 as n→ ∞, the interpolating sequence is said to be a thin interpo-
lating sequence. For example, a radial sequence (zn) for which

(1− |zn+1|)/(1− |zn|) → 0

as n → ∞ is such a sequence. We will apply Earl’s theorem (Theorem 4.3)
below to Blaschke products for which the zero sequence is a thin interpo-
lating sequence, [12, Theorem 2]. We isolate Earl’s theorem here for easy
reference.

Theorem 4.3 (Earl’s Theorem). Suppose that (zn) is an interpolating se-
quence with

inf
n

∏

m ̸=n

∣

∣

∣

∣

zm − zn
1− zmzn

∣

∣

∣

∣

≥ δ > 0.

If (wn) is any bounded sequence of complex numbers, and M is an arbitrary
number greater than

2− δ2 + 2(1− δ2)1/2

δ2
sup
n

|wn|,

then there exists an α ∈ R and a Blaschke product B such that

MeiαB(zj) = wj for j = 1, 2, . . . .

From Earl’s theorem, we see that if we are given (wn), a bounded se-
quence of complex numbers, we can find g ∈ H∞ such that g(zn) = wn for
every n and

∥g∥ ≤ 2− δ2 + 2(1− δ2)1/2

δ2
sup
n

|wn|.

A second result will be useful here as well.

Theorem 4.4. [3, 27] Let f ∈ H∞ + C(T) and let B be an interpolating
Blaschke product with zeros (zn). Then Bf ∈ H∞ + C(T) if and only if
f(zn) → 0.

Via the Chang-Marshall theorem, this theorem implies a more general
result for closed subalgebras of L∞ containing H∞ with u an arbitrary
function in L∞ of norm at most one. We state the version that we will need
below, with a reference to the more general statement.

Theorem 4.5. ([3], Theorem 4.) Let h ∈ H∞ + C and let u be a function
in H∞ +C with ∥u∥ ≤ 1. If h(1− |u|) = 0 on M(H∞) \D, then hH∞[u] ⊆
H∞ + C.
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We remind the reader that we identify a function in L∞ with its Gelfand
transform. For f ∈ H∞ + C, when we evaluate f at a point z ∈ D, we
are evaluating the Poisson extension of the function. In order to state our
results on the disk, we need the following technical lemma.

Lemma 4.6. Let B be an interpolating Blaschke product with zero sequence
(zn) and f ∈ H∞ + C. Then

max{|f(x)| : x ∈ Z(B) ∩M(H∞ + C)} = lim sup |f(zn)|.

Proof. Using continuity, choose x0 ∈ M(H∞ + C) to be a point at which
B(x0) = 0 and |f(x0)| = max{|f(x)| : x ∈ Z(B) ∩M(H∞ + C)}. Let

O = {y ∈M(H∞) : |f(y)−f(x0)| < 1/n}
∩

(

M(H∞)\{z : |z| ≤ 1−1/n}
)

.

Since the Gelfand transform is continuous on M(H∞), this is an open set.
Since we assume B is interpolating and B(x0) = 0, the point x0 is in the
closure of the zeros of B, [30, p. 83]. Thus there exists zn ∈ D∩O. Therefore,

|f(x0)| − 1/n ≤ |f(zn)| ≤ |f(x0)|+ 1/n and |zn| ≥ 1− 1/n.

Therefore lim supn |f(zn)| ≥ |f(x0)|.

Suppose that lim supn |f(zn)| > |f(x0)| + α for some α > 0. Then for
all ε < α/2 there exists N(ε) such that supn≥N(ε) |f(zn)| ≥ |f(x0)| + α −
ε > |f(x0)| + α/2. Thus, we find a sequence of points (znN(ε

) for which
B(znN(ε

) = 0 and
|f(znN(ε

)| > |f(x0)|+ α/2.

Choosing a point x in the closure, we obtain x ∈M(H∞+C) with |f(x)| >
|f(x0)|, a contradiction.

If B is an interpolating Blaschke product with zeros (zn) we define

δ̃n := inf
k>n

∏

m>n,m ̸=k

∣

∣

∣

∣

zm − zk
1− zmzk

∣

∣

∣

∣

.

Note that δ̃n is a bounded increasing sequence of real numbers and therefore
this sequence converges. We let δ̃ denote this limit.

Theorem 4.7. Let B be an interpolating Blaschke product with zeros (zn)
and let f ∈ H∞ + C(T). Then

lim sup |f(zn)| ≤ ∥f+B(H∞+C(T))∥ ≤ 2− δ̃2 + 2(1− δ̃2)1/2

δ̃2
lim sup |f(zn)|.
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Proof. For every h ∈ H∞ + C(T) and x ∈ M(H∞ + C(T)) with x(B) = 0,
we have

∥f +Bh∥ ≥ |x(f) + x(Bh)| = |x(f)|.
Thus,

∥f +B(H∞ + C(T))∥ ≥ max{|f(x)| : x ∈M(H∞ + C(T)), x(B) = 0}.

By Proposition 4.6, we obtain the lower inequality.
For the upper inequality, we note that the conjugate of the function

bN (z) :=
∏N
j=1

z−zj
1−zjz

lies in H∞ + C(T) and therefore, writing BN = BbN
we see that BN is the Blaschke product with zero sequence (zn)n>N . In
particular, δ(BN ) ≥ δ̃N . Now, H

∞ + C(T) is an algebra and 1 = bNbN , so

∥f+B(H∞+C(T))∥ = ∥f+(BbN )(H
∞+C(T))∥ = ∥f+BN (H∞+C(T))∥.

Choose gN ∈ H∞, using Earl’s theorem, so that gN = f on (zj)j>N and gN
satisfies the norm estimates

∥gN∥ ≤ 2− δ̃2N + 2(1− δ̃2N )
1/2

δ2N
sup
n>N

|wn|.

Then f −gN ∈ BN (H
∞+C(T)) = B(H∞+C(T)), by Theorem 4.4. There-

fore,

∥f +B(H∞ + C(T))∥ = ∥gN +B(H∞ + C(T))∥

≤ ∥gN∥ ≤ 2− δ̃2N + 2(1− δ̃2N )
1/2

δ̃2N
sup
n>N

|f(zn)|. (14)

Now (δ̃n) is an increasing sequence and therefore the constants appearing on
the right-hand side of (14) form a decreasing sequence. Also (supn>N |f(zn)|)
is a decreasing sequence. Taking the limit yields the desired upper bound.

For thin interpolating sequences the result is especially nice. In this case,
δn → 1 implies that δ̃n → 1. Thus we have the following corollary.

Corollary 4.8. Let B be a thin interpolating Blaschke product with zero
sequence (zn) and let f ∈ H∞ + C(T). Then

∥f +B(H∞ + C(T))∥ = lim sup |f(zn)|.
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Remark 4.9. Note that in (14) if f(zn) → 0, then f ∈ B(H∞ + C(T)),
which is the result of Theorem 4.4.

We recall a result of Bessonov [4, Prop. 2.1].

Proposition 4.10. Let u be an inner function and φ ∈ H∞ +C(T). Then
the truncated Toeplitz operator Auφ : Ku → Ku is compact if and only if
φ ∈ u(H∞ + C(T)).

It follows from Theorem 4.4 that if B is an interpolating Blaschke prod-
uct with zero sequence (zn) and f ∈ H∞+C(T), then Auf is compact if and
only if f(zn) → 0.

Ahern and Clark proved the following theorem (see also [20]).

Theorem 4.11. [1, Section 5] Let f be continuous and let u be an inner
function. The operator Auf is compact if and only if f(eiθ) = 0 for all

eiθ ∈ suppu ∩ T.

We provide a more general result below.

Theorem 4.12. Let f ∈ H∞ + C(T) and let u be an inner function. The

operator A
(un)
f is compact for every n ∈ N if and only if

lim
|z|→1−

|f(z)|(1− |u(z)|) = 0.

Proof. By our assumption and the corona theorem (which states that D is
dense in M(H∞)), |f(x)|(1 − |u(x)|) = 0 on M(H∞ + C(T)). By Theo-
rem 4.5, fun ∈ H∞ +C(T) for every n. Thus, f ∈ un(H∞ +C(T)) and the
result follows from Proposition 4.10.

For the other direction, suppose that A
(un)
f is compact for every n. Then,

by Proposition 4.10, fun ∈ H∞ + C(T) for every n. If x ∈M(H∞ + C(T))
with |u(x)| ≤ r < 1, we know that f = unhn and ∥hn∥∞ = ∥f∥. Therefore,
since x ∈ M(H∞ + C(T)), we have |x(f)| = |x(u)nx(hn)| ≤ |x(u)|n∥f∥∞ ≤
rn for every n. Thus x(f) = 0 if |u(x)| < 1. Therefore |f(x)|(1−|u(x)|) = 0
onM(H∞+C(T)). Since D is dense in H∞ andM(H∞+C(T)) =M(H∞)\
D we have

lim
|z|→1−

|f(z)|(1− |u(z)|) = 0.
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To get the Ahern and Clark result (Theorem 4.11), let f be continuous.
Then fu ∈ H∞ + C(T) if and only if f vanishes at each discontinuity of u.
This happens if and only if f vanishes at each discontinuity of un. And this,
in turn, happens if and only if fūn ∈ H∞ + C(T) for all n. Thus, Ahern
and Clark’s result follows.

In a second survey on truncated Toeplitz operators [7, p. 12], Chalendar,
Ross, and Timotin say that it would be interesting to give an example of
a compact truncated Toeplitz operator with a symbol ψ ∈ u(H∞ + C(T))
that has no continuous symbol. We present such an example below.

Example 4.13. Let b be an interpolating Blaschke product with zero se-
quence (zn) clustering at every point of the unit circle. Then there exists
f ∈ H∞ +C(T) with f(zn) → 0 and f(zm) ̸= 0 for some m such that Abf is

compact and Abf has no continuous symbol.

Proof. That such interpolating Blaschke products exist is well known (and,
while they are easy to construct by wrapping around the circle while in-
creasing the modulus at a fast enough rate, it is also clear from the Chang–
Marshall theorem that many of these exist). Choose wn ̸= zk for all k such
that ρ(zn, wn) → 0 as n → ∞. If f is the corresponding Blaschke product
with zeros at (wn), then f(zn) → 0 and f(zm) ̸= 0 by construction. By
Theorem 4.4 and Proposition 4.10, f ∈ b(H∞ + C(T)) and Abf is compact.

If Abf had a representation with continuous symbol g, we would have

[38, Theorem 3.1] f − g ∈ bH2 + bH2. But f(zn) → 0, b(zn) = b(zn) = 0
and therefore g(zn) → 0. But {zn} contains T in its closure and, since g is
continuous, we must have g = 0. Since f(zm) ̸= 0, this is impossible.

Remark: The proof shows that under these assumptions, if there is a
continuous symbol g, then we must have gb continuous.

Truncated Hankel operators

For an inner function u and a suitable symbol ϕ the truncated Hankel op-
erator Bu

ϕ : Ku → zKu = uKu is defined by

Bu
ϕ(f) = PzKu

(ϕf),

and, as has been observed in [4, Lem. 3.3], we have Bu
ϕ(f) = uAuuϕf for

f ∈ Ku. Since multiplication by u is an isometry from Ku onto uKu,
the study of compactness, boundedness and Schatten-class membership of
truncated Hankel operators generally reduces to that of truncated Toeplitz
operators.
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Thus Example 4.13 provides a function ϕ ∈ (H∞+C(T))∩b(H∞+C(T))
with Bb

ϕ compact, but with no symbol ψ such that bψ is continuous.
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