
This is a repository copy of A Survey of Probabilistic Schedulability Analysis Techniques 
for Real-Time Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146181/

Version: Published Version

Article:

Davis, Robert Ian orcid.org/0000-0002-5772-0928 and Cucu-Grosjean, Liliana (2019) A 
Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems. LITES: 
Leibniz Transactions on Embedded Systems. pp. 1-53. ISSN 2199-2002 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A Survey of Probabilistic Timing Analysis Techniques

for Real-Time Systems

Robert I. Davis
University of York, UK and Inria, France

rob.davis@york.ac.uk

Liliana Cucu-Grosjean
Inria, France

liliana.cucu@inria.fr

Abstract

This survey covers probabilistic timing analysis

techniques for real-time systems. It reviews and

critiques the key results in the field from its ori-

gins in 2000 to the latest research published up

to the end of August 2018. The survey provides

a taxonomy of the different methods used, and a

classification of existing research. A detailed review

is provided covering the main subject areas: static

probabilistic timing analysis, measurement-based

probabilistic timing analysis, and hybrid methods.

In addition, research on supporting mechanisms

and techniques, case studies, and evaluations is also

reviewed. The survey concludes by identifying open

issues, key challenges and possible directions for

future research.

2012 ACM Subject Classification Software and its engineering → Software organization and properties,

Software and its engineering → Software functional properties, Software and its engineering → Real-time

schedulability, Computer systems organization → Real-time systems

Keywords and Phrases Probabilistic, real-time, timing analysis

Digital Object Identifier 10.4230/LITES-v006-i001-a003

Received 2018-01-04 Accepted 2019-02-26 Published 2019-05-14

1 Introduction

Systems are characterised as real-time if, as well as meeting functional requirements, they are

required to meet timing requirements. Real-time systems may be further classified as hard real-

time, where failure to meet their timing requirements constitutes a failure of the system; or soft
real-time, where such failure leads only to a degraded quality of service. Today, both hard and soft

real-time systems are found in many diverse application areas including; automotive, aerospace,

medical systems, robotics, and consumer electronics.

Real-time systems are typically implemented via a set of programs, also referred to as tasks,

which are executed on a recurring basis. The programs used in a real-time system have a functional
behaviour, and also a timing behaviour. The functional behaviour of a given run of a program

depends on the input state, which comprises a set of values for the input variables, and a set of

values for the software state variables (which are related to the values of the input variables used

on previous runs). The input state affects the path taken through the code, and the values of

the outputs produced. Typically programs have a functional behaviour which is deterministic, in

other words, given the exact same inputs they will produce the exact same outputs. Functional

behaviour may also be non-deterministic, for example in a randomised search the same input state

may lead to different outputs depending on the behaviour of a random number generator. In this

survey we are mainly concerned with the timing behaviour of programs that have deterministic

functionality.

© Robert I. Davis and Liliana Cucu-Grosjean;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 3, pp. 03:1–03:60
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5772-0928
mailto:rob.davis@york.ac.uk
mailto:liliana.cucu@inria.fr
https://doi.org/10.4230/LITES-v006-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


03:2 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In keeping with the majority of the work on program timing behaviour, in the following we

consider programs that are run without interruption or preemption and without any interference

from other programs that could be running on the same or different processor cores (i.e. no

multi-threading and no cross-core interference). We return to this point in the conclusions.

The timing behaviour of a program with deterministic functionality depends on both the

input state, and the initial values of hardware state variables, referred to as the hardware state.

Examples of hardware state variables include the contents of internal buffers, pipelines, caches,

scratchpads, and certain register values. While the hardware state may affect the timing behaviour

of the program, it has no effect on the functional behaviour. A hardware platform is referred

to as time-predictable if it always takes the same amount of time to execute a deterministic

program when starting from the same input state and the same hardware state. By contrast, a

time-randomised hardware platform may take a variable amount of time to execute such a program

when starting from the same input state and hardware state, due to the behaviour of underlying

random elements in the hardware1.

1.1 Conventional Timing Analysis Techniques

Understanding the timing behaviour of each program is fundamental to verifying the timing

requirements of a real-time system. Key to this is timing analysis, which seeks to characterise the

amount of time that each program can take to execute on the given hardware platform. Typically,

this is done by upper bounding or estimating the Worst-Case Execution Time.

◮ Definition 1. The Worst-Case Execution Time (WCET) of a program is an upper bound on

the execution time of that program for any valid input state and initial hardware state (i.e. the

WCET is an upper bound on the execution time for any single run of the program, and there is at

least one run of the program that can realise the WCET).

The methods traditionally used for timing analysis can be classified into three main categories:

Static Analysis: These methods do not execute the program on the actual hardware or on a

simulator. Rather they analyse the code for the program and some annotations (providing

information about input values), along with an abstract model of the hardware. Typically

static analysis proceeds in three steps. First, control flow analysis is used to derive constraints

on feasible paths, including loop bounds. Second, micro-architectural analysis is used to

provide an over-approximation of the program execution on the feasible paths, accounting

for the behaviour of hardware features such as pipelines and caches. Third, path analysis

uses integer linear programming (ILP) to combine the results of control flow analysis and

micro-architectural analysis, and so derive an upper bound on the WCET of the program.

To derive an upper bound on the WCET static analysis has to determine properties relating

to the dynamic behaviour of the program without actually executing it. In practice, it may

not be possible to precisely determine all of these properties due to issues of tractability and

decidability. For example determining the precise cache contents at a given program point

may not be possible when there is a dependency on the input values. Properties which cannot

be precisely determined must be conservatively approximated to ensure that the computed

WCET remains a valid upper bound; however, such approximations may lead to significant

pessimism. For advanced hardware platforms, there are two main challenges for static analysis

methods. Firstly, obtaining and validating all of the information necessary to build an accurate

1 Note here the basic random elements in the hardware (e.g. a random number generator) are not considered to
be part of the hardware state.



R. I. Davis and L. Cucu-Grosjean 03:3

model of the hardware components that impact program execution times. Secondly, modelling

those components and their interactions without substantial loss of precision in the derived

WCET upper bound.

Dynamic or Measurement-Based Analysis: These methods derive an estimate of the WCET

by running the program on the actual hardware or on a cycle-accurate timing simulator.

A measurement protocol provides test vectors (sets of input values) and initial hardware

configurations that are used to exercise a subset of the possible paths through the code, as

well as the possible hardware states that may affect the timing behaviour2. The execution

times for multiple runs of the program are collected and the maximum observed execution time

recorded. This value may be used as a (lower bound) estimate of the WCET, or alternatively,

an engineering margin (e.g. 20%) may be added to give an estimate of the WCET. This

margin comes from industrial practice and engineering judgement [129]; however, there is no

guarantee that it results in an upper bound on the actual WCET. For complex programs

and advanced hardware platforms, the two main challenges for measurement-based analysis

methods both involve designing an appropriate measurement protocol. Firstly, if it were known

which values for the input variables and software state variables would lead to the WCET,

then the measurement protocol could ensure that those values were present in the test vectors

used; however, typically these values are not known and cannot easily be derived. Secondly, it

may not be known, or easy to derive, which initial hardware states will lead to the WCET;

it may also be difficult to force the hardware into a particular initial state. Nevertheless,

measurement-based analysis is commonly used in industry and may give engineers a useful

perspective on the timing behaviour of a program.

Hybrid Analysis: These methods combine elements of both static analysis and measurement-

based analysis. For example, a hybrid approach may record the maximum observed execution

time for short sub-paths through the code, and then combine these values using information

obtained via static analysis of the program’s structure (e.g. the control flow graph) to estimate

the WCET. The aim of hybrid analysis is to overcome the disadvantages of both static and

dynamic methods. By measuring execution times for short sub-paths through the code, hybrid

methods avoid the need for a model of the hardware, which may be difficult to obtain and to

validate. By using static analysis techniques to determine the control flow graph, the problem

of having to find input values that exercise the worst-case path is ameliorated. Instead, the

measurement protocol can focus on ensuring that measurements are obtained for all sub-paths,

i.e. structural coverage, which is far simpler to achieve than full path coverage. Nevertheless,

hybrid methods still inherit many of the challenges of measurement-based methods. On

advanced hardware (e.g. with pipelines and caches) the execution time of a sub-path may be

dependent on the execution history, and hence on the previous sub-paths that were executed.

This exacerbates the problem of composing the overall WCET estimate from observations

for individual sub-paths, and may degrade the precision of that estimate. In general, today’s

hybrid methods cannot guarantee to upper bound the WCET; however, the estimates they

produce may be more accurate than those based on measurements alone.

During the past two decades, the hardware platforms used, or proposed for use, in real-time

systems have become increasingly more complex. Architectures include advanced hardware

acceleration features such as pipelines, branch prediction, out-of-order execution, caches, write-

buffers, scratchpads, and multiple levels of memory hierarchy. These advances, along with

increasing software complexity, greatly exacerbate the timing analysis problem. Most acceleration

2 Exercising all possible paths and initial hardware states is often impractical.

LITES



03:4 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

features are designed to optimise average-case rather than worst-case behaviour and can result in

significant variability in execution times. This is making it increasingly difficult, if not impossible,

to obtain tight WCET estimates3 from conventional static timing analysis methods that seek to

provide an upper bound on the WCET. Further, increases in software and hardware complexity

make it difficult to design measurement protocols capable of ensuring that the worst-case path(s)

through the code are exercised, and that the worst-case hardware states are encountered when using

measurement-based and hybrid analyses. (Appendix A provides further discussion of measurement

protocols).

1.2 Probabilistic Timing Analysis Techniques

Probabilistic timing analysis4 differs from traditional approaches in that it lifts the characterisation

of the timing behaviour of a program from the consideration of a single run, to the consideration

of a repeating sequence of many runs, referred to as a scenario, and hence lifts the results from

a scalar value (the WCET) to a probability distribution (the pWCET distribution, defined in

Section 2.1). Traditional timing analysis methods aim to tightly upper bound the execution time

that could occur for a single run of a program out of all possible runs. Similarly, probabilistic

timing analysis methods aim to tightly upper bound the distribution of execution times that could

potentially occur for some scenario of operation, out of all possible scenarios of operation.

Research into probabilistic timing analysis can be classified into five main categories. This

classification forms the basis for the main sections of this survey. Note, for ease of reference we

have numbered these categories below, starting at 3, to match the section of survey.

3. Static Probabilistic Timing Analysis (SPTA): Similar to traditional static analyses, SPTA

methods do not execute the program on the actual hardware or on a simulator. Instead they

analyse the code for the program and information about input values, along with an abstract

model of the hardware behaviour. The difference is that SPTA methods account for some form

of random behaviour in either the hardware, the software, or the environment (i.e. the inputs)

by using probability distributions, and therefore construct an upper bound on the pWCET

distribution rather than a upper bound on the WCET. In common with traditional static

analyses, SPTA methods have to determine properties relating to the dynamic behaviour of

the program without actually executing it. Here, the conservative approximation of properties

which cannot be precisely determined (e.g. cache states in a random replacement cache) may

lead to significant pessimism in the estimated pWCET distribution. The two main challenges

for SPTA methods are obtaining and validating the information necessary to build an accurate

model of the hardware components; and modelling those components and their interactions

without substantial loss of precision in the upper bound pWCET distribution derived.

4. Measurement-Based Probabilistic Timing Analysis (MBPTA): Today, most of the current

MBPTA methods use Extreme Value Theory (EVT) to make a statistical estimate of the

pWCET distribution of a program. This estimate is based on a sample of execution time

observations obtained by executing the program on the hardware or a cycle accurate simulator

according to a measurement protocol. The measurement protocol samples some scenario(s) of

operation, i.e. it executes the program multiple times according to a set of feasible input states

and initial hardware states. As with traditional measurement-based analysis methods, the

3 By a tight WCET estimate we mean one that is relatively close to the actual WCET, for example perhaps no
more than 10-20% larger.

4 In this survey, we adopt the widely used term “probabilistic timing analysis” noting that it can easily be
misinterpreted. To clarify, while the results produced are expressed in terms of probability distributions, the
analysis methods themselves are deterministic in the sense of always producing the same results from the
same inputs, unlike for example randomised search techniques.



R. I. Davis and L. Cucu-Grosjean 03:5

main challenge for MBPTA methods involves designing an appropriate measurement protocol.

In particular, in order for the estimated pWCET distribution derived by EVT to be valid for

a future scenario of operation, then the sample of input states and hardware states used for

analysis must be representative of those that will occur during that future scenario of operation.

An important issue here is that there may not be a single sample of input states and hardware

states that is representative of all possible future scenarios of operation.

5. Hybrid Probabilistic Timing Analysis (HyPTA): These methods combine in some way both

statistical and analytical approaches. For example by taking measurements at the level of basic

blocks or sub-paths, and then composing the results (i.e. the estimated pWCET distributions

for the sub-paths) using structural information obtained from static analysis of the code.

6. Enabling mechanisms: These mechanisms aim to facilitate the use of one or other of the above

analysis methods.

7. Evaluation: Case studies, benchmarks, and metrics, which aim to evaluate the efficiency,

effectiveness, and applicability of probabilistic timing analysis methods.

 

0

5

10

15

20

25

30

N
um

be
r o

f p
ub

lic
at

io
ns

 

Publication Date 

7 Case Studies, Benchmarks and Evaluation

6 Enabling Mechanisms and Techniques

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)

3 Static Probabilistic Timing Analysis (SPTA)

Figure 1 Intensity of research in the different categories corresponding to Sections 3 to 7 of this survey.

The research in these categories is summarised by authors and citations in Table 1. Note the

sub-categories correspond to the subsections of this survey.

It is interesting to note how research in the different categories has progressed over time.

Figure 1 illustrates the number of papers reviewed in each of the main categories covered by this

survey that have been published during 2-year time intervals from 1999 to 2018. (This figure is

best viewed online in colour). A number of observations can be drawn from Figure 1. Firstly,

the volume of research into probabilistic timing analysis was relatively flat until around 2008

LITES



03:6 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Table 1 Summary of publications from different authors in the categories described in the main sections

and subsections of this survey.

3 Static Probabilistic Timing Analysis (SPTA)

3.1 SPTA based on Probabilities from Inputs

David and Puaut [35], Liang and Mitra [86]

3.2 SPTA based on Probabilities from Faults

Hofig [62], Hardy and Puaut [58, 59], Chen et al. [31, 29]

3.3 SPTA based on Probabilities from Random Replacement Caches

Quinones et al. [106], Burns and Griffin [23], Cazorla et al. [26], Davis et al. [39], Altmeyer and Davis [7],

Altmeyer et al. [6], Griffin et al. [52], Lesage et al. [83, 82], Chen and Beltrame [28], Chen et al. [30]

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)

4.1 EVT and i.i.d. observations

Burns and Edgar [22], Edgar and Burns [45], Hansen et al. [57], Griffin and Burns [51], Lu et al. [89, 90],

Cucu-Grosjean et al. [34]

4.2 EVT and observations with dependences

Melani et al. [93], Santinelli et al. [112], Berezovskyi et al. [16, 15], Guet et al. [53, 54], Fedotova et al. [47],

Lima and Bate [87]

4.3 EVT and representativity

Lima et al. [88], Maxim et al. [92], Santinelli et al. [110], Santinelli and Guo [111], Guet et al. [55], Abella

et al. [3], Milutinovic et al. [101]

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)

5.1 HyPTA and the Path Coverage Problem

Bernat et al. [19, 18, 17], Kosmidis et al. [70], Ziccardi et al. [136]

6 Enabling Mechanisms and Techniques

6.1 Caches and Hardware Random Placement

Kosmidis et al. [68, 69, 67], Slijepcevic et al. [120], Anwar et al. [9], Hernandez et al. [61], Trillia et al. [127],

Benedicte et al. [11]

6.2 Caches and Software Random Placement

Kosmidis et al. [72, 73, 71, 78]

6.3 Cache Risk Patterns with Random Placement

Abella et al. [4], Benedicte et al. [13, 14], Milutinovic et al. [98, 99, 97, 100]

6.4 Buffers, Buses and other Resources

Slijepcevic et al. [119], Cazorla et al. [27], Kosmidis et al. [74], Jalle et al. [65], Panic et al. [102], Agirre et

al. [5], Hernandez et al. [60], Slijepcevic et al. [117, 118], Benedicte et al. [12]

7 Case Studies, Benchmarks and Evaluation

7.1 Critiques

Reineke [108], Mezzetti et al. [96], Stephenson et al. [123], Gil et al. [49]

7.2 Case Studies and Evaluation

Santos et al. [113], Kosmidis et al. [75, 77], Abella et al. [2], Wartel et al. [129, 128], Lesage et al. [85],

Mezzetti et al. [94], Fernandez et al. [48], Cros et al. [33] Diaz et al. [43], Silva et al. [116], Reghenzani et

al. [107]



R. I. Davis and L. Cucu-Grosjean 03:7

and then increased rapidly in the decade from 2010. Inline with this the number of publications

on the main theme of measurement-based probabilistic timing analysis (Section 4) has steadily

increased since 2009/2010. Work on static probabilistic timing analysis (Section 3) peaked during

the period 2013–2016, coinciding with research effort on the EU Proxima project5. Also, as a

result of that project, there was a significant peak in research on enabling techniques aimed at

facilitating the use of MBPTA (Section 6). More recently, in 2017/2018, the focus has been on

extending MBPTA to more complex systems and exploring the effectiveness of the approach via

case studies and benchmarks (Section 7).

Before moving to the sections of this survey which review the literature, we first discuss (in

Section 2) fundamental concepts and methods relating to probabilistic timing analysis.

Note that conventional timing analysis techniques aimed at providing an upper bound on the

WCET value as the solution to the timing analysis problem are outside of the scope of this survey,

they are reviewed in detail by Wilhelm et al. [133].

2 Fundamental Concepts and Methods

The term probabilistic real-time systems is used to refer to real-time systems where one or more of

the parameters, such as program execution times, are modelled by random variables. Although a

parameter is described (i.e. modelled) by a random variable, this does not necessarily mean that

the actual parameter itself exhibits random behaviour or that there is necessarily any underlying

random element to the system that determines its behaviour. The actual behaviour of the

parameter may depend on complex and unknown or uncertain behaviours of the overall system. As

an example, the outcome of a coin toss can be modelled as a random variable with heads and tails

each having a probability of 0.5 of occurring, assuming that the coin is fair. However, the actually

process of tossing a coin does not actually have a random element to it. The outcome could in

theory be predicted to a high degree of accuracy if there were sufficiently precise information

available about the initial state and the complex behaviour and evolution of the overall physical

processes involved. There are however many useful results that can be obtained by modelling the

outcome of a coin toss as a random variable. The same is true of the analysis of probabilistic

real-time systems.

In this section, we first discuss a fundamental and often misunderstood concept in probabilistic

timing analysis, probabilistic Worst-Case Execution Time (pWCET) distributions. The remainder

of the section then provides an outline of the two main approaches to obtaining pWCET distribu-

tions, Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing
Analysis (MBPTA).

2.1 probabilistic Worst-Case Execution Time (pWCET)

The term probabilistic Worst-Case Execution Time (pWCET) distribution has been used widely

in the literature, with a number of different definitions given. Below, we provide an overarching

definition of the term. (We use calligraphic characters, such as X , to denote random variables).

◮ Definition 2. The probabilistic Worst-Case Execution Time (pWCET) distribution for a program

is the least upper bound, in the sense of the greater than or equal to operator � (defined below),

on the execution time distribution of the program for every valid scenario of operation, where

a scenario of operation is defined as an infinitely repeating sequence of input states and initial

hardware states that characterise a feasible way in which recurrent execution of the program may

occur.

5 http://www.proxima-project.eu/

LITES

http://www.proxima-project.eu/


03:8 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

◮ Definition 3. (From Diaz et al. [44]) The probability distribution of a random variable X is

greater than or equal to (i.e. upper bounds) that of another random variable Y (denoted by X � Y)

if the Cumulative Distribution Function (CDF) of X is never above that of Y, or alternatively,

the 1-CDF of X is never below that of Y.

Graphically, Definition 2 means that the 1 - CDF of the pWCET distribution is never below

that of the execution time distribution for any scenario of operation. Hence the 1 - CDF or

exceedance funtion of the pWCET distribution may be used to determine an upper bound on the

probability p that the execution time of a randomly selected run of the program will exceed an

execution time budget x, for any chosen value of x. This upper bound is valid for any feasible

scenario of operation.

Figure 2 Exceedance function or 1-CDF for the pWCET distribution of a program, and also execution

time distributions for specific scenarios of operation.

Figure 2 illustrates the execution time distributions of a number of different scenarios of

operation (solid lines), the precise pWCET distribution (red dashed line) which is the least upper

bound (i.e. the point-wise maxima of the 1 - CDF) for all of these distributions, and also some

arbitrary upper bound pWCET distribution (red dotted line) which is a pessimistic estimate of

the precise pWCET. Also shown (on the y-axis) is an upper bound p on the probability that any

randomly selected run of the program will have an execution time that exceeds x (on the x-axis).

The value x is referred to as the pWCET estimate at a probability of exceedance of p. (More

formally, the least upper bound pWCET distribution is given by supθ∈Θ F̄θ, where F̄θ is the 1 -

CDF for scenario of operation θ, and Θ is the space of all valid scenarios of operation).

Note that the greater than or equal to relation � between two random variables does not

provide a total order, i.e. for two random variables X and Z it is possible that X � Z and Z � X.

Hence the precise pWCET distribution may not correspond to the execution time distribution for

any specific scenario. This can be seen in Figure 2, considering the execution time distributions

X , Y and Z. It is the case that X � Y , but X � Z and Z � X. By contrast, as the greater than

or equal to relation for scalars (≥) does provide a total order, the precise WCET does correspond

to the execution time for some specific run of the program.



R. I. Davis and L. Cucu-Grosjean 03:9

The WCET upper bounds all possible execution times for a program, independent of any

particular run of the program. Similarly, the pWCET distribution upper bounds all possible

execution time distributions for a program, independent of any particular scenario of operation.

We note that the term pWCET is open to misinterpretation and is often misunderstood. To

clarify, it does not refer to the probability distribution of the worst-case execution time, since the

WCET is a single value. Rather informally, following Definition 2, the pWCET may be thought of

as the “worst-case” (in the sense of upper bound) probability distribution of the execution time

for any scenario of operation.

Below, we provide some simple hypothetical examples that illustrate the meaning of the

pWCET distribution.

Consider a program A running on time-randomised hardware. Further, assume that the

program has two paths which may be selected based on the value of an input variable. The

discrete probability distributions X and Y of the execution time of each path may be described

by probability mass functions as follows:

X =

(

10 20 30 40

0.4 0.3 0.2 0.1

)

Y =

(

20 30 40 50

0.8 0.15 0.04 0.01

)

Indicating, among other things, that there is a probability of 0.1 that the execution time of the

first path is 40 and a probability of 0.01 that the execution time of the second path is 50.

The Complementary Cumulative Distribution Function (1-CDF) or Exceedance Function defined

as F̄X (x) = P (X > x) is given by:

F̄X =

(

0 10 20 30 40

1 0.6 0.3 0.1 0

)

F̄Y =

(

0 10 20 30 40 50

1 1 0.2 0.05 0.01 0

)

The precise pWCET distribution for the two paths can be found by taking the point-wise

maxima of their exceedance functions. Hence:

pWCET =

(

0 10 20 30 40 50

1 1 0.3 0.1 0.01 0

)

Note that the above pWCET distribution is precise on the assumption that repeatedly executing

one path or the other or any combination of them is a valid scenario of operation, otherwise it

may be that it is an upper bound rather than the precise pWCET.

Observe that the program has a WCET of 50, which equates to the last value in the pWCET

distribution (where the 1-CDF becomes zero). The pWCET distribution gives more nuanced

information than this single value, as it upper bounds the probability of occurrence of the extreme

execution time values (e.g. 30, 40, and 50) that occur rarely and form the tail of the distribution.

Execution on time-randomised hardware is not the only way in which a non-degenerate6

pWCET distribution can arise. As an alternative, consider another program B that implements

a software state machine with four states and hence four paths that runs on time-predictable

hardware. Here the main factor which affects the execution time is the path taken, which is

determined by the value of the software state variable. For this program, all valid scenarios of

operation involve the software state variable cycling through its four possible values in order, and

hence the four possible paths executing in order on any four consecutive runs of the program.

Further, assume that there is a small variability in the execution time of each path depending

on the value of some input variable, which may take any value on any run. Hence the execution

6 A degenerate distribution has only a single value.

LITES



03:10 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

times of the different paths are 10 ± 2, 20 ± 2, 30 ± 2, and 40 ± 2, each with a probability of 0.25.

For this program, the pWCET distribution valid for any scenario of operation is:

pWCET =

(

0 12 22 32 42

1 0.75 0.5 0.25 0

)

Finally, consider a program C which again runs on time-predictable hardware. This program

has an input variable v which may take one of four values selecting one of four different paths.

The execution times of the paths are 10, 20, 30, and 40. Further, we are given some additional

information about all the valid scenarios of operation, over a large number of runs of the program,

the first 3 input values occur with the same probability, while the 4th is a fault condition that

occurs at most 1% of the time. The pWCET distribution is as follows:

pWCET =

(

0 10 20 30 40

1 0.67 0.34 0.01 0

)

We note that in all three examples, the pWCET distribution upper bounds the execution time

distribution for a randomly selected run of the program in any scenario of operation. However,

it is not always the case that the pWCET distribution is probabilistically independent of the

value realised for the execution time of previous runs of the program. For example in the case of

program B, the pWCET distribution does not provide a valid upper bound on the execution time

distribution of the program conditional on specific execution times having occurred for previous

runs. (If the previous execution time of the program was 30, then the execution time of the current

run has a probability of 1 of exceeding 32, since the state variable will increment by 1 and the

longest path will be selected with an execution time of 40 ± 2 ). Further, in the case of program C,

although the fault condition may occur only 1% of the time, there may well be a cluster of faults.

Hence for programs B and C, it is not valid to compose the pWCET distributions using basic

convolution to obtain a bound on the interference (total execution time) of two or more runs of

the program. This has implications for how the pWCET distribution may be used in probabilistic

schedulability analysis, which are discussed in the companion survey on that topic [38].

◮ Definition 4. Two random variables X and Y are probabilistically independent if they describe

two events such that knowledge of whether one event did or did not occur does not change the

probability that the other event occurs. Stated otherwise, the joint probability is equal to the

product of their probabilities P ({X = x} ∩ {Y = y}) = P (X = x) · P (Y = y). (In this context,

the events are the execution times of runs of the program taking certain values).

We note that while the above simple examples are useful to illustrate the concept of a pWCET

distribution, in practice the exceedance probabilities of interest are very small, typically in the

range 10−4 to 10−15. These probabilities derive from the acceptable failure rate per hour of

operation for the application considered. (Note, the relationship between failure rates per hour of

operation and probabilities of timing failure depend on various factors considered in fault tree

analysis, including any mitigations and recovery mechanisms that may be applied in the event of

a timing failure [50], see the companion survey [38] for further discussion).

It is interesting to consider the use and interpretation of the pWCET distribution for a

program. Let us assume that the program will be run repeatedly a potentially unbounded number

of times, and that a fixed execution time budget of x applies to each run. Further, we assume

that this budget is enforced by the operating system, and therefore that any run of the program

which has not completed within an execution time of x is terminated and assumed to have failed.

The pWCET distribution provides the following information (by reading off the probability of

exceedance p associated with the execution time budget x, see Figure 2):



R. I. Davis and L. Cucu-Grosjean 03:11

(i) An upper bound p on the probability (with a long-run frequency interpretation) equating to

the number of runs expected to exceed the execution time budget x divided by the total

number of runs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the execution time budget x will be exceeded

on a randomly selected run. (This is broadly equivalent to the above long-run frequency

interpretation).

Contrast this with the binary information provided by the WCET. If x is greater than or equal

to the WCET, then we can expect the budget to never be exceeded. However, if x is less than

the WCET, then we expect the budget to be exceeded on some runs, but we have no information

on how frequently this may occur. Hard real-time systems in many application domains can in

practice tolerate a small number of consecutive failures of a program to meet its execution time

budget, but cannot tolerate long black-out periods when every run fails to complete within its

budget. The problem of reconciling requirements on the length of potential black-out periods and

a probabilistic treatment of execution times has, as far as we are aware, received little attention in

the literature. We note that calculation of the probability of such black-out periods occurring

requires information about the dependences (or independence) of the pWCET distributions for

consecutive runs of the program. This topic is discussed further in the companion survey on

probabilistic schedulability analysis [38].

We note that some researchers have interpreted the pWCET distribution as giving the

probability or confidence (1−p) that the WCET does not exceed some value x. This interpretation

can be confusing, since the meaning of the WCET is normally taken to be the largest possible

execution time that could be realised on any single run of the program, as in Definition 1. Instead,

in line with Definition 2 and (i) above, we view the 1 - CDF of the pWCET distribution as

providing, for any chosen value x for the execution time budget, an associated upper bound

probability p (with a long-run frequency interpretation) equating to the number of runs of the

program expected to exceed the execution time budget x divided by the total number of runs of

the program in a long time interval.

2.2 Overview of Static Probabilistic Timing Analysis (SPTA)

The aim of Static Probabilistic Timing Analysis (SPTA) methods is to construct an upper bound

on the pWCET distribution of a program by applying static analysis techniques to the code of the

program (supplemented by information about input values) along with an abstract model of the

hardware behaviour. Typically, a precise analysis is not possible due to issues of tractability, and

thus over-approximations are made which may lead to pessimism in the upper bound pWCET

distribution computed. For static analysis to produce a non-degenerate pWCET distribution there

has to be some part of the system or its environment that contributes random or probabilistic

timing behaviour.

SPTA methods for programs running on time-randomised hardware (e.g. with a random

replacement cache) effectively consider each path through the code. For each path, these methods

construct a pWCET distribution that upper bounds the probability distribution of the execution

time for that path, considering all possible initial hardware states and all possible input states

that cause execution of the path. For simple hardware, it is sufficient to consider an empty

cache (the worst-case hardware state) and a single input state that drives the path, since there

is no difference in execution times for different inputs that select the same path. Nevertheless,

significant approximations need to be made in the analysis, since the problem of determining the

possible cache states and their probabilities at each program point is intractable. The upper bound

pWCET distributions for every path are then combined using an envelope function (taking the

point-wise maxima over the 1-CDFs) to determine an upper bound on the pWCET distribution

LITES



03:12 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

for the program that is valid independent of the path taken. (More sophisticated SPTA methods

analyse sub-paths and use appropriate join operations at path convergence to compute tighter

upper bounds on the pWCET distribution of the program). While the results provide a valid upper

bound on the pWCET distribution, they are not necessarily tight even for simple architectures.

Note that SPTA methods typically do not explicitly consider different valid scenarios of

operation, but rather they effectively assume that any scenario (sequence of input states and

hardware states) could occur, and thus over-approximate.

2.3 Overview of Measurement-Based Probabilistic Timing
Analysis (MBPTA)

The aim of Measurement-Based Probabilistic Timing Analysis methods is to make a statistical
estimate of the pWCET distribution of a program. This estimate is derived from a sample of

execution time observations obtained by executing the program on the hardware or on a cycle

accurate simulator according to an appropriate measurement protocol. The measurement protocol

executes the program multiple times according to some sequence(s) of feasible input states and

initial hardware states, thus sampling one or more possible scenarios of operation.

Provided that the sample of execution time observations passes appropriate statistical tests (see

below), then Extreme Value Theory (EVT) can be used to derive a statistical estimate of the

probability distribution of the extreme values7 of the execution time distribution for the program,

i.e. to estimate the pWCET distribution. By modelling the shape of the distribution of the extreme

execution times EVT is able to predict the probability of occurrence of execution time values that

exceed any that have been observed.

Early results in Extreme Value Theory required the sample of observations used to be inde-
pendent and identically distributed (i.i.d.); however, later work by Leadbetter [81] showed that

EVT can also be applied in the more general case of a series of observations which are stationary,

but are not necessarily independent. Both i.i.d. and stationary properties can be checked using

appropriate statistical tests.

◮ Definition 5. A sequence of random variables (i.e. a series of observations) are independent
and identically distributed (i.i.d.) if they are mutually independent (see Definition 4) and each

random variable has the same probability distribution as the others.

◮ Definition 6. A sequence of random variables (i.e. a series of observations) is stationary if

the joint probability distribution does not change when shifted in time, and hence the mean and

variance do not change over time.

We note that simple software state machines that produce a cyclically repeating behaviour

typically result in a stationary series of execution time observations.

In order for the estimated pWCET distribution derived by EVT to be valid for a future

scenario of operation, then the sample of input states and initial hardware states used for analysis

must be representative of those that will occur during that scenario.

◮ Definition 7. A sample of input states and initial hardware states used for analysis is repres-
entative of the population of states that may occur during a future scenario of operation if the

property of interest (i.e. the pWCET distribution) derived from the sample of states used for

analysis matches or upper bounds the property that would be obtained from the population of

states that occur during the scenario of operation.

7 By extreme values we mean large values towards the tail of the distribution, which have a small probability of
occurrence.



R. I. Davis and L. Cucu-Grosjean 03:13

◮ Definition 8. As determined by MBPTA, the estimated pWCET distribution for an entire

program (or path through a program) is a statistical estimate of the probability distribution of the

extreme values of the execution time of that program (or path), valid for any future scenarios of

operation that are properly represented by the sample of input states and initial hardware states

used in the analysis.

Ideally, MBPTA would provide a pWCET distribution which is valid for any of the many

possible scenarios of operation; however, an important issue here is that there may not be one

single distribution of input states and hardware states that is representative of all possible future

scenarios of operation. This issue of representativity is a key open problem in research on the

practical use of MBPTA.

The difficulty in ensuring representativity can be ameliorated by taking steps to make regions

of the input state space equivalent in terms of execution time behaviour, similarly regions of the

hardware state space. As a simple example, a floating point operation may have a variable latency

that depends on the values of it operands; however, if a hardware test mode is used whereby the

floating point operation always takes the same worst-case latency regardless of these values, then

any arbitrary values can be chosen, and they will be representative (as far as execution times

are concerned) of any other possible values in the input state space. Similarly, a fully associative

random replacement cache can make many, but not necessarily all, patterns of accesses to data at

different memory locations have equivalent execution time behaviour. Unfortunately, these steps

typically require modifications to the hardware used. The problem of representativity is most

acute for COTS (Common Off The Shelf) hardware. In particular, it is challenging to ensure

representativity with hardware that has complex deterministic behaviour based on substantial

state and history dependency. Examples include LRU/PLRU caches, and caches with a write-back

behaviour. Here, the latency of instructions that access memory can vary significantly based on

the specific history of prior execution, i.e. the specific sequence of addresses accessed. Further, it

is hard to determine which regions of the input state space are equivalent in terms of execution

time behaviour. This makes it very difficult to ensure that the input data used is representative .

Two EVT theorems and associated methods have been employed in the literature on MBPTA:

the Block Maxima method based on the Fisher-Tippett-Gnedenko theorem, and the Peaks-over-
Threshold (PoT) method based on Pickands-Balkema-de Haan theorem (see the books by Coles [32]

and Embrechts et al. [46] for details of these theorems).

The Block Maxima method can be summarised as follows:

Obtain a sample of execution time observations using an appropriate measurement protocol.

Check, via appropriate statistical tests, that the execution time observations collected are

analysable using EVT.

Divide the sample into blocks of a fixed size, and take the maximum value for each block. (Note,

in practice only the maxima of the blocks need be independent for the theory to apply, not

necessarily all of the sample data).

Fit a Generalised Extreme Value (GEV) distribution to the maxima. This will be a reversed

Weibull, Gumbel, or Frechet distribution, depending on the shape parameter. (Alternatively

fit a GEV with the shape parameter fixed to zero i.e. a Gumbel distribution).

Check the goodness of fit between the maxima and the fitted GEV (e.g. using quantile plots).

The GEV distribution obtained for the extreme values estimates the pWCET distribution.

The Peaks-over-Threshold method can be similarly summarised as follows:

Obtain execution time observations using an appropriate measurement protocol.

Check, via appropriate statistical tests, that the execution time observations collected are

analysable using EVT.

LITES



03:14 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Choose a suitable threshold, and select the values that exceed the threshold. Note that

de-clustering8 may be required for data that is not independent.

Fit a Generalised Pareto Distribution (GPD) to the excesses over the threshold.

Check the goodness of fit between the peak values selected and the fitted GPD (e.g. using

quantile plots).

The GPD distribution obtained for the extreme values estimates the pWCET distribution.

There are two main ways of applying MBPTA, referred to as per-path and per-program:

1. Per-path: MBPTA is applied at the level of paths. A measurement protocol is used to exercise

all feasible paths, then the execution time observations are divided into separate samples

according to the path that was executed. EVT is then used to estimate the pWCET distribution

for each path. The pWCET distribution for the program as a whole is then estimated by

taking an upper bound (an envelope or point wise maxima on the 1 - CDFs) over the set of

pWCET estimates for all paths.

2. Per-program: MBPTA is applied at the level of the program. A measurement protocol is again

used to exercise all paths. In this case, all of the execution time observations are grouped

together into a single sample. EVT is then applied to that sample, thus estimating directly

the pWCET distribution for the program.

There are a number of advantages and disadvantages to the per-path and per-program

approaches for MBPTA. Recall that the execution time observations analysed using EVT must be

identically distributed, which can be checked using appropriate statistical tests. In the per-program

case, these tests can fail if the execution times from different paths come from quite different

distributions. The independent distribution (i.d.) tests could also fail in the case of observations

for an individual path; however, for this to happen there must be significant differences in the

execution time distributions obtained for the same path with different input states. This is less

likely in practice, although it may still happen.

With the per-path approach, issues of representativity arise only at the level of paths, whereas

the per-program approach raises issues of representativity at the program level. With the per-path

approach, it is sufficient that the sample of input states and initial hardware states used to

generate execution time observations for a given path are representative of the input states and

hardware states for that path that could occur during operation. For example, for relatively simple

time-randomised hardware it may be possible to obtain a single representative input state for each

path by resetting the hardware on each run to obtain worst-case initial conditions (e.g. an empty

cache). For more complex hardware, it becomes more difficult to ensure that the input states and

initial hardware states used in the analysis of an individual path are representative; nevertheless,

the problem is somewhat simpler than in the per-program case.

With the per-program approach, the frequency at which different paths are exercised in the

observations used for analysis can impact the pWCET distribution obtained. For example if a

path with large execution times is exercised much more frequently during operation than it was

during analysis, then the pWCET distribution obtained during analysis may not be valid for

that behaviour. Since the sample of input states used during analysis was not representative, the

pWCET distribution obtained may be optimistic.

Despite the above disadvantages, the per-program approach may be preferable in practice, since

it does not require the user to separate out the execution time observations on a per-path basis.

8 De-clustering typically involves using only the single maximum value in any group of continuous observations
that exceeds the threshold.



R. I. Davis and L. Cucu-Grosjean 03:15

Further, the per-path approach loses information about the ordering and dependences between

execution time observations, which may be relevant to obtaining a tight pWCET distribution.

In seeking to employ EVT, there are two questions to consider: First, are the samples of

observations obtained for input into EVT representative of the future scenarios of operation that

can occur once the system is deployed? If the answer to this question is “no”, then any results

produced (e.g. estimated pWCET distributions) cannot be trusted to describe the behaviour of the

deployed system. Secondly, can the particular EVT method chosen be applied to the observations?

This question can be answered by applying appropriate statistical tests (e.g. checking for i.i.d.,

goodness-of-fit etc.). It is important to note that an answer “yes” to this second question does not

necessarily imply that the results produced provide a sound9 description of the behaviour of the

deployed system. They may only provide a sound description of its behaviour in precisely those

scenarios used for analysis, i.e. used to produce the observations. Representativity is essential to

extend the results obtained via EVT to the actual operation of the system.

3 Static Probabilistic Timing Analysis (SPTA)

In this section, we review analytical approaches to determining pWCETs distributions, commonly

referred to as Static Probabilistic Timing Analysis (SPTA). These methods construct an upper

bound on the pWCET distribution of a program by applying static analysis techniques to the

code of the program along with an abstract model of the hardware behaviour. In order for static

analysis to produce a (non-degenerate) pWCET distribution there has to be some part of the

system or its environment that contributes variability in terms of random or probabilistic timing

behaviour. Examples include: (i) probabilities of certain inputs occurring, (ii) probabilities of

faults occurring, (iii) time-randomised hardware behaviour, such as the use of random replacement

caches. In the following subsections, we review the research on SPTA relating to each of these

factors.

3.1 SPTA based on Probabilities from Inputs

Initial work on SPTA considered the probability of different input values occurring, or different

conditional branches being taken in the code.

The first work in this area by David and Puaut [35] in 2004 assumed that the input variables

are independent and have a known probability distribution in terms of the values that they can

take. In this work, a tree-based static analysis is used to compute the execution time of each path

and the probability that it will be taken. This generates a probability distribution for the execution

time of the program, not considering hardware effects. The method has exponential complexity,

which depends strongly on the external variables. The main drawback is the requirement for

the input variables to be independent, which is unlikely to be the case in practice. Further the

probability distribution for each input variable must be known.

In 2008, Liang and Mitra [86] analysed the effects of cache on the probability distribution

of the execution times of a program, assuming that probabilities of conditional branches and

statistical information about loop bounds are provided. They introduce the concept of probabilistic
cache states to capture the probability distribution of different cache contents at each program

point, and an appropriate join function for combining these states. The analysis computes the

cache miss probability at each program point enabling the effects of the cache to be included in

9 In this survey, we use the adjective sound to indicate a description, an analysis, or a probability distribution
that provides information about the system that is not optimistic with respect to its timing behaviour. Thus
the information provided may be precise, or it may be pessimistic.

LITES



03:16 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

an estimation of the execution time distribution of the program. Aside from issues of tractability,

the main difficulty with this approach is the assumption that values for the probability of taking

different conditional branches can be provided, and the implicit assumption that these values are

path independent, which they may not be.

3.2 SPTA based on Probabilities from Faults

Systems may exhibit probabilistic behaviour due to the occurrence of faults, either external to

the microprocessor, for example due to sensor failures, or internal to it, for example due to faulty

cache lines.

The initial work in this area by Hofig [62] in 2012 introduced a methodology for Failure-
Dependent Timing Analysis. This combines static WCET analysis of the code with probabilities

propagated from a safety analysis model. Thus a set of WCET bounds are obtained that are

associated with particular situations, for example a combination of sensor failures, and probabilities

that those situations will occur. These values can then be used to determine a valid WCET at any

given acceptable deadline miss probability. The work assumes that sensor failures are independent.

The authors argue that when failures are dependent then this dependence can be captured in the

safety analysis resulting in revised probabilities for the different situations considered.

In 2013, Hardy and Puaut [58] presented a SPTA for systems with deterministic instruction

caches in the presence of randomly occurring permanent faults affecting the RAM cells that

implement the cache lines. This method first computes the WCET assuming no faults, and then

determines an upper bound on the probabilistic timing penalty due to the additional fault induced

cache misses. The timing penalty is derived independently for each cache set, and the results

combined to obtain the overall penalty. The motivation for this work is that as microprocessor

technology scales decrease so the probability of permanent RAM cell failures will increase. A

journal extension by the same authors [59] examines the scalability of the method to larger cache

sizes, and also covers the effect of different values for the failure probability of memory cells,

reflecting different technology scales.

More recently in 2016, Chen et al. [31] presented a SPTA for systems with a random replacement

cache subject to both transient and permanent faults. This approach uses a Markov Chain model

to capture the evolution of cache states and their probabilities. The cache states are modified

taking account of the impact of faults, and hence the resulting pWCET distributions obtained

reflect the fault rates specified as well as the random replacement policy of the cache. The

evaluation shows that the method produces tight bounds with respect to simulation results. The

cache assumed is however only 2-way, hence it is not clear whether the method scales to larger

cache associativities. In a subsequent paper, also in 2016, Chen et al. [29] addressed an issue with

their previous work whereby increasing permanent fault rates substantially degrades the pWCET.

In this work they compare the previous rule-based detection mechanism with a more complex

method that uses Dynamic Hidden Markov Model detection. The former is simple to implement,

but the latter is significantly more effective, providing better pWCET estimates for high fault

rates.

3.3 SPTA based on Probabilities from Random Replacement Caches

Caches are small fast memories used to bridge the speed difference between the processor and

main memory. Access times to cache can be in the region of 10 to 100 times faster than accesses

to main memory, thus cache often has a significant impact on the execution time of programs.

Much of the work on SPTA (and indeed MBPTA) has focussed on caches that use a random

replacement policy. Before reviewing this work, we outline some fundamentals about caches and

their operation.



R. I. Davis and L. Cucu-Grosjean 03:17

Main memory, used to store both instructions (the program) and data, is logically divided up

into memory blocks, which may be cached in cache lines of the same size. When the processor

requests a memory block, the cache logic has to determine whether the block already resides in

the cache, a cache hit, or not, a cache miss. To facilitate efficient look-up each memory block can

typically only be stored in a small number of cache lines referred to as a cache set. The number

of cache lines or ways in a cache set gives the associativity of the cache. A cache with N -ways

in a single set is referred to as fully-associative, meaning a memory block can map to any cache

line. At the other extreme, a cache with N sets each of 1-way is referred to as direct-mapped;

here each memory block maps to exactly one cache line. With set-associative and direct mapped

caches, a placement policy is used to determine the cache set that each memory block maps to.

The most common policy is modulo placement which uses the least significant bits of the block

number to determine the cache set. Since caches are usually much smaller than main memory, a

replacement policy is used to decide which memory block (i.e. cache line in the set) to replace

in the event of a cache miss. Replacement policies include Least Recently Used (LRU), Pseudo

LRU (PLRU), FIFO, and Random Replacement. Early work by Smith and Goodman [121, 122] in

1983 considered FIFO, LRU, and random replacement caches, concluding that the performance of

random replacement is superior to FIFO and LRU, when the number of memory blocks accessed

in a loop exceeds the size of the cache. LRU is superior when it does not.

The origins of SPTA for systems with random replacement caches can be traced to initial work by

Quinones et al. [106] and Cazorla et al. [26] which provided a simple analysis restricted to single-path

programs. Subsequently, Davis and Altmeyer and their co-authors Griffin and Lesage developed

more sophisticated and precise analysis that also covers multi-path programs [39, 7, 6, 52, 83, 82].

The early work of Quinones et al. [106] in 2009 explored, via simulation, the performance of

caches with a random replacement policy compared to LRU. The evaluation involves programs

with a number of functions (greater than the cache associativity) called from within a loop. The

different cases explored correspond to different memory layouts for the functions. Here, a small

number of layouts result in pathological access patterns (referred to as cache risk patterns [95])
where, assuming LRU replacement, each function evicts the instructions for the next function

from the cache. The simulation results show that random replacement has better performance

than LRU in these cases, and lower variability in performance over the range of memory layouts

explored. Further, when the code is too large to fit in the cache, then LRU has relatively poor

performance, with random replacement providing better cache hit rates and less variability across

different layouts. The authors suggest a simple method of statically computing the probability of

pathological behaviour in the case of a random replacement cache; however, this formulation was

later shown to be optimistic (i.e. unsound) by Davis et al. [39], since random replacement does

not eliminate all of the dependences on access history.

In 2011, Burns and Griffin [23] explored the idea of predictability as an emergent behaviour.

They show that if components are designed to exhibit independent random behaviour, then

an execution time budget with a low probability of failure can be estimated that is not much

greater than the average execution time. Their experiments examine hypothetical programs made

up of instructions with execution times that are independent and identically distributed (i.i.d).

The execution of each instruction is assumed to take either 1 cycle (representing a cache hit) or

10 cycles (representing a cache miss), with a 10% probability of the latter. Thus the average

execution time of an instruction is 1.9 cycles. The authors found that for programs of more than

105 instructions, the execution time budget at an exceedance probability of 10−9 was only a few

percent larger than the average execution time. They note, however, that current hardware does

not result in instructions with random execution times.

LITES



03:18 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

A simple SPTA for caches with an evict-on-access10 random replacement policy based on

reuse distances was presented by Cazorla et al. [26] in 2013. This analysis upper bounds the

probability of a miss on each access in a way that is independent of the execution history, thus

enabling the distributions for each access to be combined using basic convolution to produce a

pWCET distribution for the execution of a trace of instructions, i.e. a single path through the

program. Comparisons are made with analysis for a LRU cache, showing that random replacement

is less sensitive to missing information. Reineke [108] later observed that the formula given for a

random replacement cache reduces to zero whenever the re-use distance is equal to or exceeds

the cache associativity. Hence, in a like-for-like comparison, analysis for LRU strictly dominates

that for random replacement presented in this paper. We conclude that the results given by

Cazorla et al. are somewhat misleading; they are an artefact of the difference in associativity

rather than a difference in replacement policy, since 2-, 4-, and 8-way LRU caches are compared to

a fully-associative random replacement cache. We note; however, that when more precise analysis

of a random replacement cache is used there are some circumstances when it can outperform

state-of-the-art analysis for LRU, as shown by Altmeyer et al. [6] in 2015.

In 2013, Davis et al. [39] introduced a SPTA technique based on re-use distances that is

applicable to random replacement caches that use an evict-on-miss policy11. This dominates the

earlier analysis of Cazorla et al. [26] which assumes evict-on-access. The authors show that it

is essential that any analysis providing probability distributions per instruction that are then

convolved to form a pWCET distribution for the program must provide distributions for each

instruction that are independent of the pattern of previous hits or misses, otherwise the analysis

risks being unsound (i.e. optimistic). The authors extend their analysis to cover multi-path

programs and the effect of preemptions. By taking a simplified view of preemption, effectively

considering that it flushes the cache, they derive analysis that bounds the maximum impact of

multiple preemptions on a program and show how computation of probabilistic cache related

preemption delays (pCRPD) can be integrated into SPTA. We note that although the analysis

is presented for fully associative caches, it is also applicable to set-associative caches, since each

cache set operates independently.

Subsequently in 2014, Altmeyer and Davis [7] introduced effective and scalable techniques for

the SPTA of single path programs assuming random replacement caches that use the evict-on-miss

policy. They show that formulae previously published by Quinones et al. [106] and Kosmidis

et al. [68] for the probability of a cache hit can produce results that are optimistic and hence

unsound when used to compute pWCET distributions. In contrast, the formula given by Davis et

al. [39] is shown to be optimal with respect to the limited information it uses (reuse distances and

cache associativity), in the sense that no improvements can be made without requiring additional

information. The authors also introduce an improved technique based on the concept of cache
contention which relates to the number of cache accesses within the reuse distance of a memory

block that have already been considered as potentially being a cache hit. An exhaustive approach

is also derived that computes exact probabilities for cache hits and cache misses, but is intractable.

They then combine the exhaustive approach focussing on a small number of the most relevant
memory blocks with the cache contention approach for the remaining memory blocks.

Altmeyer et al. [6] extended their earlier work [7] in a journal publication in 2015. In this

paper, they introduce a new formula for the probability of a cache hit based on stack distance,

correct an error in the formulation of basic cache contention, and provide an alternative cache

10 The evict-on-access random replacement policy evicts a randomly chosen cache line whenever an access is
made to the cache, irrespective of whether that access is a cache hit or a cache miss.

11 The evict-on-miss random replacement policy evicts a randomly chosen cache line whenever an access is made
to the cache and that access is a cache miss.



R. I. Davis and L. Cucu-Grosjean 03:19

contention approach based on the simulation of a feasible evolution of the cache contents. Both

cache contention approaches are formally proven correct, and are shown to be incomparable with

the new stack distance approach. They also present an alternative more powerful heuristic for

selecting relevant memory blocks, with blocks no longer considered as relevant once they are no

longer used. This improves accuracy, while ensuring that the analysis remains tractable. The

evaluation shows that the cache contention techniques improve upon simple methods that rely on

reuse distance or stack distance, and that the combined approach with 4 to 12 relevant memory

blocks makes further substantial improvements in precision. Specific comparisons with LRU show

that the simple reuse distance and stack distance approaches are always outperformed, in fact

dominated, by analysis for LRU. In contrast, the sophisticated combined analyses for random

replacement caches are incomparable with those for LRU. LRU is more effective when the number

of memory blocks accessed in a loop does not exceed the associativity of the cache, whereas

random replacement is more effective when they do.

In 2014, Griffin et al. [52] applied lossy compression techniques to the problem of SPTA

for random replacement caches. They built upon the exhaustive collecting semantics approach

developed by Altmeyer and Davis [7], exploiting three opportunities to improve runtime while

trading off some precision: (i) memory block compression, (ii) cache state compression, and (iii)

history compression. Two methods of memory block compression were considered. The first

excludes memory blocks with a hit probability below some threshold, while the second excludes

those with a forward reuse distance that exceeds a given threshold. Both cache state and history

compression are applied via the use of fixed precision fractions. The lossy compression techniques

are highly parameterisable enabling a trade-off between precision and runtime. Further, the

runtime is linear in the length of the address trace, compared to quadratic complexity for the

combined technique derived by Altmeyer and Davis [7].

An effective SPTA for multi-path programs assuming a random replacement cache was developed

by Lesage et al. [83] in 2015. This work adapts the cache contention and collecting semantics

approach derived by Altmeyer and Davis [7] to the multi-path case. It also introduces a conservative

join function which provides a sound over-approximation of the possible cache contents and pWCET

distribution on path convergence. The analysis makes use of the control-flow graph. It first unrolls

loops, since this allows both the cache contention and collecting semantics to be performed

as simple forward traversals of the control-flow graph. Approximation of the incoming cache

states on path convergence, via the conservative join operator, keeps the analysis tractable. The

distributions obtained via the cache contention and collecting semantics are then combined using

convolution. The main analysis technique is supplemented by worst-case execution path expansion.

This method uses the concept of path inclusion to determine when one path includes another,

necessarily resulting in a larger pWCET distribution. This enables the included path to be

removed from the analysis. This concept simplifies the analysis of loops, since only the maximum

number of loop iterations need be considered. The evaluation shows that this multi-path SPTA

reduces the number of misses predicted for complex control flows by a factor of 3 compared to

the simple path merging approach proposed earlier by Davis et al. [39]. Incomparability between

analysis for LRU and sophisticated analysis for random replacement caches is also demonstrated

on multi-path programs. The authors also investigate the runtime of their methods, showing

that it is tractable with 4-12 relevant memory blocks. To reduce the runtime for long programs

they also consider splitting such programs into Single Entry Single Exit regions12 which can be

analysed separately, with the pessimistic assumption of an empty cache at the start of each region.

This approach is shown to be effective, permitting the use of more relevant memory blocks and

12 An idea first suggested by Pasdeloup [104].

LITES



03:20 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

hence in some cases improving precision. In a journal extension, Lesage et al. [82] incorporate

advances in SPTA techniques for single path programs into the analysis framework for multi-path

programs.

In 2017, Chen and Beltrame [28] derived a SPTA for single path programs running on a system

with an evict-on-miss random replacement set-associative cache. They use a non-homogeneous

Markov chain to model the states of the system. For each step (i.e. memory access in the trace

of the program), the method computes a state occurrence probability vector for the cache and

a transition matrix which determines how the state vector is transformed. The computational

complexity of the basic method increases as a polynomial with a large exponent given by the

number of memory addresses. To contain the complexity and make the approach tractable, the

authors adapt the method as follows. For the first n addresses, the state space is constructed using

the Markov chain method as described above. Then when a new memory address is accessed that

is not in the current state, another memory address that is part of the state and is either not used

in the future, or has the longest time until it is used in the future, is discarded. This is a form

of lossy compression that ensures the number of states does not increase further. The authors

show how the method can be adapted to write-back data caches, and compare its performance

with the SPTA method of Altmeyer at al. [6]. The evaluation shows that the adaptive Markov

chain method provides improved performance, with the geometric mean of the execution times at

an appropriate probability of exceedance reduced by 11% for the set of Mälardalen benchmarks

studied. The runtime of the two methods is shown to be similar.

Also in 2017, Chen et al. [30] developed a SPTA for random replacement caches with a detection

mechanism for permanent faults. The detection mechanism periodically checks the cache for

faulty blocks and disables them. The analysis builds upon the combined approach of Altmeyer et

al. [6]. The authors derive formula for two operating modes: with and without fault detection

turned on. By combining these two modes, the method provides timing analysis accounting for

the integrated fault detection. The experimental evaluation provides a comparison with simulation

for the Mälardalen benchmarks, assuming a 2-way, 1 KByte instruction cache, with 16 byte cache

lines, and a permanent fault rate that equates to a mean time between failures of 5 years. Other

experiments consider higher fault rates, larger cache lines and a 4-way cache. The results show that

when sufficient relevant blocks are used, SPTA provides results that are close to those obtained

via simulation.

3.4 Summary and Perspectives

Static Probabilistic Timing Analysis (SPTA) for systems using random replacement caches has

matured considerably since its origins in the work of Quinones et al. [106]. State-of-the-art

techniques by Altmeyer et al. [6], Chen and Beltrame [28] and Lesage et al [83, 82] provide

effective analysis for single and multi-path programs respectively on systems using set-associative

or fully-associative random replacement caches. This analysis is however limited to systems with

single-level private caches. As far as we are aware SPTA techniques have not yet been developed

for multi-level caches or for multi-core systems where the cache is shared between cores. A

preliminary discussion of these open problems can be found in the work of Lesage et al. [84] and

Davis et al. [40] respectively.

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)

In this section, we review Measurement-Based Probabilistic Timing Analysis (MBPTA) methods.

These methods use statistical techniques based on Extreme Value Theory (EVT) to derive an

estimate of the pWCET distribution of a program from a sample of execution time observations.



R. I. Davis and L. Cucu-Grosjean 03:21

These observations are obtained by executing the program on the hardware or a cycle accurate

simulator under a measurement protocol. The measurement protocol executes the program

multiple times according to a set of test vectors and initial hardware states, thus sampling one or

more possible scenarios of operation.

Whether or not useful results can be determined using MBPTA methods depends crucially on

the sample of execution time observations obtained and their properties. Early work in this area

required execution time observations to be independent and identically distributed (i.i.d.). Later

work relaxed this assumption, but still required that the sequence of execution time observations

exhibit stationarity and weak dependences. Further, the results are only valid for future scenarios

of operation for which the sample of observations is representative (see Section 2.3).

In the following subsections, we review: (i) early research into MBPTA that requires execution

time observations to be i.i.d., (ii) subsequent research that relaxes the i.i.d. assumption, (iii)

research which focusses on issues of representativity.

4.1 EVT and i.i.d. observations

In this section, we review early work on MBPTA based on the application of Extreme Value

Theory that assumes the execution time observations are i.i.d. This work began with a number of

papers by Burns and co-authors Edgar and Griffin [22, 45, 51], and culminated with the work of

Cucu-Grosjean et al. [34] which inspired a substantial body of subsequent research into MBPTA.

In 2000, Burns and Edgar [22] introduced the use of EVT (the Fisher-Tippett-Gnedenko
theorem) in modelling the maxima of a distribution of program execution times. They motivate

the work by noting that advanced processor architectures make it prohibitively complex or

pessimistic to estimate WCETs using traditional static analysis techniques. The following year,

Edgar and Burns [45] introduced the statistical estimation of the pWCET distribution for a task.

They use measurements of task execution times to build a statistical model. These observations

are assumed to be independent, obtained over a range of environmental conditions, and of sufficient

number for generalisations to be applied. The method they propose involves fitting a Gumbel

distribution directly to the observations, using a χ-squared test to determine the scale and location

parameters. Such direct fitting is however not strictly correct, since the distribution is used to

model the maxima of subsets of values, not all of the values themselves, as noted by Hansen et

al. [57]. Further, there are also issues in using a χ-squared test, which is not well suited to this

purpose, as noted by Cucu-Grosjean et al. [34]. The authors show that if all tasks are executed

with execution time budgets that must sum to some fixed total, then the optimal setting for the

budgets achieves that total with an equal probability of each task exceeding its budget.

In 2009, Hansen et al. [57] considered the use of EVT to estimate pWCET distributions with

an appropriate level of confidence. They correct a key issue in the work of Edgar and Burns [45]

by using the Block Maxima method. Here the observations of execution times are first grouped

into blocks, then the maximum value is taken for each block. The Gumbel distribution is then

fitted to the distribution of the block maxima, with a χ-squared test used to determine goodness

of fit. The experimental evaluation presented involves over 100 tasks running on a commercial

PowerPC-based device using the VxWorks operating system. The block size is initially set to

100, and doubled repeatedly if the χ-squared test does not indicate a sufficiently good fit. (We

note that this doubling may have been sufficient to capture stationarity in the observations, see

the later work of Santinelli et al. [112]). The Gumbel parameters were obtained by using linear

regression on a QQ-plot. The results produced using EVT were validated against additional

measurements (over 2 million in the case of one task reported upon in detail). These results show

that the EVT method provides a much better estimate of the extreme values with respect to

subsequent observations, than simply taking the maximum observed value and assuming that it is

LITES



03:22 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

the WCET. Nevertheless, there were some tasks where the rate at which execution times (captured

during the validation stage) exceeded some large value was greater than the exceedance probability

predicted by the Gumbel distribution, i.e. the pWCET distribution was optimistic.

The use of EVT to model the extreme execution times of programs was considered by Griffin

and Burns [51] in 2010. They provide a critique, discussing a number of issues that need to be

addressed in order for the results produced to be sound. These include issues relating to the

use of upper bounds (e.g. Gumbel distribution) that are continuous when the possible execution

times of a program may have large discrete steps, and the need for the observations used to be

independent and identically distributed (i.i.d). They describe various ways in which observations

may be dependent (e.g. via internal state such as cache contents, and also via external factors

such as input variables that are affected by the previous outputs of the system leading to a

history dependence). They also note that different paths through the program lead to different

execution time distributions, and hence issues arise with the assumption that all the observations

are identically distributed. Some possible solutions are suggested, such as shifting the 1 - CDF of

the continuous distribution so that it upper bounds its discrete counterpart at all execution time

values, including those that cannot actually be obtained. Possible solutions to issues with the

i.i.d. assumption include resetting the system state between observations, and determining the

set of potential worst-case paths by some other means, and then analysing each of those paths

separately, i.e the per-path approach (discussed in Section 2.3 ).

In 2011, Lu et al. [89, 90] examined issues with the application of EVT highlighted by Griffin

and Burns [51]. They address the requirement that the observations must be i.i.d. They note that

a Gumbel distribution should not be directly fitted to the observations as done by Edgar and

Burns [45], since the Gumbel (and other EV distributions) are intended to model distributions of

the maxima (or minima) of a large number of random variables. Instead, the authors propose

the use of Simple Random Sampling in terms of randomising program inputs, and dividing

observations into groups of N sets, each of m observations, and only using the largest of the m

observations in each set, i.e. the Block Maxima method. We note that Simple Random Sampling

may break dependences in the observations with the potentially for pWCET estimates to then be

optimistic. (The authors give no proof that re-sampling the observations in this way ensures a

sound, i.e. pessimistic result).

In a seminal paper published in 2012, Cucu-Grosjean et al. [34] introduced a statistically sound

method of applying EVT to probabilistic timing analysis, referred to in the paper as Measurement-

Based Probabilistic Timing Analysis (MBPTA). This method uses end-to-end execution time

measurements obtained from the system during testing. For the method to be applicable, the

observations must be i.i.d. Statistical tests (two sample Kolmogorov-Simirnov test, and Runs

test) are used to check that this is the case. The Block Maxima method is used to group the

observations, and the Exponential Tail test is used to check if the distribution of the maxima

fits the Generalised Extreme Value (GEV) distribution, in particular, a Gumbel distribution.

The method also proposes an approach for determining the number of observations required for

each program path. In applying MBPTA to multi-path programs, the authors note that path
coverage is required, otherwise the requirements for i.i.d. observations would be broken, and give

an example of how the results could be unsound in this case. With full path coverage; however,

the method appears to be relatively insensitive to the number of observations on each path,

provided there are sufficient of them. The authors further note that for the i.i.d. property to

be preserved for multi-path programs, either the inputs can be selected randomly when making

measurements and the observations grouped sequentially, or testing can be done with all possible

inputs and then observations selected via random sampling without replacement when performing

the grouping into blocks. We note that this may bias the block maxima towards the worst-case,



R. I. Davis and L. Cucu-Grosjean 03:23

since if high execution times are grouped, random sampling may increase the likelihood that

a block contains a high value. This can potentially result in both pessimism and optimism in

the pWCET distribution, since it changes the shape of the distribution of the block maxima.

The authors evaluate the method for both single-path and multi-path programs running on a

simulated microprocessor with a random replacement cache. Comparisons against the simple

SPTA method of Cazorla et al. [26] show that the pWCET distribution obtained via MBPTA

typically overestimates that derived via SPTA by 3-15% at small probabilities. We note that since

later work by Altmeyer et al. [6] shows that the SPTA method described by Cazorla et al. [26]

typically produces results that have substantial pessimism, substantive conclusions cannot be

drawn about the absolute accuracy of the MBPTA method from these comparisons.

4.2 EVT and observations with dependences

The initial work on MBPTA by Cucu-Grosjean et al. [34] in 2012 resulted in increased interest in

this area of research. Subsequent developments have focussed on relaxing the i.i.d. assumption

and thus facilitating analysis of systems where execution time observations exhibit dependences.

Much of the work in this area emanates from Santinelli and his co-authors Melani, Berezovskyi,

and Guet [93, 112, 16, 53, 54]. They leverage early work by Leadbetter et al. [81] in 1978 and

Hsing [63] in 1991 showing that EVT can be applied to stationary and weakly dependent time

series.

In 2013, Melani et al. [93] investigated the use of statistical methods based on EVT when

execution time observations show dependences on some other event in the system. For example

preemptive rather than non-preemptive scheduling, or different preempting tasks that either

heavily load the processor or the cache. They suggest a characterisation of dependences by

effectively shifting, by an amount ∆, the pWCET distribution for a program as obtained in

isolation. Evaluation shows that this method is effective for code from the Maladarlen benchmark

suite [56] running on an Intel Xeon processor with 3 levels of cache. A small shift, compared to

the overall execution time, is sufficient to account for the effect of the events which the execution

times are dependent on. We note that shifting the pWCET distribution in this way equates to

adding a fixed overhead to account for the extra interference due to preemption and scheduling.

The case for applying EVT when there are dependences between observations was examined by

Santinelli et al. [112] in 2014. They note the prior work by Leadbetter et al. [81] and investigate

less constraining hypotheses than independence such as stationarity and extremal dependence. To

verify stationarity, autocorrelation is computed using lag plots. Experimental evaluation on an

Intel Xeon processor with four cores (per socket) and 3 levels of cache shows that there is sufficient

execution time variability for EVT to be applied. Observations from multi-path code exhibit

stationarity, but pass the tests required in order for EVT to be applied. This indicates that the

use of time-randomised hardware (e.g. random replacement caches) is not necessary in order to

apply EVT. They also discuss dependence between extreme samples. This can be depicted using

an extremogram (described by Davis and Mikosch [36]), which shows whether extreme samples are

correlated in terms of their separation, i.e. whether they are clustered, or distributed throughout

the trace of observations. Further, the authors examine the effect on the pWCET distributions

of choosing different values for the size of the blocks in the Block Maxima method and different

thresholds in the Peaks-Over-Threshold (PoT) method. Significant sensitivity is demonstrated to

these values, with a degradation in performance at larger block sizes. It is not clear whether this

is because the total number of samples is kept constant and thus the larger block sizes equate to

too few blocks. Similarly, using too high a threshold (equating to the 98 percentile) results in

a very large pWCET estimation. Again it may be that too few samples remain. We note that

while this work provides useful insight into the importance of appropriate parameter selection, no

guidance is given on how such parameters should be selected to achieve accurate results.

LITES



03:24 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2014, Berezovskyi et al. [16] investigated the use of MBPTA techniques based on EVT to

estimate the pWCET of CUDA kernels running on an NVIDIA GPU. They discuss the use of the

Generalised Extreme Value (GEV) distribution, and developments that show that independence of

observations is not necessary for the application of EVT. They note the prior work by Leadbetter

et al. [81] and Hsing [63] and recount theorems relating to EVT for sequences with long range
independence and extremal independence [81], and note that randomness is not sufficient in itself

to show independence in these cases. Further, the Runs test previously used by Cucu-Grosjean et

al. [34] does not suffice; rather time series13 tests based on auto-regression and autocorrelation

are needed. The authors suggest the use of lag plots to determine autocorrelation. They use

autocorrelation tests together with the notion of stationarity to quantify statistical independence.

They also use an autoregressive model to determine the stationarity of a trace of observations.

The Ljung-Box test is used to look for correlations between lags. Finally, extremeograms are

used to estimate dependence at the extreme values. The evaluation uses a Kepler GK104 GPU.

Tests on the trace of observations for the GPU computations show them to be independent. By

contrast, the observations of the execution times including data transfer to and from the host

processor are not independent, but they are stationary. Here, the Runs test would have concluded

independence; however, in fact there is a strong stationary relationship, but since this does not

reflect as dependence in the extreme observations, EVT can still be applied.

In 2016, Guet et al. [53] proposed a logical work-flow (embedded in a tool called DIAGXTRM)

that checks the applicability of EVT for the pWCET estimation problem. This work discusses

Pickands-Balkema-de Haan Theorem [105], the Generalised Pareto Distribution (GPD), and the

Peaks-Over-Threshold (PoT) method. The authors again note the prior work by Leadbetter et

al. [81] showing that EVT is applicable in the more general stationary case without independence.

Here, the hypotheses to check on the trace of observations are (i) stationarity, (ii) short range

dependence, (iii) local independence of the peaks, and (iv) that the empirical peaks over the

threshold follow a GPD. The efficiency of the proposed logical work-flow is likely affected by the

relation between theses hypotheses, which are not independent. Moreover, the authors motivate the

introduction of the hypothesis of stationarity based on the impossibility of checking the identically

distributed hypothesis when the bounds on the execution time of a program have unknown

probability distributions. Here, we note that the arguments are not correctly used as stationarity

is an alternative to the hypothesis of statistical independence, rather than an alternative to the

identically distributed hypothesis, further EVT is itself applied only to those cases where the

measurements follow unknown probability distributions. To evaluate stationarity, the authors

use the Kwiatowski–Philips–Schmit–Shin (KPSS) test. Further, the Brock–Dechert–Scheinkman

test is used to evaluate short range dependence, by examining the correlation between different

sub-sequences of the same length. The reliability of EVT also depends on the independence

of extreme observations. Here, the Extreme Index (see Embrechts et al. [46]) is used to give

the probability that peaks are far enough apart to be considered independent, as opposed to

constituting a burst relating to a single rare event. The threshold selection in the PoT method

is a source of uncertainty, since different thresholds may lead to different pWCET estimates.

Reviews of threshold selection methods by Scarrott and MacDonald [114] show that there is no

recognised systematic process for selection. The authors therefore propose an approach that

aims to provide an appropriate tail sample. They evaluate their approach using execution time

measurements obtained from an Intel Xeon processor with 4 cores and 3 levels of cache. Code from

the Maladarlen benchmark suite is run in various configurations including isolation, alternately

with a program that makes heavy use of the cache, and with that program running on the other

13 The time series here is the observations of execution times in the order in which they were made.



R. I. Davis and L. Cucu-Grosjean 03:25

cores. All the traces of observations were found to be stationary with high confidence. Short range

and extreme independence was also verified. Note, Berezovskyi et al. [15] later applied the PoT

approach proposed by in this paper to the NVIDIA Kepler GK104 GPU system that they had

previously investigated using the Block Maxima method [16].

Later in 2016, Guet et al. [54] investigated using measurement based probabilistic analysis

to estimate the number of cache misses for programs running on a COTS multi-core processor

with two Intel Xeon E5620 sockets, using 3 levels of deterministic PLRU caches, with the first two

levels private to each core and the last level shared by cores on the same socket. Their aim was to

estimate the worst-case number of cache misses for programs under different configurations: (i)

isolation, (ii) on a single core alternating with another program on the same core, (iii) on one

core with another program executing simultaneously on a different core, and (iv) combining (ii)

and (iii). (Note, the other program makes a large number of memory accesses). The authors

applied EVT to the problem using the Block Maxima method. They note that the observations

of cache misses are unlikely to be independent, nevertheless, they show that the observations

for most of the programs examined from the Mälardalen benchmark suite exhibited stationarity

and/or extremal independence and so can be analysed using EVT.

In 2017, Fedotova et al. [47] applied the PoT method of EVT to estimate the upper bound values

for a timer acquisition task. This involves setting two consecutive timers using the HighPerTimer
library and calculating the time difference between them. The platform used runs the standard

Linux kernel on ARM Cortex-A5 hardware. The authors discuss how the choice of threshold to

use in the PoT method is a compromise between precision and bias, and make use of two graphical

approaches for threshold selection: (i) mean residual life, which plots the mean excess against

the threshold, and (ii) parameter stability, which plots the shape and modified scale parameters

of the GPD against the threshold. Using these methods, they select an appropriate threshold

which obtains 24 extreme values from the trace. They show that both Gumbell and Frechet

distributions fit the data and compute pWCET estimates with various probabilities of exceedance

for both cases. Due to the different shape parameters for the two distributions, these pWCET

estimates exhibit large differences e.g. 7.7ms v. 5900ms at a probability of exceedance of 10−9.

These large differences raise questions about the variability of results that can be obtained from

the same data, and hence the confidence in them. We note that 10−9 represents a large amount

of extrapolation from the sampled data, with the pWCET estimates much closer together at a

probability of exceedance of 10−7 (2.5ms v. 11.3ms).

Also in 2017, Lima and Bate [87] proposed a technique called IESTA (Indirect Estimation in

Statistical Time Analysis) to support the application of EVT without the need for hardware or

software randomisation. The basic idea is to add a randomised component (e.g. from a normal

distribution with values in the range [a, b]) to the set of execution time observations. This

additional component removes some of the discreteness from the original distribution, and makes

the new values more likely to pass the statistical tests required for the application of EVT. Once

the random component has been added to the observations, then the maxima are sampled, using

either PoT or Block Maxima methods, and the pWCET estimated by fitting to a GEV distribution.

Goodness-of-fit tests indicate if the estimate is a close match to the empirical distribution of the

maxima or peaks over the threshold. If it is not, then the dispersal of the random component can

be increased, which makes it more likely that EVT can be applied and the goodness-of-fit tests

passed. The authors explore two benchmarks, one from the Mälardalen benchmark suite where

EVT could not be applied even with time-randomised hardware, and a second using data from an

aircraft control application from Rolls-Royce running on entirely time-predictable hardware. The

latter has significant dependences between execution times, as shown in autocorrelation plots with

lags of up to 40. For both benchmarks, the IESTA method is able to add a random component

LITES



03:26 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

enabling EVT to be applied. Both the random padding and a high threshold selection help make

it unlikely that dependences appear in the sample of the maxima. The evaluation shows that even

when the dispersal of the random component is large, then the increased pessimism in the analysis

remains small (i.e only a few percent). It remains an open question whether this method may

result in optimistic pWCET estimations.

4.3 EVT and representativity

Representativity is a fundamental issue in applying statistical methods (i.e. MBPTA) to estimate

the pWCET distribution of a program. The problem is that the results obtained are only valid

for those scenarios of operation for which the sample of observations used in the analysis is

representative (see Section 2.3). Often it may not be possible to devise a measurement protocol

that provides a single sample of observations that is representative of all possible future scenarios

of operation. Research considering the problems of representativity are reviewed below.

In 2016, Lima et al. [88] took a careful look at the use of EVT in determining pWCET bounds

for programs running on both time-predictable (deterministic) and time-randomised architec-

tures (i.e. with random replacement caches). They point out that execution time observations

depend on the probability distribution describing how often different input values occur. Thus

there may not be a single distribution that describes the execution time behaviour. The authors

therefore introduced the concept of a weak pWCET which is valid for a particular distribution D(τi)

describing the frequency of occurrence of input values. This raises the problem of representativity
of input data. A simple experimental example shows how the estimated pWCET distribution

produced depends on the distribution of input values, and hence that if the input data distribution

used for analysis does not match that occurring during operation of the system, then the results

obtained may be unsound. Applying uniformly distributed input values during analysis may also

result in poor or unsound estimates. The authors note that in some cases it is not possible to

estimate a reliable Generalised Extreme Value (GEV) model and they cite appropriate extreme

value condition tests that can be used to determine if this is the case. They show that the GEV

distribution should be used rather than assuming a specific distribution (e.g. Gumbel). The models

determined for various experiments belong to all three classes of EV distribution (reversed Weibull,

Gumbel, and Frechet) not just Gumbel. There were also cases where the models belonged to none

of them and EVT could not be used to provide sound results. The experimental results reported

in this work also show that EVT can be successfully applied on time-predictable platforms, thus

indicating that hardware randomisation is not necessary for the application of EVT. They also

found that hardware randomisation is also not in general sufficient to ensure that EVT can be

applied. Random replacement caches that were either too large or too small were observed to

make estimation of the pWCET distribution either harder or not possible at all.

Issues of reproducibility and representativity with respect to MBPTA methods were discussed

by Maxim et al. [92] in 2016. They consider two separate steps: (i) the measurement protocol,

i.e. obtaining execution time observations and (ii) the method used to estimate the pWCET

distribution. They note that to be useful, the estimation method must be reproducible in the

sense that it must provide, within a close approximation, the same pWCET distribution, given

the same set of observations. Further, the measurement protocol must also be reproducible, in

the sense that the two sets of observations that it provides for two different uses of the method,

starting from the same conditions (processor state, external inputs etc.) must result in the same or

sufficiently close pWCET distributions. The authors also consider representativity. They note that

a measurement protocol is representative if there is some value of k (the number of observations)

for which taking any larger number of observations results in a pWCET distribution that closely

approximates the distribution that would be obtained if the whole domain of possible observations



R. I. Davis and L. Cucu-Grosjean 03:27

were considered. In other words after k observations the method converges on a sound pWCET

distribution. The properties of reproducibility and representativity are shown to be mandatory

for convergence and hence required for any MBPTA method intended for use in practice. How to

obtain these properties is; however, left as an open issue.

MBPTA techniques were revisited by Santinelli et al. [110] in 2017. In this work, they apply

EVT to a case study comprising traces of observations from various example systems using

both time-randomised and time-predictable hardware. They discuss the validity of EVT with

respect to different execution conditions (similar to the issues of representativity raised by Lima

et al. [88]) and suggest two ways of integrating all possible execution conditions into EVT: (i)

trace merging and (ii) the use of an envelope (i.e. upper bounding the results for each separate

execution condition). We note that it is not clear whether trace merging always produces valid

results. The authors further propose a reliability measure based on the confidence levels of each

of the hypotheses. They show that confidence is lower if the distribution is artificially forced

to fit a Gumbel distribution rather than obtaining the best fit for the shape parameter. They

also discuss how to choose the threshold in the PoT method, suggesting that a threshold should

be selected that maximises confidence in the matching hypothesis with the largest amount of

independent peaks.

In 2017, Santinelli and Guo [111] proposed a probabilistic representation framework, modelling

tasks via multiple pWCET distributions. They noted that the pWCET distributions obtained via

EVT strongly depend on the execution conditions used for analysis. These execution conditions

describe aspects such as the environment, inputs, task mapping, presence of faults etc. The authors

therefore propose describing each task via a Worst-Case Set which is a collection of pWCET

distributions obtained via EVT for different execution conditions. They note that the number of

different execution conditions is finite, and a partial ordering may be possible between some of

them, indicating dominance relationships (in the sense of the greater than or equal to operator �

defined by Diaz et al. [44]). They note that enumerating all possible execution conditions is a

complex problem (since there may be very many of them); however, tasks could be represented by

pWCET distributions which bound those for collections of execution conditions with incomparable

pWCET distributions. The authors propose the use of their model for mixed criticality systems,

with different execution conditions for different criticality levels, and for systems with and without

faults.

The problems of applying EVT when execution time observations have a mixture distribution,

resulting in a step-like curve on an exceedance (1 - CDF) graph, were discussed by Abella et al. [3]

in 2017. (Note, mixture distributions can occur as a result of caches that employ random placement,

discussed in Sections 6.1 and 6.2). In this case, it is important that sufficient observations are

obtained and that the threshold (PoT method) or block size (Block Maxima method) is set

appropriately, such that sufficient values from the actual tail of the distribution are passed

to EVT, as opposed to including too many values from other parts of the distribution. The

authors present a method for selecting the observations required and suitable EVT parameters.

First, they argue that in real-time systems, programs have finite execution times and so heavy

tailed GEV/GPD distributions may be discarded. Further, since somewhat pessimistic pWCET

estimates are acceptable, but optimistic estimates are not, they argue that it is sufficient to

consider distributions with exponential tails (i.e. Gumbel distributions) as a bound for all potential

light-tailed distributions. They propose a method of determining appropriate parameters based

on considering the Coefficient of Variation (CV) of the residual distribution, i.e. the distribution

of the excess over the threshold in the PoT method. (Note, the CV is given by the standard

deviation of a distribution divided by its mean). The method employs a plot of the CV versus the

number of samples over the threshold to find a suitable number of samples in the tail distribution,

for which the assumption of an exponential tail is not rejected by statistical tests and the CV

LITES



03:28 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

is closest to 1, implying an exponential tail. The approach is evaluated using a number of

the EEMBC benchmarks, but considering only single paths. Execution time observations are

obtained by making runs in isolation on a cycle accurate simulator for the Cobham Gaisler Next

Generation Multicore Processor (NGMP) with modifications such that all caches use random

placement and random replacement (see Section 6). The CV-plots show that in some cases 2000

or 3000 observations are required, compared to the default of 1000. Comparison with empirical

distributions for 107 runs (generated on a large compute cluster) show that the pWCET estimates

are 1% to 25.8% larger than the maximum observed values at a probability of exceedance of 10−7.

In 2017, Milutinovic et al. [101] discussed issues relating to representativity with respect to

the use of MBPTA in an industrial context. They argue, citing the above work of Abella et al. [3],

that for real-time programs (with a finite but unknown WCET and non-degenerate behaviour) it

is sound to fit a Gumbel distribution, since for this class of program using a Gumbel distribution

may result in an over-estimate at probabilities of exceedance that are of interest, but not an

under-estimate. Further, the authors point out, as was done by Griffin and Burns [51] in 2010,

that taking observations from multiple paths as input into MBPTA (i.e. the per-program approach,

see Section 2.3) may produce untrustworthy results. The problem being that the observations may

no longer be identically distributed (particularly if the different paths are quite distinct modes of

operation), and also the frequency of occurrence of the different paths may not match that which

occurs during operation. The authors give a concrete example of this problem which shows that

combining observations for two paths from a simplified European Train Control System can result

in a pWCET distribution which is below the pWCET distribution for either path considered

alone. (We note that no comparison is made to the empirical distribution, so it is unclear if any

of the three pWCET distributions are actually under-estimates). The authors suggest that the

per-path approach (see Section 2.3) can be used instead to provide a solution.

Also in 2017, Guet et al. [55] considered two issues relating to representativity. First, how

traces of observations are handled when there are dependencies between execution times. In

this case, the authors show that re-sampling the traces of observations can reduce the degree

of dependency which is apparent and this may in turn result in lower pWCET estimates which

can be unsound (i.e. optimistic). Secondly, they consider the use of EVT with multi-mode tasks,

where different modes of operation have distinct execution time distributions. Here, they show

via examples that combining all of the observations into a single sample (i.e. covering all modes)

can result in cases where either EVT cannot be applied, or it can result in unsound pWCET

estimates. They infer that it is necessary to apply EVT to each mode separately and then form an

envelope upper bounding the pWCET distributions for each mode to provide an overall pWCET

distribution that is sound.

4.4 Summary and Perspectives

MBPTA methods have matured considerably since the early work of Burns and Edgar [22, 45].

In particular, we note the work of Cucu-Grosjean et al. [34] which spawned a large number of

subsequent publications on supporting mechanisms and techniques (see section 6), and prompted

further research into the application of EVT to the probabilistic timing analysis problem. The

recent state-of-the-art has shown that time-randomised architectures (e.g. with random replacement

caches) are neither sufficient nor necessary for the application of MBPTA methods [112, 88, 87].

Further, EVT can be applied when there are dependences between the observed execution times,

provided that the series of observations exhibits stationarity and/or extremal independence [112,

16, 53, 54]. These are useful advances, since industry has a strong preference for methods that can

be applied to Common-Off-The-Shelf (COTS) processors, rather than requiring specific (custom)

hardware architectures. We note however, that there are significant hazards in applying MBPTA



R. I. Davis and L. Cucu-Grosjean 03:29

methods. If potential sources of significant execution time variability do not exhibit this variability

during analysis, i.e. such variation does not appear in the observations, then they will not

be accounted for in the estimated pWCET distribution produced, which may as a result be

optimistic (i.e. unsound).

A major open issue that remains is the problem of representativity. It is essential that the

measurement protocol is representative of the future scenarios of operation that could occur in

practice. In general this requires suitable coverage of the different input states, hardware states,

and the worst-case path(s) through the program. While worst-case path coverage may be possible

for relatively simple and well structured programs in domains such as aerospace, in general, the

problem of identifying and exercising the worst-case path(s) cannot be left to the user. Research

aiming at a solution to this problem is reviewed in Section 5.

The main rationale for using time-randomised hardware (e.g. random replacement caches,

random permutation buses etc.) as well as software time-randomisation techniques (e.g. random

placement) is to make it easier to provide an argument that the measurement protocol used during

analysis is representative of the scenarios of operation that could occur in future. These enabling

mechanisms and techniques are reviewed in Section 6.

We note that there remains significant scope for work on the application of EVT to the problem

of estimating pWCET distributions. Currently, there are differing views on whether it is sufficient

to assume that any program in a real-time system will have an execution time distribution which

can be modelled as having a light or exponential tail, and hence a Gumbel distribution can be

used as suggested by Abella et al. [3], or whether it is necessary to fit to a GEV distribution, since

the execution time of some programs may exhibit heavy tails as shown by Lima et al. [88]. There

has also been little work on the reproducibility of the method: whether small changes in the set of

observations may propagate to large differences in the resulting pWCET distributions, and thus

on how far the pWCET distributions can realistically be extrapolated to very low probabilities

e.g. 10−9, 10−12, 10−15 and so on, while retaining confidence in the results.

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)

A number of researchers have sought to combine the advantages of static analysis and measurement

based methods. The main advantage of measurement-based methods is that measurements record

the precise timing behaviour of the real system, whereas static analysis relies on a model of that

behaviour. For advanced processors, obtaining a precise model or even one that does not introduce

significant pessimism may be very difficult. The main disadvantage of measurement-based methods

is the difficulty in covering the worst-case behaviour, including covering the worst-case path(s)

through the code. The MBPTA methods based on EVT provide a pWCET distribution which

estimates the extreme execution time behaviour of future scenarios of operation, sample(s) of

which were exercised during an analysis phase. It is however up to the user to provide the necessary

input vectors to test all relevant paths, including the worst-case path. Typically, neither manually

determining the worst-case path, nor obtaining full path coverage are feasible in practice for

complex programs. Further, as shown by Lesage et al. [85], the analysis rapidly becomes optimistic

when some paths are omitted. In this section, we review hybrid methods which seek to address

this problem of path coverage.

5.1 HyPTA and the Path Coverage Problem

In a series of papers from 2002–2005, Bernat et al. [19, 18, 17] addressed the problem of path

coverage in measurement-based execution time analysis by reducing it to the much simpler problem

of basic block (i.e. statement) coverage. In these works, the authors introduce the concept of

LITES



03:30 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Execution Time Profiles (ETPs) used to represent the relative frequencies of execution times for

basic blocks of a program. They also provide a timing scheme for constructs such as conditionals

and loops, and an algebra for combining independent ETPs to provide an ETP for the whole

program. For sequential combination, this involves using the basic convolution operator. Further,

they point out the importance of accounting for dependences between basic blocks when combining

ETPs otherwise unsound results could be obtained. Potential sources of dependence include:

low-level hardware features such as caches and pipelines, and high-level path dependences. They

suggest using biased convolution14 to account for unknown dependences. (We note that Ivers and

Ernst [64] later showed that biased convolution is insufficient to produce a distribution that results

in the worst-case exceedance probability for every possible value of the execution time budget). A

tool set is described by Bernat et al. [18] that implements the mechanisms described above. The

main components are: instrumentation, trace generation, trace analysis, structural analysis, and

timing program generation. This tool set was the precursor and prototype for the RapiTime tool

from Rapita Systems15. Later in 2005, Bernat et al. [17] examined the problem of combining the

ETPs for two basic blocks of code A and B when there are dependences between them. Here, the

authors propose applying copulas (representing the dependences) to the marginal (i.e. separate)

distributions of A and B to obtain the joint distribution.

In 2014, Kosmidis et al. [70] introduced the idea of Path Upper Bounding (PUB) for time-

randomised hardware with a random replacement cache. With PUB, the program is modified so

that it retains the same functionality, but has the same timing behaviour for every path, and that

timing behaviour upper bounds that of the original program. PUB inspects each conditional in the

program recursively and adds accesses such that all sub-paths of a particular conditional contain

the same set of accesses. Once PUB has been applied, then the modified program is subject to

MBPTA, with no particular attention needed to the input vectors used or the paths exercised, since

all will result in a timing behaviour that upper bounds that of the original program. Evaluation,

using the EEMBC benchmarks, shows that PUB increases code size by 20-100% depending on

the amount of nesting and conditionals present, with the pWCET estimate at an appropriate

probability of exceedance increased by up to 50%. We note that the application of PUB requires

a trusted or certified implementation, since it modifies the code of the original program to create

the version that is tested for timing correctness. Further, the method only works for systems that

use a single-level random replacement cache.

The Extended Path Coverage (EPC) approach proposed in 2015 by Ziccardi et al. [136] also

addresses the issue of path coverage via a hybrid approach. EPC requires that execution time

measurements are made at the basic block level, while also recording the path taken, and that

sufficient coverage is obtained to provide an Execution Time Profile (ETP) for each basic block.

The ETPs are then modified to discount any benefit that may have accrued due to the path

taken when the measurements were made. This is done by computing a probabilistic padding

via the SPTA techniques developed by Altmeyer and Davis [7], considering the path actually

taken and the memory accesses in the immediately preceding basic blocks. Synthetic end-to-end

observations for all feasible paths can then be generated by randomly sampling the ETPs for the

relevant basic blocks along each path. These synthetic observations are then fed into MBPTA.

The authors evaluated EPC compared to directly applying MBPTA. For single path code there

was no difference. For multi-path code with a known worst-case path, the EPC method resulted

in pessimism of up to 30%. Comparisons with PUB [70] showed that EPC achieved on average

14 Biased convolution combines values from two distributions assuming perfect correlation with respect to the
percentile of the execution time, i.e. largest correlated with largest, smallest with smallest etc.

15 https://www.rapitasystems.com/products/rapitime

https://www.rapitasystems.com/products/rapitime


R. I. Davis and L. Cucu-Grosjean 03:31

similar performance with a +/-30% variation apparent between the two methods. EPC has the

advantage with respect to directly applying MBPTA that it reduces the burden of path coverage,

and the advantage over PUB that it does not require changes to be made to the executable code

in order for measurements to be taken. EPC does however inherit some of the disadvantages

of SPTA in that it needs to know the addresses of accesses to determine which cache sets they

map to, and so compute the padding. Further, fine grained observations are needed at the basic

block level, and accompanying structural analysis to re-construct the possible paths. EPC was

developed for systems with separate, single level data and instruction caches, given the current

lack of SPTA for multiple levels of cache (discussed in Section 3.4), it is not clear if the method

could be extended to more complex memory hierarchies. Like PUB, EPC only applies to systems

with random replacement caches.

5.2 Summary and Perspectives

A limited amount of research has aimed at addressing the path coverage problem via the use of

hybrid methods [19, 70, 136]. However, these methods have some drawbacks, initial work by Bernat

et al. [19] recognises the key issue of dealing with dependences between the measurements obtained

for different basic blocks, but is unable to provide a practical approach for dealing with them.

Later work on Path Upper Bounding (PUB) [70] requires substantial changes to the executable

code, inflating code sizes by up to 100% and execution times by up to 50%, and requiring a trusted

or certified implementation. Finally, the Extended Path Coverage (EPC) method [136] makes

use of SPTA to compute a probabilistic padding to account for the dependences between the

execution times of basic blocks due to the random replacement cache. EPC thus inherits some of

the disadvantages of SPTA in that it needs to know the addresses of accesses to determine which

cache sets they map to, and so compute the padding. Both PUB and EPC methods only work

with random replacement caches.

In general, the issue of path coverage in relation to MBPTA remains unsolved. One approach

for simple systems with few paths is to apply EVT on a per-path basis, i.e. to traces of observations

taken for each specific path separately, thus producing a pWCET distribution for each path. The

overall pWCET for the program can then be obtained as a tight upper bound on the pWCET

distributions for all of the constituent paths. This envelope approach is well-suited to systems

where there are a limited number of paths and the user can provide input vectors which exercise

all of them. For many systems this is however unrealistic. The alternative is to apply EVT

per-program i.e. to a sample of observations that cover all of the different paths. (Note, all paths

need to be covered or the pWCET estimates can quickly become unsound as shown by Lesage et

al. [85]). This approach raises difficulties in applying MBPTA, since the resulting observations

will most likely form a mixture distribution (with the different distributions from the different

paths contributing to the mixture), and thus care needs to be taken to ensure that sufficient

observations are obtained from the tail of the distribution, i.e the worst-case path(s). This can be

heavily impacted by the frequency of occurrence of different paths during analysis, and thus gives

rise to issues regarding representativity. Further research is needed in this area.

6 Enabling Mechanisms and Techniques

MBPTA methods [34] based on EVT work well when the observations are able to characterise the

different sources of execution time variability and their probability of occurrence. As an example,

consider a program running on hypothetical time-randomised hardware where each instruction

takes an random amount of time to execute, from 1 to 6 cycles, independent of all of the other

instructions. Assume the program has 10 instructions. The overall execution time will behave

LITES



03:32 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

like the sum of the values of 10 fair dice. While the worst-case (i.e. 10 sixes) is unlikely to be

observed (probability ≈ 10−8), EVT is able to estimate the tail of the distribution from a relatively

small number of observations (e.g. 1000). Contrast, this with a hypothetical time-predictable

system, here the execution time might depend on say 10 different input variables (each with values

from 1-6). Let us assume that there is some small variability in overall execution time which

depends on the input values themselves e.g. the overall execution time is 10, 20, 30, 40, 50, or 60;

however, if all 10 inputs take a specific combination of values then there is some conflict in the

hardware which slows processing down and the execution time is 600. The probability of observing

this via random testing of the inputs is ≈ 10−7. In this case, applying EVT on 1000 observations

would most likely result in a prediction based on the small variability that has been observed, but

would obviously not account for the much larger variability that has gone unobserved. As a result,

the pWCET estimate would be unsound. This is an example of a needle-in-a-haystack problem

in testing. The intent of using time-randomised hardware is to avoid hazards similar to the one

described above. These can potentially occur with time-predictable hardware such as LRU caches,

when the unlikely, but not impossible, scenario of multiple input-data dependent accesses mapping

to the same cache set occurs. We note that such hazards, referred to as cache risk patterns, can

also occur with time-randomisation techniques such as random placement (see Section 6.3).

Since the work of Cucu-Grosjean et al. [34], considerable efforts have been expended to support

MBPTA methods via the use of additional hardware and software time-randomisation mechanisms.

These include hardware and software random placement for set-associative random replacement

caches, random permutation buses, degraded test modes, and better random number generators.

In this section, we review the supporting work in these areas.

6.1 Caches and Hardware Random Placement

Fully-associative caches are slower and use more energy than set-associative caches of the same

overall size but a much smaller number of ways. This is due to the extra logic needed to check if a

memory block is in any, as opposed to a small number of, cache lines. Because of this, in practice

caches tend to either be direct mapped or to have 2, 4, 8 or 16 ways. The idea of using a random

placement policy is to provide more randomisation with a set-associative random replacement cache

than is possible with modulo placement, while improving access times and energy consumption

compared to a fully-associative random replacement cache. Random placement can be achieved

in hardware (via a randomised hash function used to control the mapping of memory blocks to

the cache) or via software (through the use of compiler techniques and runtime support that

randomise the positioning of code and data in memory). In each case, a random placement is

selected at the start of each run of the program and remains in place for the duration of that run.

The cache is then flushed between runs ready for a different random placement to be used on the

next run.

The idea of random placement has its origins in the 1990s. In 1993, Schlansker et al. [115] first

proposed random placement as a means of improving the cache miss ratio of matrix operations. In

1999, Topham and Gonzalez [124] proposed the use of polynomial modulus functions (operating

on memory addresses) as a means of pseudo-randomising cache placement, in order to reduce

the number of conflicts. We note that while these methods can avoid systematic conflicts due to

particular code structures, they provide a deterministic mapping that depends on the memory

addresses, and thus always produce the same placement for a given memory layout. (The placement

does not change on each run of the program).

The majority of the work on hardware random placement for random replacement caches was

developed in a series of papers from 2013–2016 by Kosmidis and co-authors including Abella,

Cazorla, Quinones, and later Hernandez [68, 69, 67, 61].



R. I. Davis and L. Cucu-Grosjean 03:33

In 2013, Kosmidis et al. [68] proposed the use of a hardware random placement policy as part

of the cache design. The parametric hash function used aims to avoid systematic collision of two

memory blocks in the same cache set. The evaluation considers random placement applied on top

of set-associative random replacement caches, thus it is difficult to quantify the contribution of

random placement versus random replacement. Where these factors can be separated e.g. for a 1

way – 256 set (i.e. direct mapped) cache with random placement, and a 256 way – 1 set (i.e. fully

associative) random replacement cache, the results show that random placement results in a factor

of 2.6 degradation in execution time performance (measured in terms of the average number of

instructions per cycle) compared to modulo placement. By comparison, in the fully associative

case, random replacement shows approximately 10% degradation in performance compared to

LRU. In a journal extension in 2014, Kosmidis et al. [67] provided a detailed analysis of the

quality of the hash function used for random placement, as well as more detailed evaluation results,

including an investigation into energy consumption and cache access times.

As part of an analysis for caches with random placement and random replacement, Kosmidis

et al. [68] gave formulae for the cache hit probability of a given access in a set-associative random

replacement cache; however, as shown by Davis et al. [41], this formula cannot be used in SPTA

since it may result in a pWCET distribution that is optimistic (i.e. unsound). Similarly, the

formulae given for the cache hit probability assuming caches using random placement, or both

random placement and random replacement also cannot be used in SPTA.

In a number of works, Kosmidis et al. [68, 74, 67]) describe the concept of an Execution Time

Profile (ETP) as defining the different execution times of a program (or instruction) and their

associated probabilities. They state that “the existence of an ETP ensures that each potential
execution time of the program (for MBPTA) or instruction (for SPTA) have an actual probability
of occurrence, which is a sufficient and necessary condition to achieve the desired probabilistic
i.i.d. execution time behaviour” so that MBPTA can be applied. However, this is not entirely

correct. The argument given in more detail in a white paper by Abella et al. [1] shows that the

time-randomised architecture proposed ensures the existence of an ETP for a single path through

the program starting from a fixed initial software and hardware state. Thus the observations for
that path and initial state will be independent and identically distributed (i.i.d.). However, for a

complete program, with multiple paths, this does not necessarily mean that the execution time

observations collected over multiple paths for use in MBPTA will be i.i.d. As a simple example,

consider a program that implements a state machine with states 1-5 that it cycles through in

order. Each state may have an execution time that is quite different from the others e.g. 100 ± 20,

200 ± 20, . . . 500 ± 20, where ±20 represents the random variation and the first value is determined

by the state variable. Now when multiple runs of the program are performed, it cycles through

the states, and hence the execution times observed are not independent, rather there is a strong

correlation between them with a lag of 5. In cases such as this MBPTA may or may not be

applicable; appropriate statistical tests are needed to determine if the execution times observed are

actually i.i.d., as there is no relation between the statistical properties of the execution times of an

instruction and the statistical properties of the execution times of an entire program containing

that instruction. The architecture alone cannot ensure that the execution times will be i.i.d. for

all real-time programs.

Later in 2013, Kosmidis et al. [69] applied MBPTA [34] to a system with multiple levels of cache

that use random replacement along with a random placement policy implemented in hardware [68].

Here, separate L1 instruction and data caches are assumed, with a unified L2 cache. Assuming

latencies for the L2 cache and memory of 10 and 100 cycles respectively, the evaluation shows

that using a second level of cache improves the pWCET estimate at an appropriate probability of

exceedance for the EEMBC benchmark code by 10-90% depending on the size of the working set.

LITES



03:34 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

The authors also give a series of formulae that approximate the probabilities of cache misses for

different cache arrangements. These formulae relate to those from earlier papers [68, 67], which

can be optimistic by orders of magnitude as shown by Davis et al. [41].

Building on the work of Kosmidis et al. [68], in 2014 Slijepcevic et al. [120] considered a

time-randomised (i.e. both random placement and random replacement) last-level cache that is

shared between cores in a multi-core system. The basic idea proposed is that a shared time-

randomised cache makes the cache interference suffered by a task due to co-runners depend only

on the frequency of co-runner cache misses (i.e. evictions) and not on the precise cache lines that

are accessed. The authors present a hardware mechanism that limits the eviction frequency by

enforcing a minimum inter-eviction delay for each core. The pWCET distribution of each task is

then estimated at analysis time with this mechanism limiting its rate of cache misses (i.e. stalling

execution if two misses would otherwise occur too close together), and synthetic co-runners causing

the maximum possible rate of evictions (i.e. separated by exactly the minimum inter-eviction

delay). To avoid problems due to systematic interleaving, the minimum inter-eviction delay is

itself set to a uniform random value with the desired mean. Cache sharing with the proposed

mechanism limiting contention is compared to cache partitioning into 4 partitions of 2 ways each.

The latter results in estimated pWCETs at an appropriate probability of exceedance that are on

average 56% higher.

In 2015, Anwar et al. [9] developed a VHDL implementation of random replacement and the

hardware random placement policy proposed by Kosmidis et al. [68] for instruction and data

caches, and integrated it with an Ion MIPS32 processor core on an FPGA. They used the Mersenne

Twister algorithm, which is considered a good hardware solution for random number generation,

replacing the Multiply With Carry random number generator previously proposed [68]. For a set

of benchmarks operating on arrays and matrices, with nested loops, the authors claim that the

time-randomised hardware gives an improvement of 6% and 19% over LRU for 8-way and direct

mapped caches respectively, when comparing observed execution times. We note; however, that

these figures use the worst-case execution times observed in 30 runs with the time-randomised

hardware; whereas the predicted pWCET at an exceedance probability of 10−3 is consistently

larger than the measurements shown for LRU.

An improved hardware random placement policy called random modulo was described by

Hernandez et al. [61] in 2016. With the parametric hash function for random placement introduced

by Kosmidis et al. [68] there is a finite probability that adjacent memory blocks will be mapped

to the same cache set in some placements and thus conflict with each other. This degrades

performance, particularly for an instruction cache with respect to loop constructs that span a

number of adjacent memory blocks. The random modulo approach seeks to avoid this problem. It

effectively creates a random permutation which maps from addresses in a memory segment (the

same size as a cache way) to cache sets. This mapping retains the property of modulo placement,

whereby memory blocks separated by less than the size of a cache way will not conflict in the

cache. The hardware implementation also has a number of advantages over the parametric hash

function method of Kosmidis et al. [68]; it uses less than 10% of the silicon area and can operate

at a higher frequency. The evaluation of random modulo for instruction and data caches shows

that it provides a significant reduction in the pWCET estimate at an appropriate exceedance

probability, compared to the parametric hash function, with an advantage of 25-62% across the

different EEMBC benchmarks studied.

Later in 2016, Trillia et al. [127] improved the resilience of caches implementing the random

modulo random placement policy described by Hernandez et al. [61]. They note that the original

form of this policy does not result in an even distribution in terms of how often the cache lines are

used. This is due to the fact that the index bits that are used are entirely dependent on the access



R. I. Davis and L. Cucu-Grosjean 03:35

pattern of the program. By the simple expedient of XORing part of the selected random seed

with these index bits, homogeneity of cache line use can be achieved. This has the desirable effect

of making the cache more reliable, since one of the main sources of transistor degradation (called

Hot Carrier Injection) is proportional to the amount of use. The additional XOR gate has no

effect on the maximum operating frequency of the cache, since it is not on the critical path.

In 2018, Benedicte et al. [11] considered the use of random replacement policies in multi-

level caches. They show that performance, in terms of pWCET estimates at an appropriate

probability of exceedance, can be improved by using different policies in the L1 and L2 caches.

They explore the use of random modulo placement [61] in the L1 cache and the use of a parametric

hash function [68] across L2 cache segments combined with either modulo or random modulo

placement within L2 cache segments. These approaches provide an improvement in performance

of approx. 30% compared to using parametric hash functions at both levels.

6.2 Caches and Software Random Placement

The majority of the work on software random placement for random replacement caches was also

developed in a series of papers from 2013–2016 by Kosmidis and co-authors including Abella,

Cazorla, and Quinones [72, 73, 71, 78].

In 2013, Kosmidis et al. [72] proposed the use of compiler techniques and runtime support to

randomise the layout of both code and data in memory; effectively providing a software means of

random placement applicable to hardware with direct mapped caches or set-associative caches

using LRU replacement. The code and data layout in memory is changed before the start of each

run of the program. Due to the deterministic mapping to cache, this has the effect of randomising

the cache lines at which code and data objects start in the cache, thus randomising conflicts

between objects, but not within them. Evaluation on examples from the EEMBC benchmark

suite produce observations of execution times that pass the i.i.d. tests, thus allowing MBPTA to

be applied. Software random placement does however have a number of drawbacks. The results

show that the overheads increase the pWCET estimate at an appropriate exceedance probability

by a factor of 10 for code that contains a loop that is repeated 100 times, and by a factor of 2 if

the loop repeats 1000 times. We note that re-arranging code and data objects at runtime may be

unacceptable in many industry sectors, such as automotive and aerospace. Such a re-arrangement

means that deployed systems could run code and data layouts that have never been tested. This

may reveal some subtle bug in functionality which was dormant in tested configurations, and

could be very difficult to reproduce.

Subsequently, in 2014 Kosmidis et al. [73] acknowledged issues with their software random

placement scheme [72]. This scheme conflicts with the design principles of the ISO26262 standard

for the development of automotive software: “(i) limited use of pointers, (ii) recommendations
against the use of dynamic objects, and (iii) no hidden data flow or control flow”. The authors

therefore proposed an alternative: Static Software Randomisation. Here, the idea is to create

a series of binaries at compile time that have locations for functions and data such that their

mapping to cache follows a random selection. The method chooses random offsets for each function

and data object from the start of the cache. It then finds a suitable ordering of the functions

in memory, with some additional spacing to achieve the desired mapping to cache via modulo

placement without wasting too much memory. The locations of stack frames and global variables

are similarly randomised at compile time. The authors propose creating N binaries, running each

one once, measuring its end-to-end execution time, and using this data as input into MBPTA.

They assume that the estimated pWCET distribution so obtained will apply to all of the binaries.

Then at deployment they propose either (i) a different binary is deployed in each production unit,

or (ii) a single binary is chosen and deployed in all production units. They note that (i) may

LITES



03:36 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

not be acceptable if each individual unit is not fully tested. The authors claim that the pWCET

distributions obtained from their scheme will be valid for case (ii), however, this is not correct.

For the MBPTA method based on EVT to give sound results, it is necessary that the observations

made in the analysis phase are either directly representative of those that could occur during

deployment of the system, or they upper bound a set of values that are representative of those that

could occur during deployment. Neither is the case when observations are taken from different

binaries, which are effectively different systems to the one deployed. In this case, the observations

are not identically distributed, but rather they come from the different distributions associated

with each of the different binaries.

In 2016, Kosmidis et al. [71] investigated the use of static software randomisation applied to

software from an automotive cruise control system running on a single core of an AURIX multi-core

system. Dynamic software randomisation is not possible for this system, since the AURIX platform,

in common with many used in automotive systems, does not permit self-modifying code. Instead,

the authors use static software randomisation where program code, stack and global data are

allocated random locations in memory across different binaries. A pool of different binaries are

used during the analysis phase to obtain observations, with a single binary selected for deployment.

The authors claim this allows EVT-based methods to be applied; however, as discussed above,

this approach is not valid. In particular, the “overall system” used during analysis, which operates

by selecting and then running a binary to obtain a single observation, is not the same as the

system used during operation, which runs the same binary every time. Thus the execution time

observations made at the analysis stage are not identically distributed with respect to those

obtained during deployment, and hence the results of applying EVT-based methods are invalid in

this case. Unfortunately, the authors misunderstand the point of applying tests on the observations

to determine if they are independent and identically distributed (i.i.d.). They apply these tests

on observations from 1000 different binaries used during the analysis phase and then claim that

a positive result enables the use of EVT. This may be the case if the deployed system were the

same as the one used during analysis (i.e. it switched binary every run), but it is not.

A different approach to software random placement called TASA Tool-Chain Agnostic Static
Software randomisation Approach was proposed by Kosmidis et al. [78] in 2016. This approach

randomises the location in memory at which different objects defined in the source code are placed.

To do so, TASA relies on the fact that the compiler generates code and data in the order in which

they appear in the source files. Thus it adds functionally neutral padding code and data and

re-orders the declarations of variables and functions to achieve a degree of randomisation. Stack

frames are also randomised by adding a randomly sized array to the list of local variables and also

by re-ordering those variables. Similarly, the members of compound structures are also shuffled.

TASA has the advantage over previous efforts at software randomisation in that it operates at

the source code level and is thus portable, depending only on the programming language. The

TASA approach relies of creating N binaries to use in the analysis stage (collecting end-to-end

measurements for input into MBPTA) and then deploying a single binary for which it is assumed

the pWCET distribution derived via EVT will apply. Unfortunately, as discussed above this logic

is faulty. The N binaries represent different systems from that which is deployed, and hence the

results from applying EVT are not valid for the deployed system.

6.3 Cache Risk Patterns with Random Placement

A significant issue with both hardware and software random placement is that some randomly

chosen placements may result in a cache risk pattern [106] whereby a number of accesses within a

loop conflict in the cache, thus resulting in a large increase in the execution time for that particular

configuration. Further, the probability of such a pattern occurring can be below that which might



R. I. Davis and L. Cucu-Grosjean 03:37

reasonably be observed in the limited number of execution time observations used in MBPTA,

but above the probability threshold (e.g. 10−9) at which such long execution times can safely be

ignored. Thus random placement can create a needle-in-a-haystack problem, making the results

provided by MBPTA unreliable.

Research aimed at addressing the above problems was developed predominantly by the same

group of researchers who investigated software and hardware random replacement methods (see

Sections 6.1 and 6.2, including Abella, Benedicte, Cazorla, Kosmidis, and later Milutinovic [4, 13,

14, 98, 99, 97].

In 2014, Abella et al. [4] identified the above issue with the random placement scheme of

Kosmidis et al. [68] and suggested taking observations using a smaller cache as a way of revealing

cache risk patterns by making them more likely to occur in the limited number of runs employed

by MBPTA. Analysis is given which aims to compute the reduction in the size of the cache needed

to achieve this. This analysis makes an assumption that a cache risk pattern for a given placement

will always be observed in a run that uses that placement; however, unless the code is single path,

or the loop is executed on every path, then this assumption may not hold. Different runs may

exercise different paths, only a few of which may cause the loop with the cache risk pattern to

execute. Hence the reduction in the size of the cache necessary to achieve sound results may

be substantially greater than that computed using the formulation given in the paper. We note

that the analysis provided by Abella et al. [4] assumes that each unique address is re-mapped

independently by the random placement mechanism. While that may be the case using a hardware

approach to random placement [68], with software random placement schemes [72] code and data

are subject to random placement only at the level of functions and objects. It is not clear if the

method proposed by Abella et al. [4] can be applied in that case; however, it is apparent that the

issue of unobserved large variations in execution time also exists with software random placement

schemes.

In 2016, Benedicte et al. [13] studied the problem of cache risk patterns with hardware random

placement. In particular, they review the analysis given by Abella et al. [4] which determines the

probability Peoi of a particular event of interest (i.e. a cache risk pattern) occurring based on an

approximation using weak compositions theory. The authors present a precise calculation of Peoi

using an approach based on multinomial coefficients. This calculation shows that the value of Peoi

computed by Abella et al. [4] using weak compositions theory may over-estimate the precise value.

Such an over-estimate leads to an under-estimate of the number of runs required to have confidence

that the event will occur during the runs used to collect execution time observations for input into

EVT, thus undermining the soundness of the estimated pWCET distribution. Calculation of the

precise value for Peoi takes significantly longer, and may become intractable due to the need to

enumerate all possible cache allocations of interest. The method is only valid for programs with

“homogeneously accessed objects” in other words, programs where every object (e.g. instruction)

is accessed the same number of times, i.e. in one single outer control loop with no conditional

branches.

The issue of cache risk patterns due to software random placement schemes was also addressed

by Benedicte et al. [14] in 2016. The authors note that unlike hardware random placement,

software random placement works at the level of functions and objects and thus the probability

that a particular object is allocated to a given cache set is dependent on the allocation of previous

objects. They also note that determining a precise model of the probability Peoi of a particular

event of interest (a cache risk pattern) is intractable. Given a number of objects and their sizes,

Monte-Carlo simulation is therefore used to estimate Peoi, and hence whether it is greater than

the required threshold e.g. 10−9, but nevertheless too low to have confidence that the event will

occur during the runs used to collect execution time observations for input into EVT. If so, the

LITES



03:38 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

number of runs R is computed such that the probability that the event will not be seen in R

runs is less than Pconf = 10−9. This is given by the formula R ≥ log(Pconf )/log (1 − Peoi). The

evaluation shows that when the number of objects is in the range [5 − 60] (depending on cache and

object sizes), then Peoi can fall into the problematic range requiring an increase in the number of

runs. Some examples are given showing that with Peoi = 0.085 then the number of runs needs to

be increased to approx 2500. However, we note that for smaller values of Peoi e.g. 10−6 which

also appears in the evaluation figures for a smaller number of objects, then the number of runs

required such that the probability of not observing the event is less than 10−9 becomes very large

e.g. approx. 2.107, which is unlikely to be attainable in practice. Aside from the potential for

requiring very large numbers of runs, the main drawback of this approach is that, as the authors

note, it only works for programs with homogeneously accessed objects. This severely restricts the

use of the method when realistic programs, e.g. with functions within conditionals and nested

loops, are considered.

In 2016, Milutinovic et al. [98] addressed an issue with the approach of Abella et al. [4] to

identifying cache risk patterns caused by random placement that have a very low probability of

being captured in the observations used in MBPTA. They showed that the approach of Abella et

al.[4] ”only works when the impact on execution time of mapping any subset, bigger than W (the
number of cache ways) is the same”. This is only the case if all of the accesses are made in a

round-robin fashion, for example single path code within a single large loop; however, this is not

the case for programs in general which contain conditionals and other constructs. The method

proposed by the authors aims to solve this problem. It considers all
(

U
x

)

combinations of x out

the U different memory block accesses in the program, where x is varied in the range [W + 1, U ].

The probability of a given combination of x accesses mapping to the same cache set is computed

and if this is found to be in the range of interest, then cache simulations are performed with the

given combination of x accesses mapped to the same cache set and other accesses mapped at

random. The simulation runs are used to determine an average miss count for the combination.

This information is used to obtain a set of (miss_count, probability) pairs indicating the number

of misses and their probability, derived from all of the combinations simulated. These points

are plotted on a graph and compared with the probabilistic Worst-Case Miss Count (pWCMC)

distribution obtained using MBPTA. If the pWCMC distribution does not upper bound all of the

(miss_count, probability) points, then the number of observations used in MBPTA is increased

until it does. The complexity of the method makes it intractable for practical programs with large

numbers of memory block accesses due to the number of different combinations involved. For

example 100 distinct memory block accesses and a 4-way cache would require cases where 5 address

mapped to the same cache set are considered, of which there are
(

100
5

)

≈ 7e107 combinations. The

authors attempt to deal with this problem by limiting U to the 15 most heavily accessed memory

blocks. In the EEMBC benchmarks used for evaluation, this restriction means that approximately

two thirds of the accesses are covered. No argument is given explaining why this is sufficient to

ensure that the results obtained are sound.

In an extension [99] published in 2017, to their previous work [98] from 2016, Milutinovic

et al. gave an example showing how the original [4] and improved [13] analysis of cache risk

patterns, given by Abella et al. and Benedicte et al. respectively, fails to provide trustworthy

results in cases when accesses are made in a non-homogeneous way. Evaluation using the EEMBC

benchmark suite shows that for all of the benchmarks considered, these works under-estimate the

number of observations required by MBPTA leading to results (i.e. pWCET distributions) that

are untrustworthy below a probability of exceedance that is in the range 0.9 to 0.001 depending on

the benchmark. (By contrast, sound results would be trustworthy down to at least a probability

of exceedance of 10−9). Further, they also evaluate issues of trustworthiness with the earlier



R. I. Davis and L. Cucu-Grosjean 03:39

approach of Milutinovic et al. [98]. They show that issues can occur for simple cases where there

are more addresses accessed in a loop than are considered by the analysis. Comparing the results

for U = 10 to those for U = 15 on the EEBMC benchmarks shows that limiting the number

of addresses considered can lead to either an over- or an under-estimation of the number of

observations required by MBPTA, with under-estimation (occurring in 3 out of the 8 benchmarks)

leading to untrustworthy results at the required probability of exceedance (10−9).

Prior to the above works, many papers were published assuming random placement, but as far

as we can tell they did not check that the number of observations made was sufficient to avoid the

hazards of cache risk patterns described above. The validity of the evaluation results for systems

using random placement in the following papers is therefore questionable: [68, 72, 69, 73, 67, 71,

119, 129, 128, 60, 61, 136].

Subsequently in 2017, Milutinovic et al. [97] recognised some of the problems with their previous

work [98, 99] on identifying cache risk patterns caused by random placement that have a very low

probability of being captured in the observations used in MBPTA. In particular, they note that

“evaluating in the cache simulator all potentially conflictive combinations of addresses is not feasible
in the general case due to its exponential dependence on the number of addresses”. For U = 15

different addresses, exhaustive evaluation via cache simulation is shown to require 27 hours per

benchmark on a compute cluster running 100 jobs in parallel. To address this problem the authors

propose a Time-aware Address Conflict (TAC) approach which aims to identify a list of address

combinations that if mapped to the same cache set can result in a high miss count. The basic

method is the same as that described by Milutinovic et al. [98, 99], but rather than examining

an exhaustive list of conflicting address combinations, only a limited number (i.e. 20) for each

number K of conflicting addresses are considered. Values of K are examined from W + 1 upwards,

where W is the number of cache ways, stopping when the probability of K addresses mapping to

the same cache set is below the cutoff probability. The address combinations on the TAC list are

ranked according to the concept of guilt, which aims to identify those combinations of addresses

which are likely to result in high cache miss counts. Guilt is a heuristic estimate formulated via an

expression which reflects the re-use distance of each address access. This is used to populate an

address guilt matrix which aims to capture the extent to which misses on accesses to some address

A are caused by accesses to some other address B. The TAC approach uses the information in

the address guilt matrix to determine a ranking for different combinations of address accesses.

A small number of the top ranked combinations are then evaluated via cache simulation. This

reduction in the number of combinations considered improves the runtime by orders of magnitude

compared to the exhaustive approach. The approach is shown to be effective, giving the same

results as the exhaustive approach when the number of different addresses considered is limited to

15. Further evaluation on a railway case study considers 10 different test cases defined by specific

input vectors, with the address traces used as input into the method. It appears that the approach

is limited in its applicability to traces of addresses and thus to single paths through a program.

MBPTA can be applied on a per-path basis giving a result that is valid for a single path, and

can also be applied on a per-program basis. It is not clear how, or even if TAC would work on a

per-program basis. We note that the guilt metric is a heuristic, and there is no proof given that

it is guaranteed to always ensure that the address combinations with the highest likelihood of

resulting in cache misses will be examined. Thus the improvement in runtime efficiency appears

to come at a cost in terms of reduced confidence that the resulting pWCET distribution is valid.

In 2018, Milutinovic et al. [100] considered the problem of cache risk patterns due to random

placement policies when applying the Path Upper Bounding (PUB) technique of Kosmidis et

al. [70] (see Section 5.1). Recall that PUB pads the code with extra accesses in such a way that

the pWCET distribution for any path through the modified code upper bounds the pWCET

LITES



03:40 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

distributions for all paths through the original code. Thus only one arbitrary path through the

modified code needs to be exercised to obtain a sound pWCET estimate. The authors apply the

TAC approach [97] (discussed above) to the modified code produced by PUB. They show that

applying PUB can make cache risk patterns due to random placement either more or less likely

to occur, and may in some cases significantly increase the number of observations required by

MBPTA to obtain sound estimates of the pWCET distribution (e.g. from 3000 to 500,000). They

give examples where cache risk patterns lead to an under-estimate of the number of observations

required when using PUB alone, resulting in an estimated pWCET distribution which is unsound

compared to the empirical distribution obtained by taking a large number of observations. The

use of TAC is intended to address this problem.

6.4 Buffers, Buses and other Resources

As well as random replacement caches with/without random placement, other resources have been

investigated and adapted to provide randomised behaviour, with the aim of making systems more

amenable to being analysed using MBPTA techniques. The majority of the work in this area

was published by a group of researchers including Slijepcevic, Cazorla, Kosmidis, Jalle, Abella,

Hernandez, and Quinones from 2013 – 2016 [119, 27, 74, 65, 25, 60].

In 2013, Slijepcevic et al. [119] proposed a Degraded Test Mode (DTM) which when combined

with fault tolerant random replacement caches enables MBPTA to be used to obtain pWCET

distributions which estimate the execution time behaviour of the system in the presence of a given

number of hardware faults that cause some cache lines to become unavailable. The motivation for

this work is that although test methods can verify that processors do not contain faults when

first deployed, degradation can cause latent defects to manifest into permanent faults. Hardware

mechanisms can address such failures to some extent, e.g. by disabling cache lines when a faulty

bit is detected. The rate at which this occurs depends on the technology scale used. With

random placement and a set-associative random replacement cache or a fully-associative random

replacement cache, the authors argue that there is little dependence on the actual cache lines

which are faulty. Thus the degraded test mode configures the cache to have a number of lines

disabled, commensurate with the fault probability per bit over the required lifetime of the system.

MBPTA can then be applied to the system in degraded mode. Due to a lack of dependence on the

location of any failed lines, the resulting pWCET distribution is valid for any set of bit failures in

the cache lines that could be expected during the lifetime of the system.

Also in 2013, Cazorla et al. [27] looked at the requirements placed on the analysis phase runs

of a program on a hardware platform, with the aim of ensuring that the observations of execution

times are representative of or upper bound those for any population of such values that might be

obtained during operation. As discussed in Section 4 representativity is necessary for the estimated

pWCET distribution derived via MBPTA to be valid for future scenarios of operation. The authors

reinforce the point made by Cucu-Grosjean et al. [34] in 2012 that adequate path coverage is

required to ensure that observations from the worst-case path are included. The authors classify a

number of different sources of execution time variation that need to be controlled for. For example,

division operations may take a variable time dependent on the operands. Such variation could

potentially be controlled for by using worst-case values, or in hardware via a worst-case mode,

where such operations always take their worst-case time to execute. Code and data placement in

memory typically affect the mapping to cache, which impacts execution times. Here, the authors

suggest using random placement techniques to ensure representativity; however, as discussed in

Section 6.3, random replacement also has significant problems relating to representativity due to

cache risk patterns.

In 2014, Kosmidis et al. [74] aimed to set out the properties or architectural features that a



R. I. Davis and L. Cucu-Grosjean 03:41

processor needs to have to guarantee that the MBPTA method [34] can be applied. They classify

hardware resources into either jitterless, having no execution time variability, or jittery resources.

Jittery resources may result in latencies that depend on the execution history or the input values or

a combination of the two. They propose that jittery resources should either be assumed to always

take their worst-case latency or be time-randomised. In the evaluation, the authors apply MBPTA

to programs running on a time-randomised architecture with both instruction and data caches

using random placement and random replacement. They use the statistical tests described by

Cucu-Grosjean et al. [34] to check if the execution time observations are i.i.d., and this was shown

to be the case for the EEMBC benchmarks used. The authors claim that “Both tests are passed in
all cases, which proves that the example architecture meets the i.i.d. requirement.”. This claim of

proof is in our view extended too far, rather the experiments show that the observations are i.i.d.,

but only for the particular instances of those benchmarks on the given architecture. There is no

evidence that this would necessarily be the case for any program on the given architecture. Later

work by Lima et al. [88] (discussed in Section 4.3) shows that using a random replacement cache

is not sufficient to guarantee that observations are i.i.d., neither does an LRU cache necessarily

preclude it. We note that in general any hardware resources or software variables that preserve

state between runs of a program could potentially lead to dependences between execution time

observations, breaking the independence property.

A random permutation bus was proposed by Jalle et al. [65] in 2014 as a means of connecting

cores and memory in a multi-core system. With a random permutation bus, the bus arbiter

produces a new random permutation (order for contenders to access the bus) every N rounds,

where N is the number of contenders. The random permutation bus is compared to a lottery

bus (introduced by Lahiri et al. [79] in 2001) that makes a random selection of which contender

gains access to the bus on each round, and a conventional Round-Robin bus. Applying MBPTA,

the authors show that the pWCET estimate at an appropriate exceedance probability is reduced

by between 1.5% and 9.6% for a random permutation bus as compared to a Round-Robin bus. In

the latter case, an assumption is made that every access incurs the worst-case delay.

In 2015, Panic et al. [102] showed how systems that incorporate buses and other resources with

TDMA arbitration may be analysed using MBPTA. The key idea is that the largest difference

between execution times that can be caused by a misalignment of any number of synchron-

ous (blocking) requests with the TDMA cycle is w − 1 where w is the length of the overall cycle as

shown by Kelter et al. [66]. The authors extend this result to multiple TDMA resources showing

that it generalises to LCM(w1, w2, . . .) − 1. Given these results, the simple expedient of analysing

the system using MBPTA and then padding the results by adding the largest difference that could

be caused by misalignment with the TDMA cycle, results in an upper bound. Since the padding is

typically small compared to overall execution times, this method is effective and provides superior

performance to the random permutation bus [65] or forcing all accesses to take the worst-case

time. An extended version of this work was published in 2017 by Panic et al. [103], adding a

discussion of the impact of timing anomalies.

The behaviour of random replacement caches, random permutation bus arbitration, and other

hardware components with time-randomised behaviour depends on the quality of the underlying

random number generator. In 2015, Agirre et al. [5] described a Pseudo-Random Number

Generator (PRNG) designed to provide the random numbers needed to implement these hardware

components. The proposed PRNG uses a Linear-Feedback-Shift-Register (LFSR) design, which

provides a long period (> 260) for the random number sequence. The LFSR design is modified

to produce a 32-bit pseudo random number on each cycle, groups of bits from which are then

used as the random numbers required for different components (e.g. instruction and data cache

etc.). The authors discuss a number of ways in which the basic design can be hardened to meet

LITES



03:42 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

the safety requirements of IEC-61508 SIL 3. These include duplicating the PRNG and checking

via a voter that the outputs match, and also using a watchdog timer to check that new values

have been produced. They report that the PRNG passes 187 out of the 188 tests specified by the

US National Institute of Standards and Technology for assessing randomness properties. Failing

only the Linear Complexity test which is used to determine if the sequence produced is complex

enough to be considered random [109]. The evaluation shows that the observed execution times

for the EEMBC matrix benchmark failed the i.i.d. tests used as part of the MBPTA method when

obtained from a LEON 3 processor prototyped on an FPGA using the default random policy, but

passed those tests when the LFSR PRNG implementation was used.

In 2015, Hernandez et al. [60] took a preliminary look at the changes potentially needed to the

LEON3 multi-core processor in order to support the use of MBPTA. They identify a number of

points: The existing random replacement policy, which can be configured for the caches, uses a

randomisation method that is not of sufficient quality. It is replaced by the PRNG described by

Agirre et al. [5]. Further, hardware enabled random placement is implemented using the method

based on a parametric hash function described by Kosmidis et al. [67]. The core-to-L2 and L2

cache are modified so that requests from one core cannot cause stalls for another core. Finally,

the bus and memory controller arbitration policies are round-robin and FIFO respectively. The

authors suggest that these need to be modified to be either random permutation [65] or lottery

bus [79]; however, this change is not made, instead benchmarks are run on only one core thus

avoiding issues of contention. The brief evaluation shows that the 1000 execution time observations

used for each of the two programs vary by less than 0.001% for rspeed, and by 0.04% for the

matrix benchmark. This tiny variation is due to the fact that the benchmarks fit comfortably in

the cache. The authors draw no conclusions, but suggest that they will in future study further

benchmarks with different cache requirements.

In 2016, Cazorla et al. [25] and Kosmidis et al. [76] summarised the research and development

work on support mechanisms for the MBPTA method [34] developed during the EU PROXIMA

project and described in previous papers.

Also in 2016, Slijepcevic et al. [117] proposed a tree-based Network-on-Chip (NoC) for a

many-core system, adapted with the aim of permitting MBPTA of tasks running on the cores. The

tree-based NoC uses either Round-Robin (with a worst-case mode enabled for analysis), Lottery,

or Random Permutation methods for arbitration at each level in the tree. The evaluation shows

that the tree-based NoC provides higher performance than a bus for clusters of 8 or 16 cores.

Slijepcevic et al. followed this work with a further paper [118] in 2017 on the use of Random

Permutation methods in the routers of a wormhole NoC. The aim being to avoid the systematic

worst-case behaviour which has to be accounted for in the analysis of worst-case traversal times

when deterministic arbitration policies are used. Applying MBPTA, and using a probability of

exceedance of 10−13, the authors show that the pWCET estimates improve on the WCETs for

an equivalent NoC with deterministic routing by on average 22% to 75% for 3x3 and 6x6 NoCs

respectively. (This assumes that the number of in-flight requests are limited, a technique that

improves the analysed performance in the randomised case, but not in the deterministic case).

An alternative approach to implementing random replacement caches was proposed by Benedicte

et al. [12] in 2018. Recall that on a cache miss, the conventional random replacement policy

selects at random any one of the cache lines in the cache set for replacement. With W ways

this means that on a cache miss the probability of eviction is 1/W for each cache line in the

set. Although this form of randomisation is effective in supporting MBPTA, it is also inefficient.

For example, alternate accesses to two addresses that map to the same cache set may cause

mutual evictions even in the case where there are 4-ways available. The authors propose a form of

random permutation to avoid this problem and thus improve performance. With this Random



R. I. Davis and L. Cucu-Grosjean 03:43

Permutations Replacement (RPR) method a random permutation is generated for each cache

set. This permutation determines the order in which all of the ways in the set will be subject to

eviction. Once all of the ways have been evicted then another random permutation is chosen and

so on. This has the advantage that any repeating sequence of K < W distinct address accesses can

only result in a maximum of K − 1 evictions. (This worst-case can happen across the boundary

of two permutations). The authors describe an efficient hardware implementation of the RPR

mechanism which trades off the number of distinct permutations used against the number of

bits required for implementation. The evaluation shows that the approach results in pWCET

estimates at an appropriate probability of exceedance that are on average 24% better than those

for conventional random replacement for the Mälardalen benchmarks studied, and 16% better on

average for a railway case study.

6.5 Summary and Perspectives

The concept of an “MBPTA-compliant” platform has been pursued in many publications with

the intent that any program running on the platform will be amenable to analysis using MBPTA

methods. While a commendable goal, recent research indicates that there is no such panacea.

Time-randomised architectures are neither necessary nor sufficient for the application of MBPTA

methods based on EVT. Rather the combination of input values and hardware states, the program,

and the hardware platform all influence whether MBPTA methods can be applied. Appropriate

statistical tests are needed on the sample of execution time observations to determine if the method

can be applied, with goodness-of-fit tests used to determine if the estimated pWCET distribution

is a close match to the empirical distribution of the maxima or peaks over threshold. While

time-randomised architectures may make it more likely that MBPTA methods can be applied,

they cannot guarantee it. Neither do time-predictable (deterministic) architectures preclude the

use of MBPTA methods [112, 16, 53, 54, 88, 87]. Time-randomised architectures may help in

avoiding hazards due to pathological cases where large variations in execution time can occur

very rarely (i.e. below the level at which they can reasonable be observed in testing) without

being made up of a combination of smaller variations that can be observed (see the hypothetical

example at the start of Section 6). However, time-randomisation does not always achieve this and

can sometimes make the situation worse, as has been shown in the case of random placement.

The work on random placement policies (reviewed in Sections 6.1 and 6.2) has a number

of issues. Randomising the mapping of memory blocks to cache sets across different runs of a

program has been shown to lead to cache risk patterns which may not be detected during testing

and analysis, but which can seriously impact execution times at much higher probabilities than are

acceptable in terms of the resulting timing overruns. Despite work by Abella et al. [4], Benedicte

et al. [13, 14], and Milutinovic et al. [98, 99, 97] there are as yet no viable practical solutions to

this problem that can guarantee to produce trustworthy results for realistic programs. Static

Software Randomisation [73, 71, 78] where a single randomly chosen placement is used in the

deployed system with various different random placements used in testing and timing verification,

appears to misinterpret the requirements of MBPTA methods that build upon EVT. For these

methods to give sound results, it is necessary that the observations made in the analysis phase are

either directly representative of those that could occur during operation, or upper bound them

as noted by Cazorla et al. [27]. This is not the case when observations are taken from different

binaries, which effectively constitute different systems. Such observations are not identically

distributed with respect to those from the system during operation, and hence it is invalid to

use the estimated pWCET distribution obtained via EVT in this case. Finally, while hardware

random placement requires custom hardware [9], dynamic software random placement [72] goes

counter to engineering practice, conflicting with the design principles set out in standards such

LITES



03:44 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

as ISO26262. Such re-arrangement of code and data objects at runtime means that deployed

systems could run code and data layouts that have never been tested. This is unacceptable in

many industries.

7 Case Studies, Benchmarks and Evaluation

Many papers surveyed in the previous sections include some form of evaluation. In this section, we

review work that specifically focuses on performance evaluation, through the use of case studies,

benchmarks, or evaluation frameworks. In addition, we review papers that provide a critique of

SPTA and MBPTA methods and the open challenges that remain.

7.1 Critiques

In 2014, Reineke [108] made a critical technical comparison between deterministic analysis of

LRU caches and probabilistic analysis of random replacement caches. He derives a number of

logical conclusions, considering first random replacement and then random placement versus

deterministic alternatives. Conclusion 1: LRU is preferable to random replacement in that it

always has better guaranteed performance compared to the simple re-use distance formula for

SPTA given by Davis et al. [39]. (We note that this is no longer the case with more effective

SPTA techniques [7, 6]). Regarding MBPTA, Reineke [108] notes that the measurement protocol

introduced by Cucu-Grosjean et al. [34] flushes the cache on program start and also prevents all

input-dependent memory accesses from accessing the cache. Thus for a given path the sequence of

accesses going to the cache is the same on every run, independent of the input data. Under that

assumption, the behaviour of an LRU cache is fixed for a given path and so the program has only

one execution time for each path. Conclusion 2 follows: MBPTA can be more efficiently employed

on top of an LRU cache. With random placement, Reineke [108] shows that no independent

non-zero probabilities of a cache hit can be assigned to accesses with a stack distance greater

than zero. Conclusion 3 follows: random placement would require complex conditional static

probabilistic analysis and is not amenable to current analysis techniques. Regarding MBPTA,

Reineke [108] shows that with random placement, MBPTA cannot necessarily detect that there

may be rare layouts (e.g. with a probability of 10−6) that result in a large number of cache

misses. Such layouts may not be observed in the runs used in the analysis phase of MBPTA.

Conclusion 4 follows: random placement is not suitable for use with MBPTA. (We note that the

same conclusion has also been reached by Maxim et al. [92] by considering the reproducibility

property of a measurement protocol required to ensure the convergence of any set of measurements

towards a representative, and thus sufficient, number of execution time observations for EVT-based

estimation of the pWCET distribution).

The technical critique given by Reineke [108] was discussed by Mezzetti et al. [96] later in 2015.

Regarding the use of SPTA techniques with random replacement caches (Conclusion 1), they

point to the more effective SPTA methods developed by Altmeyer and Davis [7], published after

Reineke’s paper, which show that the guaranteed performance of random replacement caches is

incomparable with that for LRU caches. With respect to SPTA and random placement (Conclusion

3), they agree that while it is true that current SPTA approaches cannot be used with random

placement, future advances may be possible along this line. To the best of our knowledge, as

yet no such advances have been made. Regarding the use of MBPTA with random replacement

caches (Conclusion 2), the authors note that random replacement has better performance than

LRU when the stack distance of accesses exceeds the number of cache ways, since in that case

LRU treats all accesses as misses. With respect to MBPTA and random placement (Conclusion 4)

they note the work on identifying the potential for cache risk patterns [4] as a possible means of

addressing this issue.



R. I. Davis and L. Cucu-Grosjean 03:45

In 2015, Stephenson et al. [123] outlined a certification argument structure aimed at providing

an appropriate argument for the use of MBPTA methods [34] in an industrial context. This makes

use of Goal Structuring Notation (GSN) to provide a modular structure showing the relationships

between different parts of the required argument that have different concerns. The required

argument is broken down into a number of elements relating to execution time measurement,

soundness of the MBPTA method, soundness of the timing data extraction, and uncertainty

mitigation. Further details of what is required for the “sound method” argument are then discussed.

These include the need for testing to adequately sample the path or paths that represent the

worst-case, and a number of factors related to the statistical methods used. Such factors include

the use of appropriate parameter values in hypothesis testing, e.g. in the i.i.d. test, and testing the

hypothesis that the tail of the distribution matches a Gumbel distribution. The authors point out

that a lack of confidence in the values of the parameters used could lead to a lack of confidence in

the overall method. Similarly, confidence is needed that the size of the sample of observations

used is sufficient. They also note that “The application of the MBPTA method requires providing
evidence that the hypothesis on which it stands hold in the context of use.” and that currently the

parameters used are based on general practice for statistical approaches.

Subsequently in 2017, Gil et al. [49] discussed the open challenges in MBPTA. They identified

three main areas:

1. How to ensure that a representative set of observations is obtained? This involves determining

the requirements for representativity, generating appropriate test vectors that will result in

representative observations, checking that coverage of the program and hardware states are

sufficient for representativity, and determining how many observations are needed.

2. How to ensure a trustable application of EVT? This involves demonstrating that the methods

used to obtain EVT configuration parameters are reliable, and that the application of those

methods is reproducible.

3. How to interpret the results of EVT? This involves understanding the uncertainties in the overall

measurement and analysis process, and determining an appropriate exceedance probability to

use.

7.2 Case Studies and Evaluation

In 2011, Santos et al. [113] investigated the composition of statistical models of execution time for

components, and how this is affected by different architectural features. They considered pairs

of components c1 and c2, and examined whether the simple convolution of the execution time

distributions obtained for the components in isolation (which is valid assuming independence)

gives a good approximation of the joint distribution obtained when c2 is executed immediately

following c1. They used the Kolmogorov-Smirnov goodness-of-fit test to test the hypothesis that

the two distributions are the same. The evaluation used code from the MiBench suite, with

the SimpleScalar tool chain used to simulate modern processors with features such as out-of-

order execution. Out of 100 compositions (pairs and triples) only 3 resulted in rejection of the

null hypothesis. (The null hypothesis is that the distribution formed from convolution of the

distributions for single components obtained independently is the same as the distribution obtained

by running the components consecutively). They also investigated which of 37 different hardware

configuration parameters had the strongest influence on the difference between the distribution

obtained via convolution and that directly measured. The re-order buffer had the most influence

overall; however, for the cases where the null hypothesis was rejected the branch predictor had

the most influence.

Time composability was also investigated by Kosmidis et al. [75] in 2013 in relation to software

running on a system with fully-associative random replacement caches. They showed that the

cache interference due to some other software component B running between invocations of a

LITES



03:46 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

particular component A, can be characterised in terms of the maximum number of cache evictions

that B can cause. This is limited to at most the number of distinct addresses u that the code in B

accesses. They propose using a micro-benchmark to characterise the maximum impact that any

such code B with u distinct accesses can have on the pWCET distribution of A. Equation (2) in

the paper aims to compute the number e of evictions required to evict at least u distinct entries

from the cache. (We note that with random replacement no such guarantee can be made; instead,

the formula approximates the number of evictions required such that the expected number of

distinct entries evicted is u). This formula is used to determine how many evictions a micro-

benchmark should make to upper bound the impact that the interfering code in B can have on

the subsequent execution time of the code in A by evicting at most u useful lines from the cache.

The improvements found in the pWCET estimates at an appropriate probability of exceedance

compared to flushing the cache were 5-10% for a 4Kbyte cache and 10-25% for a 32Kbyte cache

for programs from the Mälardalen benchmark suite.

Later in 2013, Kosmidis et al. [77] applied the MBPTA method developed by Cucu-Grosjean et

al. [34] (see Section 4.1) to systems that include buffer resources. They showed that resources with

deterministic behaviour such as FIFO buffers do not create different probabilities of execution

time outcomes for any given sequence of events, but rather propagate execution time variability

or jitter. (We note that this result is somewhat unsurprising, since such buffers have deterministic

behaviour any single fixed pattern of inputs yields a single fixed pattern of outputs).

In 2014, Abella et al. [2] compared deterministic and probabilistic methods of estimating

the WCET / pWCET distribution using code from the Maladarlen benchmark suite [56]. This

work compares classical static deterministic timing analysis using the Heptane tool for an LRU

cache to SPTA and MBPTA for a random replacement cache. The comparisons investigate the

sensitivity of the different approaches to cache line size and associativity. The SPTA method used

is the initial approach derived by Davis et al. [39] (see Section 3.3) that uses only reuse distances,

and provides a simple multi-path analysis. The MBPTA method used is the one developed by

Cucu-Grosjean et al. [34] (see Section 4.1). The authors only consider single-path benchmarks.

They found that in this case the results for MBPTA were less pessimistic compared to simulation

than those from SPTA. We note that it would be interesting to see these comparisons repeated

using the more sophisticated SPTA methods subsequently developed by Altmeyer et al. [7, 6], as

well as for multi-path programs using the SPTA derived by Lesage et al. [83, 82] (see Section 3.3).

In 2013, Wartel et al. [129] applied the MBPTA method developed by Cucu-Grosjean et

al. [34] (see Section 4.1) to an Integrated Modular Avionics case study. The software for the

case study comprises five functions from an application that performs data concentration and

maintenance of the flight control computers. This software was run on a simulator composed of a

PowerPC MPC755 instruction set and pipeline emulator combined with a time accurate cache

simulation. The memory hierarchy comprised separate 32KB, 8-way set-associative write-through

L1 caches, and a 64KB, 8-way set-associative unified L2 copy-back cache. The caches used both

random replacement and random placement. MBPTA was successfully applied, with only a few

hours needed to extract the measurements and analyse the resulting observations to produce

estimated pWCET distributions. The pWCET estimates at appropriate exceedance probabilities

resulted in values between 0.1% and 3.8% greater than the highest observed execution time for an

equivalent configuration with caches using LRU replacement and modulo placement. We note that

it is not clear if these figures include the overheads of random placement, which were previously

shown to be considerably higher by Kosmidis et al. [68] (see Section 6.1).

In a further avionics case study in 2015, Wartel et al. [128] applied the MBPTA method of

Cucu-Grosjean et al. [34] to two different programs. The first performs data concentration and

maintenance of the flight control computers, while the second computes an estimation of the centre



R. I. Davis and L. Cucu-Grosjean 03:47

of gravity of the aircraft. The programs were run on a cycle accurate timing simulator which models

the MPC755 architecture. The case study investigates two different hardware configurations. The

first is a single core that uses software random placement of functions and stack frames with LRU

caches. The second is a multi-core that uses hardware randomisation (random replacement caches,

random placement, and a random permutation bus arbiter). In both cases the observations of

execution times pass the i.i.d. tests enabling the MBPTA method to be applied. The results

show that software randomisation increases the pWCET estimate at an appropriate exceedance

probability by 12% for the first application compared to the maximum observed value for an

equivalent system with modulo placement. In the multi-core case, the increases were 15% and 28%

for the two applications. The authors note that the observed execution times in the multi-core

case were relatively independent of the load running on the other processors, and that this was

not the case with an equivalent system using a Round-Robin bus arbiter where the execution

times varied by more than a factor of 3. We note that this is a consequence of the fact that

Round-Robin is work-conserving whereas random permutation is effectively a variation on TDMA,

which re-orders the slots allocated to each core on each cycle. A more interesting comparison

would have been with traditional TDMA.

In 2015, Lesage et al. [85] introduced a framework that can be used to evaluate the precision

of MBPTA. This is difficult to do with complex programs and hardware due to the difficulty

in obtaining a ground truth in terms of the precise pWCET distribution. Instead of providing

real measurements as input to the MBPTA method developed by Cucu-Grosjean et al. [34] (see

Section 4.1), the proposed framework instead provides realistic data from synthetic tasks. Re-

strictions on the abstract model used enable the precise pWCET distribution to be computed

and used as a reference. The technique operates by first creating an Abstract Syntax Tree (AST)

representing the program. Execution Time Profiles (ETPs) are then obtained for basic blocks, via

measurements of the real program. These are attached to the AST, which is used to represent a

synthetic task. To evaluate the MBPTA method, the synthetic task is “executed”, i.e. a random

path is chosen through the task and values from the ETPs for the basic blocks visited by that

path are chosen at random. The overall synthetic execution time is then passed to MBPTA as

an observation. With this model, the precise pWCET distribution can be computed from the

AST via a tree-based analysis. For the simple synthetic tasks considered, the path randomisation

used is sufficient to ensure path coverage. With full path coverage, the MBPTA method provides

a tight and sound bound on the execution time obtained from the computed (precise) pWCET

distribution at an exceedance probability of 10−9. Further evaluation was performed removing

nodes (and hence complete paths) from the AST, these experiments show that a lack of path

coverage quickly degrades the soundness of the results with optimistic execution time predictions

appearing and becoming more prevalent as the number of omitted nodes is increased. This

illustrates the critical importance of achieving path coverage when analysing real systems. Some

aspects of the approach reported are favourable to current MBPTA techniques, for example the

random choice of values from the ETPs, and the use of completely independent ETPs for basic

blocks avoids path and state dependences which may be present with real programs running on a

real system. The authors suggest that the framework could be adapted to model different forms

of dependences in future, for example dependences between successive runs, and dependences

between the ETPs for successive blocks.

In 2017, Mezzetti et al. [94] applied the EPC method [136] (see Section 5.1) to a railway

application; a simplified European Train Control System. They describe how EPC was integrated

into an industrial tool chain (Rapita RVS16). Recall, that EPC collects observations at the basic

16 See https://www.rapitasystems.com/

LITES



03:48 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

block level. It then uses probabilistic padding computed using SPTA techniques derived by

Altmeyer and Davis [7] to increase the executions times observed to account for any advantage

that may have accrued due to the path taken to that block. Observations can then be synthesised

for all paths. The authors note that although EPC does not require that all paths are exercised

when obtaining the execution times for basic blocks, as shown by Lesage et al. [85], all paths

do need to be covered by the synthesised observations. In practice the number of paths may be

very large, the authors therefore make use of semantic information in the form of flow facts to

reduce the number of paths considered as feasible, accounting for maximum loop iterations and

correlations between conditionals. This is highly effective in the case of the railway application

studied, reducing the number of paths considered from 12996 to just 26. The hardware platform

used is an FPGA prototype implementing a modified LEON3/4 architecture, with random modulo

placement [61] and random replacement caches. We note that there is no mention of whether

the issue of cache risk patterns previously identified with random placement was addressed (see

Section 6.3). The results of a simple control experiment indicate that the EPC method leads to

approx. 10-20% over-approximation of the pWCET at an appropriate exceedance probability,

compared to exhaustively exercising all paths and using MBPTA. With the railway case study,

unfortunately the worst-case path could not be exercised during testing; however, from analysis of

a similar path that was executed, the authors estimate the over-approximation at around 30%.

They note that only 23% of basic blocks needed padding, and that padding increases the original

observations by on average 10%, and up to 400% in the worst-case.

In 2017, Fernandez et al. [48] reported on a case study using software random placement [72] (see

Section 6.2) in support of MBPTA. These techniques were applied to an application that controls

the active optics of a space telescope. This application runs on a LEON3 processor with separate

L1 data and instruction caches and a unified write-back L2 cache. The evaluation shows that

the maximum observed execution time is changed little by the overheads of dynamic software

randomisation. Further, the pWCET estimate at a probability of exceedance of 10−15 is only

approx. 2% larger than the maximum observed execution time for the original version, and hence

substantially less than the 20% engineering margin that the authors claim is typically applied in

this system. We note that in this work there is no mention of any mitigation of the issues of cache

risk patterns (see Section 6.3) that can occur with software random placement.

In a 2-page paper in 2017, Cros et al. [33] reported on a case study applying MBPTA to a

space application (Thrust Vector Control). They used a LEON3 processor with random modulo

placement [61] and an FPU modified to have fixed latency operations in analysis mode. The

results show that the pWCET at a probability of exceedance of 10−6 is 1.5 times larger than the

maximum observed execution time for the equivalent deterministic system. This equates to the

50% engineering margin that the authors claim is usually applied in this system. The values for

an exceedance probability of 10−9, 10−12, and 10−15 were approx. 1.75, 2.0, and 2.2 times larger

respectively.

The use of the MBPTA method developed by Cucu-Grosjean et al. [34] (see Section 4.1) was

extended to multi-core hardware (a 4-core LEON 3 platform implemented on an FPGA) by Diaz

et al. [43] in 2017. The key challenge here is to address the additional contention delay on memory

requests due to tasks running on the other cores. With the proposed method, the task under

analysis is run on a single core in isolation, i.e. with no contenders, and execution time observations

recorded. To account for possible contention, Performance Monitoring Counters (PMCs) are

used to record the number of requests of different types. Two approaches are then used to add

on appropriate upper bounds on the additional delays that could be caused by contention. A

fully time composable (fTC) approach includes the maximum possible delay that any contending

tasks on other cores could cause. A partially time composable (pTC) approach matches up



R. I. Davis and L. Cucu-Grosjean 03:49

each memory request of the task under analysis with the worst-case additional delays that could

be caused by specific contending tasks, taking into account the maximum number of delays of

different types that they may cause. pTC provides a tighter bound than fTC, but requires specific

information about the contenders. The experimental evaluation shows that the results from

MBPTA for tasks running in isolation are a few percent above the maximum observed value, thus

the remaining evaluation which factors in contention reveals mainly the effectiveness of the fTC

and pTC approaches. The pTC approach provides good results with a bound of less than 1.5

times the observed multi-core value for the benchmarks considered. The fTC approach is much

more pessimistic with bounds 12 times larger.

Also in 2017, Silva et al. [116] evaluated the reliability and tightness of the estimated pWCET

distributions derived by MBPTA via fitting (i) GEV and (ii) Gumbel distributions using the Block

Maxima approach. They used the L-moments method to fit a GEV distribution, and the Maximum

Likelihood Estimator to fit a Gumbel distribution. The evaluation assesses reliability in terms of

whether the pWCET estimate at a probability of exceedance of 10−15 and its confidence intervals

are above the High Water Mark (HWM), i.e. the maximum, obtained from 108 observations used

for validation. The tightness is assessed by comparing the pWCET estimate at a probability of

exceedance of 10−7 with the maximum values observed from 106 and 108 samples. Experiments were

performed on the bsort, insertsort, and bs sorting algorithms from the Mälardalen benchmark suite

using input data that selected the worst-case path (effectively single path examples). Variability

in run times was therefore only due to hardware randomisation in the execution platform. This

was an FPGA implementation of a dual-core processor with a randomised bus and a random

replacement cache. The experiments show that using a GEV distribution, there is significant

variability in the pWCET estimates at a probability of exceedance of 10−15 for different analysis

sample sizes (from 3 to 100 blocks of size 50). Further, since the HWM was often within the

confidence interval, and so could be above the pWCET estimate, the results were not reliable.

Fitting to a Gumbel distribution, however, provided reliable results which were also tight, i.e. only

a few percent higher than the HWM. Further experiments were also performed using synthetic

input data from GEV distributions with specific shape parameters in the range −1/2 to +1/2.

In all cases, fitting to a GEV proved unreliable. For shape parameters that were negative or

zero, using a Gumbel distribution was reliable and provided reasonably tight results. For positive

shape parameters, fitting to a Gumbel distribution is not appropriate and indeed it produced

results that were optimistic. The evaluation also showed that the Continuous Ranked Probability

Score (CRPS) metric used in the method derived by Cucu-Grosjean et al. [34] to determine

when sufficient samples have been obtained for analysis resulted in reliable results, but could

be improved upon. Improvements could be achieved either by using a smaller threshold, or via

assessing convergence using plots of the pWCET estimate and confidence intervals versus sample

size, as shown in the paper. We note that fitting a distribution minimises the absolute error rather

than attempting to minimise the over-approximation while avoiding any under-approximation.

Fitting a Gumbel distribution to data from a distribution with a finite maximum (which would be

better represented by a reversed Weibull distribution) typically results in an over-approximation.

The authors consider this over-approximation to be indicative of the reliability of the method

when using a Gumbel distribution; however, we would caution against drawing such a conclusion.

In these cases, the distribution is an over-approximation because there is a mismatch with the

shape parameter. This results in a fitted distribution which is pessimistic at small probabilities

of exceedance. This pessimism is not necessarily an indicator that the method is reliable per

se (i.e. always produces sound results). Indeed, for cases where the shape parameter is positive,

using a Gumbell distribution produces results which are optimistic.

LITES



03:50 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2018, Reghenzani et al. [107] described chronovise, an open source software framework for

MBPTA. chronovise is a static C++ library that supports the Block Maxima, Peak-over-Threshold

and MBPTA-CV [3] approaches.

7.3 Summary and Perspectives

Evaluation of the MBPTA method introduced by Cucu-Grosjean et al. [34] on avionics case

studies at Airbus [129, 128] has shown both the applicability of the method to real systems, and

also that the use of random replacement caches comes at a relatively small performance penalty

compared to using deterministic replacement policies such as LRU. Recent work (discussed in

section 4.2) shows that MBPTA methods can also be successfully applied to systems running on

time-predictable architectures. For example Berezovskyi et al. [16, 15] successfully apply MBPTA

methods to programs running on an NVIDIA Kepler GK104 GPU, and Guet et al. [53, 54] to

benchmarks running on an Intel Xeon with 4 cores and 3 levels of cache. Initial work by Diaz et

al. [43] in 2017, shows how the MBPTA approach can be extended to a multi-core system.

The important issue of proving the validity and correctness of the results from MBPTA has

been investigated by Lesage et al. [85]. They showed that a lack of path coverage quickly degrades

the soundness of the results, with optimistic execution time predictions appearing and becoming

more prevalent as the number of omitted paths increases. Mezzetti et al. [94] addressed the path

coverage problem using the EPC method [136] and demonstrated its effectiveness on a railway

application.

Silva et al. [116] evaluated the reliability and tightness of the pWCET estimates derived using

MBPTA by fitting GEV and Gumbel distributions, concluding that using GEV is unreliable (with

large confidence intervals), while Gumbel can provide results that are reliable and tight in those

cases where it is applicable. To show that it is applicable; however, requires checking against the

maxima of a very large number of observations obtained in a validation phase. It is important

to note here that fitting a distribution minimises the absolute error rather than attempting to

minimise the over-approximation while avoiding any under-approximation. Fitting a Gumbel

distribution to data from a distribution with a finite maximum, which would be better represented

by a reversed Weibull distribution, typically results in a fitted distribution which is pessimistic at

small probabilities of exceedance. This pessimism is not necessarily an indicator that the method

is reliable per se (i.e. always produces sound results). Indeed, for cases where the shape parameter

is positive, using a Gumbell distribution is likely to produce results which are optimistic.

8 Conclusions

In this survey, we reviewed research into probabilistic timing analysis techniques for hard real-

time systems. We covered the main subject areas: static probabilistic timing analysis (SPTA),

measurement-based probabilistic timing analysis (MBPTA), and hybrid methods (HyPTA), as

well as reviewing supporting mechanisms and techniques, case studies, and evaluations.

8.1 Open Issues

We conclude by identifying open issues, key challenges and possible directions for future research.

We present these open issues and challenges as a series of questions. While there has been

progress in some of these areas, as highlighted in this survey, comprehensive solutions are currently

tantalizingly out-of-reach. Further research is needed to secure a sound and comprehensive basis

for the potential subsequent development and deployment of industry strength tools.



R. I. Davis and L. Cucu-Grosjean 03:51

1. How much hardware time-randomisation is needed to ease the use of MBPTA methods in

practice? Is custom time-randomised hardware with random replacement caches, random

permutation buses etc. really necessary?

2. What are the hazards involved in applying MBPTA methods to systems comprising time-

predictable COTS hardware that use entirely deterministic policies, and how can these hazards

be overcome?

3. How can we solve the path coverage problem such that the user of MBPTA methods is not

required to provide a measurement protocol that exercises all possible paths through the code?

What level of coverage is needed for the MBPTA methods to provide sound results?

4. How can we apply MBPTA to multi-path programs? Do we have to apply MBPTA to each

path individually and then combine the results to obtain a valid upper bound? Or is it

possible to use measurements from different paths as input into EVT and still obtain sound

results? (There is an argument that doing so makes it much harder to ensure representativity).

5. How can we solve the representativity problem such that the sample of observations used as

input to MBPTA result in a pWCET distribution that correctly characterises the behaviour of

the system during any future scenario of operation?

6. Given that testing can continue to produce execution time observations almost indefinitely,

how do we know when sufficient observations have been obtained for an accurate estimate of

the pWCET distribution to be derived?

7. How can we validate that a MBPTA implementation actually produces correct results?

8. How can we provide MBPTA for systems where execution time observations exhibit depend-

ences?

9. How to apply MBPTA methods to systems using multi-core processors where there is substantial

contention for shared hardware resources (e.g. interconnect, memory hierarchy, caches, DRAM

etc.) between programs running on different cores?

10. How to apply MBPTA methods to systems that make use of multi-threading on a single core,

and thus interleave the execution of a number of programs resulting in interference on shared

hardware resources?

11. How can we mechanise MBPTA so that, for example block sizes and thresholds can be selected

automatically?

12. How can we convince certification authorities that estimated pWCET distributions derived via

MBPTA methods are safe?

8.2 Directions for Future Research

We end this survey with a discussion of an important direction for future real-time systems research

which probabilistic analysis techniques may be able contribute to.

There is a continuing trend in industry sectors including avionics, automotive electronics,

consumer electronics, and robotics away from development and deployment on single-core processors

towards using significantly more powerful and complex Common-Off-The-Shelf (COTS) multi-core

and many-core hardware platforms. This trend is driven by requirements on size, weight and power

consumption, increasing cost pressures and the demand for more complex and capable functionality

delivered through software. The use of COTS multi-core hardware poses significant challenges

in terms of verifying timing behaviour and ensuring that real-time constraints are met. These

challenges stem from the complexity of the architecture and the way in which hardware resources

such as the interconnect and the memory hierarchy are shared between different processing

cores. Some researchers are seeking to address these problems through approaches based on

partitioning and separation (e.g. single-core equivalence [91]), while others aim for solutions based

on considering the explicit interference on each hardware resource from co-running programs and

LITES



03:52 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

how this demand can be served by the available resource supply [8, 37]. There is the potential for

probabilistic timing analysis and probabilistic schedulability analysis techniques (reviewed in a

companion survey [38]) to play a role in the timing verification of such complex real-time systems.

There are a number of ways in which the interference effects of cross-core contention can be

considered within a framework of probabilistic timing verification:

By running synthetic “worst-case” contenders on other cores during the analysis phase. The

idea being to account for the worst-case cross-core interference that could possibly occur

irrespective of the actual co-runners, within the estimated pWCET distributions. The difficulty

with this context-independent approach lies in determining which contenders, or combination

of contenders, actually produce the worst-case interference for a given program. Further, the

cross-core interference assumed may be very pessimistic, i.e. much larger than can actually

occur in the operational system with the real co-runners.

By running the real co-runners during the analysis phase. This approach has the advantage that

it can potentially avoid some of the pessimism in the above context-independent approach. The

estimated pWCET distributions obtained would only apply for the specific set of co-runners.

Thus they would be context-dependent. This approach has the disadvantage that it makes

the problem of representativity even more acute, since different combinations and timings of

co-runners need to be considered.

By using isolation or partial isolation techniques (implemented in either software or hardware)

to limit or bound the interference that can occur due to contention for shared resources in a

way that is independent of the actual behaviour of the co-runners. Synthetic contenders can

then be used to generate this maximum interference at analysis time enabling sound upper

bounding of the pWCET distributions that can occur during normal operation of the system.

By running the program under analysis in isolation with all the other cores idle. In this case,

the estimated pWCET distributions obtained would not include the impact of any co-runners.

Instead, these effects would need to be integrated at a later stage, for example within some

form of probabilistic schedulability analysis. The advantage of this approach is that it reduces

the issues of representativity to the single core case; however, difficulties remain in soundly

including the effects of cross-core contention without the results becoming either unsound or

highly pessimistic.

By running the complete system and applying statistical analysis (e.g. based on EVT) to

response times, rather than execution times (see Section 7 of the companion survey [38]

for a review of the initial work in this area). This approach again raises difficulties with

representativity; however, it has the advantage that it treats the entire system as a grey box

requiring less detailed information about the hardware and software behaviour.

Since the initial work of Burns and Edgar [22] in 2000 on probabilistic timing analysis, significant

progress has been made in the development of both measurement-based and static probabilistic

timing analysis techniques. However, there are still many important unanswered questions and

open issues that need to be addressed. In particular, work on probabilistic timing analysis and

probabilistic schedulability analysis for multi-core and many-core systems is in its infancy with

opportunities for significant advances addressing an important research challenge.

Acknowledgements. The research that went into writing this survey was funded, in part, by

the Inria International Chair program and the ESPRC grant MCCps (EP/P003664/1). EPSRC

Research Data Management: No new primary data was created during this study.

The authors would like to thank David Griffin and Alan Burns for their comments on an

earlier draft of this survey.



R. I. Davis and L. Cucu-Grosjean 03:53

References

1 J. Abella, F. J. Cazorla, E. Quinones, and
T. Vardanega. Measurement-based prob-
abilistic timing analysis and i.i.d prop-
erty. White Paper Version 2. Technical
report http://www.proartis-project.eu/

publications/MBPTA-white-paper, BSC, July
2014.

2 J. Abella, D. Hardy, I. Puaut, E. Quiñones, and
F. J. Cazorla. On the Comparison of Determin-
istic and Probabilistic WCET Estimation Tech-
niques. In Proceedings of the Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 266–
275, July 2014. doi:10.1109/ECRTS.2014.16.

3 J. Abella, M. Padilla, J. Del Castillo, and F. J.
Cazorla. Measurement-Based Worst-Case Exe-
cution Time Estimation Using the Coefficient
of Variation. ACM Trans. Des. Autom. Elec-
tron. Syst., 22(4):72:1–72:29, June 2017. doi:

10.1145/3065924.

4 J. Abella, E. Quiñones, F. Wartel, T. Vardanega,
and F. J. Cazorla. Heart of Gold: Making the
Improbable Happen to Increase Confidence in
MBPTA. In Proceedings of the Euromicro Con-
ference on Real-Time Systems (ECRTS), pages
255–265, 2014. doi:10.1109/ECRTS.2014.33.

5 I. Agirre, M. Azkarate-askasua, C. Hernandez,
J. Abella, J. Perez, T. Vardanega, and F. J.
Cazorla. IEC-61508 SIL 3 Compliant Pseudo-
Random Number Generators for Probabilistic
Timing Analysis. In Proceedings of the Eur-
omicro Conference on Digital System Design
(DSD), pages 677–684, August 2015. doi:10.

1109/DSD.2015.26.

6 S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis.
Static probabilistic timing analysis for real-
time systems using random replacement caches.
Springer Real-Time Systems, 51(1):77–123, 2015.
doi:10.1007/s11241-014-9218-4.

7 S. Altmeyer and R. I. Davis. On the Correctness,
Optimality and Precision of Static Probabilistic
Timing Analysis. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe
(DATE), pages 26:1–26:6, 2014. URL: http://dl.

acm.org/citation.cfm?id=2616606.2616638.

8 S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza,
V. Nelis, and J. Reineke. A Generic and Compos-
itional Framework for Multicore Response Time
Analysis. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 129–138, 2015. doi:10.1145/

2834848.2834862.

9 H. Anwar, C. Chen, and G. Beltrame. A prob-
abilistically analysable cache implementation on
FPGA. In IEEE International New Circuits
and Systems Conference (NEWCAS), pages 1–4,
June 2015. doi:10.1109/NEWCAS.2015.7181984.

10 I. Bate and U. Khan. WCET Analysis of Mod-
ern Processors Using Multi-criteria Optimisation.
Empirical Softw. Engg., 16(1):5–28, February
2011.

11 P. Benedicte, C. Hernandez, J. Abella, and F. J.
Cazorla. Design and integration of hierarchical-
placement multi-level caches for real-time sys-
tems. In Proceedings of the Conference on

Design, Automation and Test in Europe (DATE),
pages 455–460, March 2018. doi:10.23919/DATE.

2018.8342052.

12 P. Benedicte, C. Hernandez, J. Abella, and F. J.
Cazorla. RPR: A Random Replacement Policy
with Limited Pathological Replacements. In Pro-
ceedings of ACM Symposium on Applied Comput-
ing (SAC), pages 593–600, 2018. doi:10.1145/

3167132.3167197.

13 P. Benedicte, L. Kosmidis, E. Quinones,
J. Abella, and F. J. Cazorla. Modelling the
confidence of timing analysis for time random-
ised caches. In Proceedings of the IEEE Inter-
national Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–8, May 2016. doi:10.1109/

SIES.2016.7509421.

14 P. Benedicte, L. Kosmidis, E. Quiñones,
J. Abella, and F. J. Cazorla. A confidence as-
sessment of WCET estimates for software time
randomized caches. In Proceedings of the IEEE
International Conference on Industrial Inform-
atics (INDIN), pages 90–97, July 2016. doi:

10.1109/INDIN.2016.7819140.

15 K. Berezovskyi, F. Guet, L. Santinelli, K. Blet-
sas, and E. Tovar. Measurement-Based Prob-
abilistic Timing Analysis for Graphics Processor
Units. In Proceedings of the International Con-
ference on the Architecture of Computing Sys-
tems (ARCS), pages 223–236, April 2016. doi:

10.1007/978-3-319-30695-7_17.

16 K. Berezovskyi, L. Santinelli, K. Bletsas, and
E. Tovar. WCET Measurement-based and Ex-
treme Value Theory Characterisation of CUDA
Kernels. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 279–288, 2014. doi:10.1145/

2659787.2659827.

17 G. Bernat, A. Burns, and M. Newby. Probabil-
istic Timing Analysis: An Approach Using Cop-
ulas. J. Embedded Comput., 1(2):179–194, April
2005. URL: http://dl.acm.org/citation.cfm?

id=1233760.1233763.

18 G. Bernat, A. Colin, and S. Petters. pwcet: A
tool for probabilistic worst-case execution time
analysis of real-time systems. Technical report,
Department of Computer Science, University of
York, 2003.

19 G. Bernat, A. Colin, and S. M. Petters. WCET
analysis of probabilistic hard real-time systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 279–288, 2002. doi:

10.1109/REAL.2002.1181582.

20 B. Braams, S. Altmeyer, and A. D. Pimentel.
EDiFy: An execution time distribution finder.
In Proceedings of the Design Automation Con-
ference (DAC), pages 1–6, June 2017. doi:10.

1145/3061639.3062233.

21 S. Bunte, M. Zolda, M. Tautschnig, and
R. Kirner. Improving the Confidence in
Measurement-Based Timing Analysis. In Pro-
ceedings of the IEEE International Symposium
on Object/component/service-oriented Real-time
distributed Computing (ISORC), pages 144–151,
March 2011. doi:10.1109/ISORC.2011.27.

LITES

http://www.proartis-project.eu/publications/MBPTA-white-paper
http://www.proartis-project.eu/publications/MBPTA-white-paper
http://dx.doi.org/10.1109/ECRTS.2014.16
http://dx.doi.org/10.1145/3065924
http://dx.doi.org/10.1145/3065924
http://dx.doi.org/10.1109/ECRTS.2014.33
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1007/s11241-014-9218-4
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/NEWCAS.2015.7181984
http://dx.doi.org/10.23919/DATE.2018.8342052
http://dx.doi.org/10.23919/DATE.2018.8342052
http://dx.doi.org/10.1145/3167132.3167197
http://dx.doi.org/10.1145/3167132.3167197
http://dx.doi.org/10.1109/SIES.2016.7509421
http://dx.doi.org/10.1109/SIES.2016.7509421
http://dx.doi.org/10.1109/INDIN.2016.7819140
http://dx.doi.org/10.1109/INDIN.2016.7819140
http://dx.doi.org/10.1007/978-3-319-30695-7_17
http://dx.doi.org/10.1007/978-3-319-30695-7_17
http://dx.doi.org/10.1145/2659787.2659827
http://dx.doi.org/10.1145/2659787.2659827
http://dl.acm.org/citation.cfm?id=1233760.1233763
http://dl.acm.org/citation.cfm?id=1233760.1233763
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1145/3061639.3062233
http://dx.doi.org/10.1145/3061639.3062233
http://dx.doi.org/10.1109/ISORC.2011.27


03:54 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

22 A. Burns and S. Edgar. Predicting computa-
tion time for advanced processor architectures.
In Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), pages 89–96, 2000.
doi:10.1109/EMRTS.2000.853996.

23 A. Burns and D. Griffin. Predictability as an
emergent behaviour. In Proceedings of the Work-
shop on Compositional Theory and Technology
for Real-Time Embedded Systems (CRTS), pages
27–29, 2011.

24 S. Bünte, M. Zolda, and R. Kirner. Let’s get less
optimistic in measurement-based timing analysis.
In Proceedings of the IEEE International Sym-
posium on Industrial Embedded Systems (SIES),
pages 204–212, June 2011. doi:10.1109/SIES.

2011.5953663.
25 F. J. Cazorla, J. Abella, J. Andersson, T. Vard-

anega, F. Vatrinet, I. Bate, I. Broster,
M. Azkarate-Askasua, F. Wartel, L. Cucu,
F. Cros, G. Farrall, A. Gogonel, A. Gianarro,
B. Triquet, C. Hernandez, C. Lo, C. Maxim,
D. Morales, E. Quinones, E. Mezzetti, L. Kos-
midis, I. Aguirre, M. Fernandez, M. Slijepcevic,
P. Conmy, and W. Talaboulma. PROXIMA:
Improving Measurement-Based Timing Analysis
through Randomisation and Probabilistic Ana-
lysis. In Proceedings of the Euromicro Confer-
ence on Digital System Design (DSD), pages 276–
285, August 2016. doi:10.1109/DSD.2016.22.

26 F. J. Cazorla, E. Quiñones, T. Vardanega,
L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim. PROARTIS:
Probabilistically Analyzable Real-Time Systems.
ACM Transactions on Embedded Computing Sys-
tems, 12(2s):94:1–94:26, May 2013. doi:10.1145/

2465787.2465796.
27 F. J. Cazorla, T. Vardanega, E. Quiñones, and

J. Abella. Upper-bounding Program Execution
Time with Extreme Value Theory. In Proceed-
ings of the Workshop on Worst-Case Execution
Time Analysis (WCET), pages 64–76, 2013. doi:

10.4230/OASIcs.WCET.2013.64.
28 C. Chen and G. Beltrame. An Adaptive Markov

Model for the Timing Analysis of Probabilistic
Caches. ACM Trans. Des. Autom. Electron.
Syst., 23(1):12:1–12:24, August 2017. doi:10.

1145/3123877.
29 C. Chen, J. Panerati, and G. Beltrame. Effects

of online fault detection mechanisms on Probab-
ilistic Timing Analysis. In Proceedings of IEEE
International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 41–46, September 2016. doi:10.

1109/DFT.2016.7684067.
30 C. Chen, J. Panerati, I. Hafnaoui, and

G. Beltrame. Static probabilistic timing analysis
with a permanent fault detection mechanism.
In Proceedings of the IEEE International Sym-
posium on Industrial Embedded Systems (SIES),
pages 1–10, June 2017. doi:10.1109/SIES.2017.

7993373.
31 C. Chen, L. Santinelli, J. Hugues, and

G. Beltrame. Static probabilistic timing ana-
lysis in presence of faults. In Proceedings of
the IEEE International Symposium on Industrial

Embedded Systems (SIES), pages 1–10, May 2016.
doi:10.1109/SIES.2016.7509422.

32 S. Coles. An Introduction to Statistical Model-
ing of Extreme Values. Springer, 2001. doi:

10.1007/978-1-4471-3675-0.

33 F. Cros, L. Kosmidis, F. Wartel, D. Morales,
J. Abella, I. Broster, and F. J. Cazorla. Dy-
namic software randomisation: Lessons learned
from an aerospace case study. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 103–108, March 2017.
doi:10.23919/DATE.2017.7926966.

34 L. Cucu-Grosjean, L. Santinelli, M. Houston,
C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzetti, E. Quiñones, and F. J. Cazorla.
Measurement-Based Probabilistic Timing Ana-
lysis for Multi-path Programs. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 91–101, July 2012. doi:

10.1109/ECRTS.2012.31.

35 L. David and I. Puaut. Static determination
of probabilistic execution times. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 223–230, June 2004. doi:

10.1109/EMRTS.2004.1311024.

36 R. A. Davis and T. Mikosch. The extremogram:
A correlogram for extreme events. Bernoulli,
15(4):977–1009, November 2009. doi:10.3150/

09-BEJ213.

37 R. I. Davis, S. Altmeyer, L. S. Indrusiak,
C. Maiza, V. Nelis, and J. Reineke. An extens-
ible framework for multicore response time ana-
lysis. Springer Real-Time Systems, 54(3):607–
661, July 2018. doi:10.1007/s11241-017-9285-

4.

38 R. I. Davis and L. Cucu-Grosjean. A Survey of
Probabilistic Schedulability Analysis Techniques
for Hard Real-Time Systems. Leibniz Transac-
tions on Embedded Systems (LITES), 6(1):04:1–
04:53, May 2019. doi:10.4230/LITES-v006-

i001-a004.

39 R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza,
and L. Cucu-Grosjean. Analysis of Probabilistic
Cache Related Pre-emption Delays. In Proceed-
ings of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 168–179, July 2013.
doi:10.1109/ECRTS.2013.27.

40 R. I. Davis, J. Whitham, and D. Maxim. Static
Probabilistic Timing Analysis for Multicore Pro-
cessors with Shared Cache. In Proceedings of
the Real-Time Scheduling Open Problems Sem-
inar (RTSOPS), pages 3–5, 2013.

41 R.I. Davis. Improvements to Static Probabil-
istic Timing Analysis for Systems with Random
Cache Replacement Policies. In Proceedings of
the Real-Time Scheduling Open Problems Sem-
inar (RTSOPS), pages 22–24, July 2013.

42 J-F. Deverge and I. Puaut. Safe measurement-
based WCET estimation. In Proceedings of the
Workshop on Worst-Case Execution Time Ana-
lysis (WCET), 2005.

43 E. Díaz, M. Fernández, L. Kosmidis, E. Mezzetti,
C. Hernandez, J. Abella, and F. J. Cazorla. MC2:
Multicore and Cache Analysis via Deterministic
and Probabilistic Jitter Bounding, pages 102–118.

http://dx.doi.org/10.1109/EMRTS.2000.853996
http://dx.doi.org/10.1109/SIES.2011.5953663
http://dx.doi.org/10.1109/SIES.2011.5953663
http://dx.doi.org/10.1109/DSD.2016.22
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://dx.doi.org/10.1145/3123877
http://dx.doi.org/10.1145/3123877
http://dx.doi.org/10.1109/DFT.2016.7684067
http://dx.doi.org/10.1109/DFT.2016.7684067
http://dx.doi.org/10.1109/SIES.2017.7993373
http://dx.doi.org/10.1109/SIES.2017.7993373
http://dx.doi.org/10.1109/SIES.2016.7509422
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.23919/DATE.2017.7926966
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/EMRTS.2004.1311024
http://dx.doi.org/10.1109/EMRTS.2004.1311024
http://dx.doi.org/10.3150/09-BEJ213
http://dx.doi.org/10.3150/09-BEJ213
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.4230/LITES-v006-i001-a004
http://dx.doi.org/10.4230/LITES-v006-i001-a004
http://dx.doi.org/10.1109/ECRTS.2013.27


R. I. Davis and L. Cucu-Grosjean 03:55

Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-60588-3_7.

44 J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Cam-
pos, Kanghee Kim, and L. L. Bello. Pessim-
ism in the stochastic analysis of real-time sys-
tems: concept and applications. In Proceed-
ings of the IEEE Real-Time Systems Symposium
(RTSS), pages 197–207, December 2004. doi:

10.1109/REAL.2004.41.
45 S. Edgar and A. Burns. Statistical analysis of

WCET for scheduling. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 215–224, December 2001. doi:10.1109/

REAL.2001.990614.
46 P. Embrechts, C. Kluppelberg, and T. Mikosch.

Modelling extremal events for insurance and Fin-
ance. Springer, 1997. doi:10.1007/978-3-642-

33483-2.
47 I. Fedotova, B. Krause, and E. Siemens. Applic-

ability of Extreme Value Theory to the Execution
Time Prediction of Programs on SoCs. In Pro-
ceedings of the International Conference on Ap-
plied Innovations in IT (ICAIIT), March 2017.

48 M. Fernandez, D. Morales, L. Kosmidis, A. Bard-
izbanyan, I. Broster, C. Hernandez, E. Quinones,
J. Abella, F. Cazorla, P. Machado, and L. Fossati.
Probabilistic timing analysis on time-randomized
platforms for the space domain. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 738–739, March 2017.
doi:10.23919/DATE.2017.7927087.

49 S. Jimenez Gil, I. Bate, G. Lima, L. Santinelli,
A. Gogonel, and L. Cucu-Grosjean. Open
Challenges for Probabilistic Measurement-Based
Worst-Case Execution Time. IEEE Embedded
Systems Letters, PP(99):1–1, 2017. doi:10.1109/

LES.2017.2712858.
50 D. Griffin, I. Bate, B. Lesage, and F. Sob-

oczenski. Evaluating Mixed Criticality Schedul-
ing Algorithms with Realistic Workloads. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2015.

51 D. Griffin and A. Burns. Realism in Statistical
Analysis of Worst Case Execution Times. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), pages 44–53, 2010.
doi:10.4230/OASIcs.WCET.2010.44.

52 D. Griffin, B. Lesage, A. Burns, and R. I. Davis.
Static Probabilistic Timing Analysis of Random
Replacement Caches Using Lossy Compression.
In Proceedings of the International Conference
on Real-Time Networks and Systems (RTNS),
pages 289–298, 2014. doi:10.1145/2659787.

2659809.
53 F. Guet, L. Santinelli, and J. Morio. On the Reli-

ability of the Probabilistic Worst-Case Execution
Time Estimates. In Proceedings of the European
Congress on Embedded Real Time Software and
Systems (ERTS), January 2016. URL: https:

//hal.archives-ouvertes.fr/hal-01289477.
54 F. Guet, L. Santinelli, and J. Morio. Probabilistic

analysis of cache memories and cache memories
impacts on multi-core embedded systems. In Pro-
ceedings of the IEEE International Symposium
on Industrial Embedded Systems (SIES), pages 1–
10, May 2016. doi:10.1109/SIES.2016.7509420.

55 F. Guet, L. Santinelli, and J. Morio. On the Rep-
resentativity of Execution Time Measurements:
Studying Dependence and Multi-Mode Tasks. In
Jan Reineke, editor, Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), volume 57 of OASICS, pages 3:1–3:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2017. doi:10.4230/OASIcs.WCET.2017.3.

56 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lis-
per. The Mälardalen WCET Benchmarks – Past,
Present and Future. In Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), pages 137–147, July 2010.

57 J. Hansen, S. A. Hissam, and G. A. Moreno.
Statistical-based WCET estimation and valida-
tion . In Proceedings of the Workshop on Worst-
Case Execution Time Analysis (WCET), volume
252, 2009.

58 D. Hardy and I. Puaut. Static Probabilistic
Worst Case Execution Time Estimation for Ar-
chitectures with Faulty Instruction Caches. In
Proceedings of the International Conference on
Real-Time Networks and Systems (RTNS), pages
35–44, 2013. doi:10.1145/2516821.2516842.

59 D. Hardy and I. Puaut. Static Probab-
ilistic Worst Case Execution Time Estima-
tion for Architectures with Faulty Instruction
Caches. Springer Real-Time Systems, 51(2):128–
152, March 2015. doi:10.1007/s11241-014-

9212-x.
60 C. Hernandez, J. Abella, F. J. Cazorla, J. An-

dersson, and A. Gianarro. Towards making a
LEON3 multicore compatible with probabilistic
timing analysis. In Proceedings of the Data Sys-
tems In Aerospace Conference (DASIA), May
2015.

61 C. Hernandez, J. Abella, A. Gianarro, J. An-
dersson, and F. J. Cazorla. Random Modulo: A
New Processor Cache Design for Real-time Crit-
ical Systems. In Proceedings of the Design Auto-
mation Conference (DAC), pages 29:1–29:6, 2016.
doi:10.1145/2897937.2898076.

62 K. Höfig. Failure-Dependent Timing Analysis -
A New Methodology for Probabilistic Worst-Case
Execution Time Analysis, pages 61–75. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:

10.1007/978-3-642-28540-0_5.
63 T. Hsing. On Tail Index Estimation Using

Dependent Data. The Annals of Statistics,
19(3):1547–1569, 1991. URL: http://www.jstor.

org/stable/2241962.
64 M. Ivers and R. Ernst. Probabilistic Network

Loads with Dependencies and the Effect on
Queue Sojourn Times, pages 280–296. Springer
Berlin Heidelberg, 2009. doi:10.1007/978-3-

642-10625-5_18.
65 J. Jalle, L. Kosmidis, J. Abella, E. Quiñones,

and F. J. Cazorla. Bus Designs for Time-
probabilistic Multicore Processors. In Proceed-
ings of the Conference on Design, Automation
and Test in Europe (DATE), pages 50:1–50:6,
2014. URL: http://dl.acm.org/citation.cfm?

id=2616606.2616668.
66 T. Kelter, H. Falk, P. Marwedel, S. Chatto-

padhyay, and A. Roychoudhury. Static Ana-
lysis of Multi-core TDMA Resource Arbitration

LITES

http://dx.doi.org/10.1007/978-3-319-60588-3_7
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1007/978-3-642-33483-2
http://dx.doi.org/10.1007/978-3-642-33483-2
http://dx.doi.org/10.23919/DATE.2017.7927087
http://dx.doi.org/10.1109/LES.2017.2712858
http://dx.doi.org/10.1109/LES.2017.2712858
http://dx.doi.org/10.4230/OASIcs.WCET.2010.44
http://dx.doi.org/10.1145/2659787.2659809
http://dx.doi.org/10.1145/2659787.2659809
https://hal.archives-ouvertes.fr/hal-01289477
https://hal.archives-ouvertes.fr/hal-01289477
http://dx.doi.org/10.1109/SIES.2016.7509420
http://dx.doi.org/10.4230/OASIcs.WCET.2017.3
http://dx.doi.org/10.1145/2516821.2516842
http://dx.doi.org/10.1007/s11241-014-9212-x
http://dx.doi.org/10.1007/s11241-014-9212-x
http://dx.doi.org/10.1145/2897937.2898076
http://dx.doi.org/10.1007/978-3-642-28540-0_5
http://dx.doi.org/10.1007/978-3-642-28540-0_5
http://www.jstor.org/stable/2241962
http://www.jstor.org/stable/2241962
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dl.acm.org/citation.cfm?id=2616606.2616668
http://dl.acm.org/citation.cfm?id=2616606.2616668


03:56 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Delays. Springer Real-Time Systems, 50(2):185–
229, March 2014. doi:10.1007/s11241-013-

9189-x.

67 L. Kosmidis, J. Abella, E. Quinones, and F. J.
Cazorla. Efficient Cache Designs for Probabil-
istically Analysable Real-Time Systems. IEEE
Transactions on Computers, 63(12):2998–3011,
December 2014. doi:10.1109/TC.2013.182.

68 L. Kosmidis, J. Abella, E. Quiñones, and F. J.
Cazorla. A cache design for probabilistically
analysable real-time systems. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 513–518, March 2013.
doi:10.7873/DATE.2013.116.

69 L. Kosmidis, J. Abella, E. Quiñones, and F. J.
Cazorla. Multi-level Unified Caches for Probab-
ilistically Time Analysable Real-Time Systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 360–371, December
2013. doi:10.1109/RTSS.2013.43.

70 L. Kosmidis, J. Abella, F. Wartel, E. Quiñones,
A. Colin, and F. J. Cazorla. PUB: Path
Upper-Bounding for Measurement-Based Prob-
abilistic Timing Analysis. In Proceedings of
the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 276–287, July 2014. doi:

10.1109/ECRTS.2014.34.

71 L. Kosmidis, D. Compagnin, D. Morales,
E. Mezzetti, E. Quiñones, J. Abella, T. Vard-
anega, and F. J. Cazorla. Measurement-Based
Timing Analysis of the AURIX Caches. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), 2016.

72 L. Kosmidis, C. Curtsinger, E. Quiñones,
J. Abella, E. Berger, and F. J. Cazorla. Prob-
abilistic timing analysis on conventional cache
designs. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE),
pages 603–606, March 2013. doi:10.7873/DATE.

2013.132.

73 L. Kosmidis, E. Quiñones, J. Abella, G. Far-
rall, F. Wartel, and F. J. Cazorla. Containing
Timing-Related Certification Cost in Automot-
ive Systems Deploying Complex Hardware. In
Proceedings of the Design Automation Confer-
ence (DAC), pages 22:1–22:6, 2014. doi:10.1145/

2593069.2593112.

74 L. Kosmidis, E. Quiñones, J. Abella,
T. Vardanega, I. Broster, and F. J. Cazorla.
Measurement-Based Probabilistic Timing Ana-
lysis and Its Impact on Processor Architecture.
In Proceedings of the Euromicro Conference on
Digital System Design (DSD), pages 401–410,
August 2014. doi:10.1109/DSD.2014.50.

75 L. Kosmidis, E. Quiñones, J. Abella, T. Vard-
anega, and F. J. Cazorla. Achieving timing
composability with measurement-based prob-
abilistic timing analysis. In Proceedings
of the IEEE International Symposium on
Object/component/service-oriented Real-time
distributed Computing (ISORC), pages 1–8,
June 2013. doi:10.1109/ISORC.2013.6913193.

76 L. Kosmidis, E. Quiñones, J. Abella, T. Vard-
anega, C. Hernandez, A. Gianarro, I. Broster,
and F. J. Cazorla. Fitting processor architectures

for measurement-based probabilistic timing ana-
lysis. Microprocessors and Microsystems, 2016.
doi:10.1016/j.micpro.2016.07.014.

77 L. Kosmidis, T. Vardanega, J. Abella,
E. Quiñones, and F. J. Cazorla. Applying
Measurement-Based Probabilistic Timing Ana-
lysis to Buffer Resources. In Proceedings
of the Workshop on Worst-Case Execution
Time Analysis (WCET), pages 97–108, 2013.
doi:10.4230/OASIcs.WCET.2013.97.

78 L. Kosmidis, R. Vargas, D. Morales, E. Quiñones,
J. Abella, and F. J. Cazorla. TASA: Toolchain-
Agnostic Static Software randomisation for crit-
ical real-time systems. In IEEE/ACM Inter-
national Conference on Computer-Aided Design
(ICCAD), pages 1–8, November 2016. doi:10.

1145/2966986.2967078.

79 K. Lahiri, A. Raghunathan, and G. Laksh-
minarayana. LOTTERYBUS: a new high-
performance communication architecture for
system-on-chip designs. In DAC, pages 15–20,
2001. doi:10.1109/DAC.2001.156100.

80 S. Law and I. Bate. Achieving Appropriate Test
Coverage for Reliable Measurement-Based Tim-
ing Analysis. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS),
pages 189–199, July 2016. doi:10.1109/ECRTS.

2016.21.

81 M. R. Leadbetter, G. Lindgren, and H. Rootzen.
Conditions for the convergence in distribu-
tion of maxima of stationary normal processes.
Stochastic Processes and their Applications, 8(2),
1978.

82 B. Lesage, D. Griffin, S. Altmeyer, L. Cucu-
Grosjean, and R. I. Davis. On the analysis of ran-
dom replacement caches using static probabilistic
timing methods for multi-path programs. Real-
Time Systems, December 2017. doi:10.1007/

s11241-017-9295-2.

83 B. Lesage, D. Griffin, S. Altmeyer, and R. I.
Davis. Static Probabilistic Timing Analysis for
Multi-path Programs. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 361–372, December 2015. doi:10.1109/

RTSS.2015.41.

84 B. Lesage, D. Griffin, R. I. Davis, and S. Alt-
meyer. On the application of Static Probabilistic
Timing Analysis to Memory Hierarchies. In Pro-
ceedings of the Real-Time Scheduling Open Prob-
lems Seminar (RTSOPS), 2014.

85 B. Lesage, D. Griffin, F. Soboczenski, I. Bate,
and R. I. Davis. A Framework for the Evaluation
of Measurement-based Timing Analyses. In Pro-
ceedings of the International Conference on Real-
Time Networks and Systems (RTNS), pages 35–
44, 2015. doi:10.1145/2834848.2834858.

86 Y. Liang and T. Mitra. Cache modeling in prob-
abilistic execution time analysis. In Proceedings
of the Design Automation Conference (DAC),
pages 319–324, June 2008.

87 G. Lima and I. Bate. Valid Application of EVT
in Timing Analysis by Randomising Execution
Time Measurements. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applic-
ations Symposium (RTAS), April 2017.

http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1109/TC.2013.182
http://dx.doi.org/10.7873/DATE.2013.116
http://dx.doi.org/10.1109/RTSS.2013.43
http://dx.doi.org/10.1109/ECRTS.2014.34
http://dx.doi.org/10.1109/ECRTS.2014.34
http://dx.doi.org/10.7873/DATE.2013.132
http://dx.doi.org/10.7873/DATE.2013.132
http://dx.doi.org/10.1145/2593069.2593112
http://dx.doi.org/10.1145/2593069.2593112
http://dx.doi.org/10.1109/DSD.2014.50
http://dx.doi.org/10.1109/ISORC.2013.6913193
http://dx.doi.org/10.1016/j.micpro.2016.07.014
http://dx.doi.org/10.4230/OASIcs.WCET.2013.97
http://dx.doi.org/10.1145/2966986.2967078
http://dx.doi.org/10.1145/2966986.2967078
http://dx.doi.org/10.1109/DAC.2001.156100
http://dx.doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1145/2834848.2834858


R. I. Davis and L. Cucu-Grosjean 03:57

88 G. Lima, D. Dias, and E. Barros. Extreme
Value Theory for Estimating Task Execution
Time Bounds: A Careful Look. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), July 2016.

89 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean.
A New Way About Using Statistical Analysis
of Worst-case Execution Times. SIGBED Rev.,
8(3):11–14, September 2011. doi:10.1145/

2038617.2038619.

90 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A
trace-based statistical worst-case execution time
analysis of component-based real-time embedded
systems. In Proceedings of the IEEE Confer-
ence on Emerging Technologies Factory Automa-
tion (ETFA), pages 1–4, September 2011. doi:

10.1109/ETFA.2011.6059190.

91 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha,
and H. Yun. WCET(m) Estimation in Multi-core
Systems Using Single Core Equivalence. In Pro-
ceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 174–183, July
2015. doi:10.1109/ECRTS.2015.23.

92 C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae,
and L. Cucu-Grosjean. Reproducibility and rep-
resentativity: mandatory properties for the com-
positionality of measurement-based WCET es-
timation approaches. SIGBED Review, 14(3):24–
31, 2017. doi:10.1145/3166227.3166230.

93 A. Melani, E. Noulard, and L. Santinelli. Learn-
ing from probabilities: Dependences within real-
time systems. In Proceedings of the IEEE Con-
ference on Emerging Technologies Factory Auto-
mation (ETFA), pages 1–8, September 2013. doi:

10.1109/ETFA.2013.6648013.

94 E. Mezzetti, M. Fernandez, A. Bardizbanyan,
I Agirre, , J. Abella, T. Vardanega, and F. J.
Cazorla. EPC Enacted: Integration in an In-
dustrial Toolbox and Use Against a Rialway Ap-
plication. In Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), April 2017.

95 E. Mezzetti, N. Holsti, A. Colin, G. Bernat, and
T. Vardanega. Attacking the sources of unpre-
dictability in the instruction cache behavior. In
Proceedings of the International Conference on
Real-Time Networks and Systems (RTNS), 2008.

96 E. Mezzetti, M. Ziccardi, T. Vardanega,
J. Abella, E. Quiñones, and F. J. Cazorla. Ran-
domized Caches Can Be Pretty Useful to Hard
Real-Time Systems. Leibniz Transactions on
Embedded Systems, 2(1):01–1–01:10, 2015. doi:

10.4230/LITES-v002-i001-a001.

97 a. Milutinovic, j. Abella, i. Agirre, M. Azkarate-
Askasua, E. Mezzetti, T. Vardanega, and F. J.
Cazorla. Software Time Reliability in the
Presence of Cache Memories, pages 233–249.
Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-60588-3_15.

98 S. Milutinovic, J. Abella, and F. J. Cazorla.
Modelling Probabilistic Cache Representative-
ness in the Presence of Arbitrary Access Patterns.
In Proceedings of the IEEE International Sym-
posium on Object/component/service-oriented
Real-time distributed Computing (ISORC), pages

142–149, May 2016. doi:10.1109/ISORC.2016.

28.

99 S. Milutinovic, J. Abella, and F. J. Cazorla. On
the assessment of probabilistic WCET estimates
reliability for arbitrary programs. EURASIP
Journal on Embedded Systems, 2017(1):28, April
2017. doi:10.1186/s13639-017-0076-8.

100 S. Milutinovic, J. Abella, E. Mezzetti, and F. J.
Cazorla. Measurement-based Cache Representat-
iveness on Multipath Programs. In Proceedings
of the Design Automation Conference (DAC),
pages 123:1–123:6, 2018. doi:10.1145/3195970.

3196075.

101 S. Milutinovic, E. Mezzetti, J. Abella, T. Vard-
anega, and F. J. Cazorla. On uses of extreme
value theory fit for industrial-quality WCET
analysis. In Proceedings of the IEEE Interna-
tional Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–6, June 2017. doi:10.1109/

SIES.2017.7993402.

102 M. Panic, J. Abella, C. Hernandez, E. Quiñones,
T. Ungerer, and F. J. Cazorla. Enabling TDMA
Arbitration in the Context of MBPTA. In Pro-
ceedings of the Euromicro Conference on Digital
System Design (DSD), pages 462–469, August
2015. doi:10.1109/DSD.2015.68.

103 M. Panić, J. Abella, E. Quiñones, C. Hernandez,
T. Ungerer, and F. J. Cazorla. Adapting TDMA
arbitration for measurement-based probabilistic
timing analysis. Microprocessors and Microsys-
tems, 52:188–201, 2017. doi:10.1016/j.micpro.

2017.06.006.

104 B. Pasdeloup. Static probabilistic timing analysis
of worst-case execution time for random replace-
ment caches. Technical report, Inria, 2014.

105 J. Pickands. Statistical Inference Using Extreme
Order Statistics. Ann. Statist., 3(1):119–131,
January 1975. doi:10.1214/aos/1176343003.

106 E. Quinones, E. D. Berger, G. Bernat, and F. J.
Cazorla. Using Randomized Caches in Prob-
abilistic Real-Time Systems. In Proceedings of
the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 129–138, July 2009. doi:

10.1109/ECRTS.2009.30.

107 F. Reghenzani, G. Massari, and Fornaciari W.
chronovise: Measurement-Based Probabilistic
Timing Analysis framework. Journal of Open
Source Software, 3(28), June 2018. doi:10.

21105/joss.00711.

108 J. Reineke. Randomized Caches Considered
Harmful in Hard Real-Time Systems. Leib-
niz Transactions on Embedded Systems, 1(1):03–
1–03:13, 2014. doi:10.4230/LITES-v001-i001-

a003.

109 A. Rukhin, J. Soto, J. Nechvatal, E. Barker,
S. Leigh, M. Levenson, D. Banks, A. Heckert,
J. Dray, S. Vo, A. Rukhin, J. Soto, M. Smid,
S. Leigh, M. Vangel, A. Heckert, J. Dray, and
L. E. Bassham. Statistical test suite for random
and pseudorandom number generators for cryp-
tographic applications, NIST special publication,
2010.

110 L. Santinelli, F. Guet, and J. Morio. Revising
Measurement-Based Probabilistic Timing Ana-
lysis. In Proceedings of the IEEE Real-Time

LITES

http://dx.doi.org/10.1145/2038617.2038619
http://dx.doi.org/10.1145/2038617.2038619
http://dx.doi.org/10.1109/ETFA.2011.6059190
http://dx.doi.org/10.1109/ETFA.2011.6059190
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1145/3166227.3166230
http://dx.doi.org/10.1109/ETFA.2013.6648013
http://dx.doi.org/10.1109/ETFA.2013.6648013
http://dx.doi.org/10.4230/LITES-v002-i001-a001
http://dx.doi.org/10.4230/LITES-v002-i001-a001
http://dx.doi.org/10.1007/978-3-319-60588-3_15
http://dx.doi.org/10.1109/ISORC.2016.28
http://dx.doi.org/10.1109/ISORC.2016.28
http://dx.doi.org/10.1186/s13639-017-0076-8
http://dx.doi.org/10.1145/3195970.3196075
http://dx.doi.org/10.1145/3195970.3196075
http://dx.doi.org/10.1109/SIES.2017.7993402
http://dx.doi.org/10.1109/SIES.2017.7993402
http://dx.doi.org/10.1109/DSD.2015.68
http://dx.doi.org/10.1016/j.micpro.2017.06.006
http://dx.doi.org/10.1016/j.micpro.2017.06.006
http://dx.doi.org/10.1214/aos/1176343003
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.21105/joss.00711
http://dx.doi.org/10.21105/joss.00711
http://dx.doi.org/10.4230/LITES-v001-i001-a003
http://dx.doi.org/10.4230/LITES-v001-i001-a003


03:58 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

and Embedded Technology and Applications Sym-
posium (RTAS), April 2017.

111 L. Santinelli and Z. Guo. On the Criticality of
Probabilistic Worst-Case Execution Time Mod-
els, pages 59–74. Springer International Pub-
lishing, Cham, 2017. doi:10.1007/978-3-319-

69483-2_4.

112 L. Santinelli, J. Morio, G. Dufour, and D. Jac-
quemart. On the Sustainability of the Extreme
Value Theory for WCET Estimation. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), pages 21–30, 2014.
doi:10.4230/OASIcs.WCET.2014.21.

113 M. Santos, B. Lisper, G. Lima, and V. Lima. Se-
quential Composition of Execution Time Distri-
butions by Convolution. In Proceedings of the
Workshop on Compositional Theory and Techno-
logy for Real-Time Embedded Systems (CRTS),
pages 30–37, November 2011. URL: http://www.

es.mdh.se/publications/2215-.

114 C. Scarrott and A. MacDonald. A review of ex-
treme value threshold estimation and uncertainty
quantification. REVSTAT–Statistical Journal,
10(1):33–60, 2012.

115 M. Schlansker, R. Shaw, and S. Sivaramakrish-
nan. Randomization and associativity in the
design of placement-insensitive caches. Hewlett
Packard Laboratories, 1993.

116 K. P. Silva and R. Silva de Oliveira L. F. Ar-
caro. On Using GEV or Gumbel Models when
Applying EVT for Probabilistic WCET Estima-
tion. In Proceedings of the IEEE Real-Time Sys-
tems Symposium (RTSS), 2017.

117 M. Slijepcevic, M. Fernandez, C. Hernandez,
J. Abella, E. Quinones, and F. J. Cazorla. pT-
NoC: Probabilistic Time-Analyzable Tree-Based
NoC for Mixed Criticality Systems. In Proceed-
ings of the Euromicro Conference on Digital Sys-
tem Design (DSD), 2016.

118 M. Slijepcevic, C. Hernandez, J. Abella, and F. J.
Cazorla. Boosting Guaranteed Performance in
Wormhole NoCs with Probabilistic Timing Ana-
lysis. In Proceedings of the Euromicro Confer-
ence on Digital System Design (DSD), pages 440–
444, August 2017. doi:10.1109/DSD.2017.71.

119 M. Slijepcevic, L. Kosmidis, J. Abella,
E. Quiñones, and F. J. Cazorla. DTM:
Degraded Test Mode for Fault-Aware Prob-
abilistic Timing Analysis. In Proceedings
of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 237–248, July 2013.
doi:10.1109/ECRTS.2013.33.

120 M. Slijepcevic, L. Kosmidis, J. Abella,
E. Quiñones, and F. J. Cazorla. Time-analysable
non-partitioned shared caches for real-time
multicore systems. In Proceedings of the Design
Automation Conference (DAC), pages 1–6, June
2014. doi:10.1145/2593069.2593235.

121 J. E. Smith and J. R. Goodman. A Study of In-
struction Cache Organizations and Replacement
Policies. In Proceedings of the 10th Annual Inter-
national Symposium on Computer Architecture,
ISCA ’83, pages 132–137, New York, NY, USA,
1983. ACM. doi:10.1145/800046.801648.

122 J. E. Smith and J. R. Goodman. Instruc-
tion Cache Replacement Policies and Organiz-
ations. IEEE Transactions on Computers, C-
34(3):234–241, March 1985. doi:10.1109/TC.

1985.1676566.
123 Z. Stephenson, J. Abella, and T. Vardanega. Sup-

porting industrial use of probabilistic timing ana-
lysis with explicit argumentation. In Proceedings
of the IEEE International Conference on Indus-
trial Informatics (INDIN), pages 734–740, July
2013. doi:10.1109/INDIN.2013.6622975.

124 N. Topham and A. Gonzalez. Randomized cache
placement for eliminating conflicts. IEEE Trans-
actions on Computers, 48(2):185–192, February
1999. doi:10.1109/12.752660.

125 N. Tracey, J. Clark, K. Mander, and J. McDer-
mid. An automated framework for structural test-
data generation. In Proceedings 13th IEEE In-
ternational Conference on Automated Software
Engineering, pages 285–288, October 1998. doi:

10.1109/ASE.1998.732680.
126 N. Tracey, J. A. Clark, and K. Mander. The

way forward for unifying dynamic test-case gen-
eration: The optimisation-based approach. Pro-
ceedings of the IFIP International Workshop
on Dependable Computing and Its Applications
(DCIA)., 1998.

127 D. Trilla, C. Hernandez, J. Abella, and F. J.
Cazorla. Resilient random modulo cache memor-
ies for probabilistically-analyzable real-time sys-
tems. In IEEE International Symposium on
On-Line Testing and Robust System Design
(IOLTS), pages 27–32, July 2016. doi:10.1109/

IOLTS.2016.7604666.
128 F. Wartel, L. Kosmidis, A. Gogonel, A. Bal-

dovino, Z. Stephenson, B. Triquet, E. Quiñones,
C. Lo, E. Mezzetta, I. Broster, J. Abella, L. Cucu-
Grosjean, T. Vardanega, and F. J. Cazorla. Tim-
ing analysis of an avionics case study on complex
hardware/software platforms. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 397–402, March 2015.

129 F. Wartel, L. Kosmidis, C. Lo, B. Triquet,
E. Quiñones, J. Abella, A. Gogonel, A. Baldovin,
E. Mezzetti, L. Cucu, T. Vardanega, and F. J.
Cazorla. Measurement-based probabilistic tim-
ing analysis: Lessons from an integrated-modular
avionics case study. In Proceedings of the IEEE
International Symposium on Industrial Embed-
ded Systems (SIES), pages 241–248, June 2013.
doi:10.1109/SIES.2013.6601497.

130 J. Wegener and F. Mueller. A Comparison of
Static Analysis and Evolutionary Testing for the
Verification of Timing Constraints. Real-Time
Systems, 21(3):241–268, November 2001.

131 J. Wegener, H. Sthamer, B. F. Jones, and D. E.
Eyres. Testing real-time systems using genetic
algorithms. Software Quality Journal, 6(2):127–
135, June 1997. doi:10.1023/A:1018551716639.

132 I. Wenzel, R. Kirner, B. Rieder, and P. Puschner.
Measurement-Based Timing Analysis. In Lever-
aging Applications of Formal Methods, Veri-
fication and Validation, pages 430–444, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

133 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdin-

http://dx.doi.org/10.1007/978-3-319-69483-2_4
http://dx.doi.org/10.1007/978-3-319-69483-2_4
http://dx.doi.org/10.4230/OASIcs.WCET.2014.21
http://www.es.mdh.se/publications/2215-
http://www.es.mdh.se/publications/2215-
http://dx.doi.org/10.1109/DSD.2017.71
http://dx.doi.org/10.1109/ECRTS.2013.33
http://dx.doi.org/10.1145/2593069.2593235
http://dx.doi.org/10.1145/800046.801648
http://dx.doi.org/10.1109/TC.1985.1676566
http://dx.doi.org/10.1109/TC.1985.1676566
http://dx.doi.org/10.1109/INDIN.2013.6622975
http://dx.doi.org/10.1109/12.752660
http://dx.doi.org/10.1109/ASE.1998.732680
http://dx.doi.org/10.1109/ASE.1998.732680
http://dx.doi.org/10.1109/IOLTS.2016.7604666
http://dx.doi.org/10.1109/IOLTS.2016.7604666
http://dx.doi.org/10.1109/SIES.2013.6601497
http://dx.doi.org/10.1023/A:1018551716639


R. I. Davis and L. Cucu-Grosjean 03:59

and, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The Worst-case Execution-time Prob-
lem Overview of Methods and Survey of Tools.
ACM Transactions on Embedded Computing Sys-
tems, 7(3):36:1–36:53, May 2008. doi:10.1145/

1347375.1347389.
134 N. Williams. WCET measurement using modi-

fied path testing. In Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), volume 1 of OpenAccess Series in In-
formatics (OASIcs), 2005. doi:10.4230/OASIcs.

WCET.2005.809.

135 N. Williams and M. Roger. Test generation
strategies to measure worst-case execution time.
In ICSE Workshop on Automation of Software
Test, pages 88–96, May 2009. doi:10.1109/IWAST.

2009.5069045.

136 M. Ziccardi, E. Mezzetti, T. Vardanega,
J. Abella, and F. J. Cazorla. EPC: Extended
Path Coverage for Measurement-Based Probab-
ilistic Timing Analysis. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 338–349, December 2015. doi:10.1109/

RTSS.2015.39.

A Appendix: Measurement Protocols

In this appendix, we briefly discuss measurement protocols and test vector generation, since

they underpin approaches to measurement-based timing analysis. We use the term scenario of

operation to mean a potentially repeating sequence of runs of a program, starting from a feasible

initial hardware state and progressing via a valid evolution of the program’s input values. To

run a program over a particular scenario of operation, a measurement protocol needs to provide

information about the initial hardware configuration, which is used to set up the initial hardware

state, and a sequence of input values, referred to as a test vector, which are input to the program

as it iterates over a number of runs. The aim of a measurement protocol is to exercise the program

in ways that are relevant to the parameter being measured. For example, if the parameter being

measured is a code coverage metric, then the measurement protocol would aim to use a set of

scenarios and test vectors designed to exercise paths that cover all of the statements (or all of the

conditions) in the code. In the case of the WCET, the set of scenarios and test vectors need to

be designed to exercise the longest paths through the code, assuming that those paths can be

identified in some way. The major difficulty in designing an appropriate measurement protocol is

in choosing which scenarios and hence which test vectors to use.

Search-based techniques were successfully applied to the problem of automatic test data

generation for structural code coverage by Tracey et al. [125] in 1998. While measurement

protocols designed for code coverage can potentially provide a useful starting point for the WCET

problem, in general even MC-DC coverage is insufficient. Further, full path-coverage is typically

unattainable due to issues of tractability, although some programs for high integrity systems may

be simple enough that all paths can be covered. Structural coverage offers a more attractive

starting point for hybrid measurement-based analysis which records execution times at the level of

simple functions or sub-programs as discussed by Deverge and Puaut [42] in 2005; however, there

are still issues with how these execution times are combined due to dependences on the previous

history of execution.

Search techniques developed by Wegener et al. [131] in 1997, Tracey et al. [126] in 1998, Wegener

and Mueller [130] in 2001, and multi-criteria optimisation developed by Bate and Khan [10] in 2011

have also been investigated in the context of test data generation with the aim of finding input

values that result in large execution times. The basic idea is to use an evolutionary algorithm to

mutate or evolve a population of test data, with the fitness function determined by the execution

time of the program with that data as input. Multi-criteria optimisation works in a similar

way, but takes into account additional criteria such as the number of cache misses as well as the

execution time.

In 2005, Williams [134] proposed a static analysis tool that seeks to determine a set of test

vectors that exercise every path. This was later extended in 2009 by Williams and Roger [135]

with the aim of avoiding the need for full path coverage, for example by maximising loop counts.

LITES

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.4230/OASIcs.WCET.2005.809
http://dx.doi.org/10.4230/OASIcs.WCET.2005.809
http://dx.doi.org/10.1109/IWAST.2009.5069045
http://dx.doi.org/10.1109/IWAST.2009.5069045
http://dx.doi.org/10.1109/RTSS.2015.39
http://dx.doi.org/10.1109/RTSS.2015.39


03:60 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2008, Wenzel et al. [132] described a tool for measurement-based timing analysis that uses

a combination of test data reuse, random search, heuristics and model checking. It partitions

the program into user defined segments (to ease path complexity), with instructions inserted at

segment boundaries to ensure a consistent hardware state. In 2011, Bunte et al. [21] showed that

commonly used metrics for functional testing including statement coverage, decision coverage,

and MC/DC coverage are insufficient to obtain safe WCET estimates. Instead, they propose

a balanced path metric which ensures that all feasible pairs of basic blocks are exercised in

combination. This metric is shown to be much more effective than the common code coverage

metrics, but is still not completely safe. Later in 2011, Bunte et al. [24] explored the combination

of model checking, used to produce a set of test vectors that provide basic block coverage, and a

genetic algorithm, which aims to modify these test vectors to maximise execution times. They

evaluated this combined approach using the relative safety metric developed previously [21].

Recent work by Law and Bate [80] in 2016, aimed at maximising loop bounds and achieving

path coverage at the level of individual functions. The techniques proposed make use of simulated

annealing in combination with fitness functions that target branch coverage and loop counts

as well as execution time. They show that this approach is more effective in providing WCET

approximations than fitness functions based solely on maximising execution time.

While these methods are effective in finding large execution times, there are no guarantees

that test data which results in the worst-case execution time will be found.

Further related work in 2017 by Braams et al. [20] presented EDiFy, a measurement-based

framework that aims to derive the execution time distribution of a program via exhaustive

evaluation of the program inputs. Since the execution time distribution depends on the distribution

of input values, the input value distribution is assumed to be provided for each independent input

variable and also the conditional distribution for any dependent variables. EDiFy addresses issues

of tractability via a combination of static analysis and an anytime algorithm. Static analysis is

used to reduce the state-space by pruning irrelevant input variables, and clustering variable ranges

where the execution time is guaranteed to be the same. The anytime algorithm makes use of a

logarithmic traversal function over the variable ranges. This ensures rapid convergence and an

early tight approximation of the execution time distribution. Execution times are obtained by

running the program with the selected input values.

Although we have touched upon issues of test data generation and measurement protocols

in the above discussion a comprehensive review of research in this area is outside of the scope

of this survey. As far as we are aware, to date there has only been very limited work done on

the problem of defining appropriate measurement protocols to support MBPTA. The majority of

works on MBPTA (see Section 4) aim at analysing single paths and focus on obtaining sufficient

observations for the path under analysis. They then rely on additional knowledge to identify the

worst-case paths or existing functional testing to provide sufficient path coverage. A pWCET

distribution for the program is then constructed using an envelope over the pWCET distributions

for individual paths, i.e. the per-path method (see Section 2.3). Cucu-Grosjean et al. [34] note that

full path coverage is a pre-requisite to obtaining sound results from MBPTA. This is backed up by

the empirical work of Lesage et al. [85] which shows that omitting some paths can quickly degrade

the estimated pWCET distribution output by MBPTA leading to optimistic (i.e. unsound) results.

Hybrid methods (see Section 5) go some way to addressing the path coverage problem; however,

they are limited in their applicability. Further research is clearly needed to define appropriate

measurement protocols that can fully support MBPTA methods, while also addressing issues of

representativity.


	Introduction
	Conventional Timing Analysis Techniques
	Probabilistic Timing Analysis Techniques

	Fundamental Concepts and Methods
	probabilistic Worst-Case Execution Time (pWCET)
	Overview of Static Probabilistic Timing Analysis (SPTA)
	Overview of Measurement-Based Probabilistic Timing Analysis (MBPTA)

	Static Probabilistic Timing Analysis (SPTA)
	SPTA based on Probabilities from Inputs
	SPTA based on Probabilities from Faults
	SPTA based on Probabilities from Random Replacement Caches
	Summary and Perspectives

	Measurement-Based Probabilistic Timing Analysis (MBPTA)
	EVT and i.i.d. observations
	EVT and observations with dependences
	EVT and representativity
	Summary and Perspectives

	Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)
	HyPTA and the Path Coverage Problem
	Summary and Perspectives

	Enabling Mechanisms and Techniques
	Caches and Hardware Random Placement
	Caches and Software Random Placement
	Cache Risk Patterns with Random Placement
	Buffers, Buses and other Resources
	Summary and Perspectives

	Case Studies, Benchmarks and Evaluation
	Critiques
	Case Studies and Evaluation
	Summary and Perspectives

	Conclusions
	Open Issues
	Directions for Future Research


