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Huge power factor in p-type half-Heusler alloys NbFeSb and TaFeSb

G. A. Naydenov,∗ P. J. Hasnip, V. K. Lazarov, and M. I. J. Probert
Department of Physics, University of York, York YO10 5DD, United Kingdom

(Dated: March 13, 2019)

NbFeSb is a promising thermoelectric material which according to experimental and theoretical
studies exhibits a high power factor of up to 10 mW/(m·K2) at room temperature and ZT of 1 at
1000 K. In all previous theoretical studies, κlatt is calculated using simplified models, which ignore
structural defects. In this work, we calculate κlatt by solving the Boltzmann Transport Equation and
subsequently including the contributions of grain boundaries, point defects and electron-phonon in-
teraction. The results for κlatt and ZT are in excellent agreement with experimental measurements.
In addition, we investigate theoretically the thermoelectric properties of TaFeSb. The material has
recently been synthesised experimentally, thus confirming the theoretical hypothesis for its stability.
This encourages a full-scale computation of its thermoelectric performance. Our results show that
TaFeSb is indeed an excellent thermoelectric material which has a very high power factor of 16
mW/(m·K2) at room temperature and ZT of 1.5 at 1000 K.

I. INTRODUCTION

NbFeSb is a half-Heusler intermetallic compound
which has recently attracted a lot of attention as a po-
tential thermoelectric material due to its ecologically
friendly properties and the relatively high earth abun-
dance of Nb and Fe. NbFeSb alloys are reported to have
a large power factor of up to 10 mW/(m·K2) [1], beat-
ing some of the best thermoelectrics, e.g. Bi2Te3. How-
ever, their thermal conductivity is also a lot higher than
Bi2Te3 [1–3]. The high thermal conductivity of NbFeSb
is phonon dominated and this provides much room for
improvement of the current thermoelectric figure of merit
maximum of ZT=1 at 1000K.
The thermoelectric figure of merit is given by the equa-

tion ZT = S2σT/κ and several theoretical and experi-
mental studies which aim to optimise the thermal con-
ductivity (κ) as well as the Seebeck coefficient (S ) and
electrical conductivity (σ) have been conducted in the
past couple of years[1, 2, 4–10]. This optimisation is
done by p-type doping with Ti, Hf and Zr for Nb or Sn
for Sb. Such an approach maximises the power factor by
fine tuning of the doping levels and decreases the lattice
thermal conductivity by enhancing the phonon scattering
due to the mass difference between the dopant and host
atoms. To date, the best NbFeSb results are obtained by
Ti-doping [1] due to the large mass difference between Ti
and Nb. The mass difference can be further enhanced if
Nb is substituted with a heavier but chemically similar
element like Ta, which is something that has not yet been
thoroughly investigated.
The first aim of this study is to compute the lattice

thermal conductivity (κlatt) of NbFeSb using the semi-
classical Boltzmann Transport Equation (BTE) and com-
pare the obtained theoretical thermoelectric (TE) results
to experimental measurements. The second aim is to use
the same approach and calculate the TE properties of a

∗ email: gan503@york.ac.uk

compound very similar to NbFeSb, namely TaFeSb. A
theoretical study by Bhattacharya and Madsen [9] re-
ports that TaFeSb is a stable compound which can also
be doped with Ti in a similar way to NbFeSb. A very
recent experimental study by Zhu et al. [11] investigates
extensively the phase stability of the compound and pro-
vides an XRD pattern after the successful experimental
synthesis of TaFeSb. The main interest in TaFeSb comes
from the fact that it has the same number of valence
electrons as NbFeSb, while Ta has almost twice the mass
of Nb. This suggests that TaFeSb should have the same
good electronic TE properties as NbFeSb. In addition,
the heavier Ta should also lead to an increase in the scat-
tering strength in doped TaFeSb due to point defects and
thus decrease κlatt. As a result, TaFeSb may be expected
to have a significantly higher ZT than NbFeSb but un-
til now there have been no full-scale theoretical studies
on the pure TaFeSb compound to confirm this hypoth-
esis. Zeeshan et al. [12] investigates the thermoelectric
properties of TaFeSb but without computing the elec-
tron relaxation time or including the additional phonon
scattering mechanisms. Another recent study conducted
by Yu et al. [8] investigates the effect of Ta but in NbFeSb
systems. Hence, this is clearly a very hot topic and there
is a strong need for a full study of the thermoelectric
properties of TaFeSb.

II. METHODOLOGY AND THEORY

We split our calculations into two stages. We solve the
electron BTE in the first stage and the phonon BTE in
the second one. The energy distribution of the charge
carriers and phonons is computed from first-principles.

A. DFT calculations and electronic TE properties

The first-principles calculations were performed with
the CASTEP[13] code and the generalized gradient
approximation Perdew–Burke–Ernzerhof (GGA-PBE)
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2

exchange-correlation functional [14]. On-the-fly ultrasoft
pseudopotentials (C9 set)[15] were used with a plane-
wave cut-off energy of 700 eV with a grid scale of size 2.0.
A cubic unit cell, corresponding to four elementary rhom-
bohedral cells, was used for all simulations. The Brillouin
zone was sampled using a MonkhorstPack grid[16] with

an 8×8×8 ~k-points mesh (equivalent to ~k-points spacing
of 0.021 2πÅ−1). The structure was fully optimized until
pressure and energy were converged to 0.1 GPa and 0.02
meV/atom, respectively. Density of states (DOS) and
partial density of states (PDOS) were analysed using the
OptaDOS code[17].
Electronic transport properties were calculated using

the semi-classical Boltzmann transport formalism as im-
plemented in the BoltzTraP code [18]. The electronic
eigenenergies required for the transport properties were

calculated with CASTEP on a 48 × 48 × 48 ~k-points
mesh, which was later interpolated on a 5 times denser
mesh in BoltzTraP. The simulated half-Heusler alloys are
isotropic and the Seebeck coefficient S, electrical con-
ductivity σ and electron thermal conductivity κel can
be evaluated as the average of the trace of the respec-
tive tensors. The final results are obtained as a function
of the temperature (T ) for 37 fixed doping levels from
nh = 1018 cm−3 to nh = 1022 cm−3. BoltzTraP calcu-
lates both electrical and electron thermal conductivity as
σ/τ and κel/τ where τ is the relaxation time. We use the
deformation potential (DP) theory to compute τ [19]. A
more detailed explanation of the steps needed for calcu-
lating τ is provided in the supplementary materials.

B. Lattice thermal conductivity modelling

1. ShengBTE and thirdorder programs

The lattice thermal conductivity was calculated by
solving the phonon BTE in ShengBTE, which as in-
puts requires the second order force constants (usu-
ally just called the ‘force constants’) and the anhar-
monicity (third order force constants) of the system.
The second order force constants were obtained with
CASTEP using density-functional perturbation theory
(DFPT) for the phonons [20]. The calculations used
the GGA-PBE exchange-correlation functional[14], on-
the-fly norm-conserving pseudopotentials (NCP17 set)
and a plane-wave cut-off energy of 2000 eV with a grid
scale of size 2.0. The Brillouin zone was sampled us-

ing a MonkhorstPack[16] grid with an 5× 5× 5 ~k-points

mesh (equivalent to ~k-points spacing of 0.034 2πÅ−1). A
~q-point grid of the same size and spacing was used for
calculating the second order force constants.
The third order force constants were calculated using

the finite-displacement supercell approach. The set of
supercells and the reconstruction of the force constants
was performed by the thirdorder.py script that is pro-
vided as part of the ShengBTE package. The ab initio

calculations were done using CASTEP. The settings for
these runs included: a 2×2×2 cubic supercell, on-the-fly
ultrasoft pseudopotentials (C9 set), a plane-wave cut-off
energy of 600 eV with a grid scale of size 2.0 and a very
fine energy per atom convergence tolerance of 2× 10−10

eV.
ShengBTE computes the intrinsic lattice thermal con-

ductivity κint due to 3P (three-phonon) processes. We
have also included the effect of GB (grain boundaries),
PD (point defects) and EP (electron-phonon) interaction
to the lattice thermal conductivity. More details on how
this is done are given in the supplementary materials.

III. RESULTS

The results are split into two subsections. The first one
presents the calculations on the TE properties of NbFeSb.
We start by following the well-established procedure of
using BoltzTraP [18] to obtain the electronic properties
of the material and then solve the phonon BTE using
ShengBTE. [21] Furthermore, we build upon the method
proposed by Hong et al.[5] for the inclusion of point de-
fects and introduce the contributions of grain boundaries
and electron-phonon interaction to the lattice thermal
conductivity of NbFeSb. To the best of our knowledge,
this is the first instance when the lattice thermal conduc-
tivity of NbFeSb is calculated by solving the BTE and
including all these additional contributions. For this rea-
son, the results are thoroughly compared to the available
experimental data. The second section follows a similar
layout but is focused on TaFeSb and the observed im-
provements in TE properties with respect to NbFeSb.
It is worth pointing out that BolzTraP calculates the

TE properties at different doping levels by changing the
chemical potential implicitly and hence the dopant atoms
are not explicitly included. For this reason, the p-type
compounds in electronic properties section are referred
simply as NbFeSb and TaFeSb. However, the compu-
tation of the change in the lattice thermal conductivity
due to point defects requires knowledge of the atomic
mass of the dopant atoms. In this case, the structures
are referred as Nb1−xTixFeSb and Ta1−xTixFeSb, with
Ti being used for the p-type doping.

A. NbFeSb

1. Electronic structure

NbFeSb is a half-Heusler compound, which has a com-
position of XYZ, where X and Y are transition metals
and Z is a main group element. The crystal structure is
face-centred cubic, having space group F 4̄3m (216). The
lattice constant is calculated to be 5.96 Å, which agrees
well with the experimental value of 5.95 Å [4]. The band
structure and density of states (DOS) are presented in
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3

Fig. 1. The figure shows that the conduction band mini-
mum (CBM) is at the Γ-point, whereas the valence band
maximum (VBM) is positioned at the L-point. The mag-
nitude of the formed indirect band gap (ǫg) is 0.53 eV,
which is in an excellent agreement with other theoretical
[1, 5, 6] (ǫg = 0.52 and 0.53 eV) and experimental [1]
(ǫg = 0.51 eV) studies. The partial DOS show that Fe
and Nb are the main contributors to states around the
Fermi level. This means that the power factor is mainly
affected by Fe and Nb rather than Sb.
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Figure 1. Density of states (a) and band structure (b) graphs
of NbFeSb.

2. Electronic TE properties

The parameters needed to calculate the electron relax-
ation time for bulk NbFeSb are given in Table I. These
include the deformation potential (VDP ), effective mass
of the charge carriers (m* ), carrier mobility (µ) and re-
laxation time (τ). The elastic constants are given in Ta-
ble S1 in the supplementary materials. The values of
the parameters obtained for holes are slightly higher, but
within the margin of error, than the ones obtained exper-
imentally by He et al.[1] and Fu et al.[4]. The experimen-
tal measurements have been performed on doped systems

which exhibit structural defects. Therefore, a slight over-
estimate is to be expected when the results are compared
to the modelled perfect bulk system. To the best of our
knowledge there are no experimental results on the elec-
tron parameters. However, the electron values presented
in Table I agree extremely well with the theoretical pre-
diction of Hong et al.[5]. The magnitude of the deforma-
tion potential constant for holes (VDP = −13.98 eV) is
lower than the one for electrons (VDP = −14.53 eV). This
can be explained by the different dispersion of the valence
and conduction bands. The bottom conduction band is
more dispersive than the top valence band, and the ap-
plied strain has a smaller effect on the flatter bands. Due
to the difference in the dispersion of the bands, the effec-
tive mass of electronsm∗

el=0.35(me) is much smaller than
that of the holes m∗

h=1.65(me). This results in a much
lower mobility (µh = 28.02 cm2V−1s−1) of the heavier
holes and a lower relaxation time of τh = 26.23 fs at
300 K. This value of the relaxation time, with the in-
cluded temperature dependence of τ ∝ 1/T 3/2 is used to
post-process the results obtained from BoltzTraP for the
p-type behaviour of NbFeSb.

Table I. Parameters needed for electron and hole τ calcu-
lations of NbFeSb. These include the deformation potential
(VDP ), effective mass of charge carriers (m* ), carrier mobility
(µ) and relaxation time (τ) at 300 K for electrons and holes.

Carrier type VDP (eV) m* (me) µ (cm2V−1s−1) τ (fs)
holes −13.98 1.65 28.02 26.23
electrons −14.53 0.35 1243.93 247.54

The calculated thermoelectric properties of p-type
NbFeSb are shown in Fig. 2. All quantities agree very
well with results obtained in the other theoretical stud-
ies [5, 6]. It can be seen that the Seebeck coefficient (top
left graph) reaches values up of 700 µV/K at low temper-
ature (around 300 K) and at extremely small doping lev-
els (between 0.04 and 0.004% hole concentration). When
the doping concentration is increased to the experimen-
tal values of x = 0.04 (nh = 8 × 1020cm−3) the Seebeck
coefficient becomes 129 µV/K and 266 µV/K at 300 K
and 1000 K, respectively. These values are slightly lower
than the experimental results obtained by Fu et al. [4] (S
= 150 µV/K and 285 µV/K at 300 K and 1000 K, respec-
tively) and He at al.[1] (S = 175 and 300 µV/K at 300
and 1000 K, respectively). It is worth mentioning, how-
ever, that a lower doping level in the theoretical model
of nh = 6× 1020cm−3 (x = 0.03) yields identical results
to the experimental ones obtained for x = 0.04 by Fu et
al.[4]. This could mean that an x = 0.04 does not strictly
correspond to 8×1020cm−3 hole concentration in the ex-
perimental samples, and some of the holes could be com-
pensated. In fact, Fu et al.[4] results show that a doping
level of x = 0.04 corresponds more to nh = 6×1020cm−3

rather than nh = 8 × 1020cm−3, as the theory suggests.
For simplicity, however, we use the theoretical relation
between x and nh (volume = x/nh), where the volume

Page 3 of 16 AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100103.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



4

is theoretically calculated to be 52.86× 10−24cm3.
The electrical conductivity σ and electronic thermal

conductivity κel also agree very well with other theoret-
ical studies[5, 6], but are slightly larger than found in
experiment [1, 4]. There are a few reasons for this dis-
crepancy. As already mentioned, the carrier mobility of
the perfect crystal is expected to be higher than µ of
the doped compounds, hence τ and σ are also larger.
Second, the temperature dependence of τ is no longer
proportional to T−3/2 at temperature < 450 K[1, 4]. Fi-
nally, the constant relaxation time approximation lacks
dependence on the chemical potential, which means that
additional scattering events are not captured when the
doping levels are increased. Thus, σ and κel tend to be
overestimated at high doping levels. Nevertheless, the
current model for τ is a computationally inexpensive ap-
proach that allows us to calculate values for σ and κel,
which agree relatively well with both theoretical and ex-
perimental studies.
The highest value of the power factor PF = S2σ is

obtained at nh = 7 × 1020cm−3 (x = 0.037) and yields
PF = 9.15 and 5.23 mW/(m·K2) at 300 K and 1000 K,
respectively. This result is very close to the key result
of He et al.[1] study of PF = 10.6 mW/(m·K2) at room
temperature and x ≈ 0.05. In general, the power factor
values remain consistent with the experimental measure-
ments up to nh = 2× 1021cm−3 (x = 0.1). Beyond that
value, the theoretical prediction starts to overestimate
the experimental results by values up to ≈ 2 mW/(m·K2)
when one reaches x = 0.3. Such behaviour is also noticed
by the other theoretical studies mentioned before. The
reason for this could be either the constant relaxation
time approximation, or the fact that the heavy doping
significantly changes the electronic structure of the sys-
tem. However, as shown experimentally, NbFeSb exhibits
its best thermoelectric performance at around x = 0.05,
and this region is accurately modelled by the current the-
oretical approach.

3. Lattice thermal conductivity

The phonon density of states (DOS) are presented in
Fig. 3. The data is in a good agreement with the re-
sults obtained by Hong et al. [5] and Zeeshan et al. [12]
and as there are no imaginary frequencies the structure
is mechanically stable. The phonon DOS can be split
into three regions. The first one is at low frequency,
ω < 170 cm−1 where the lattice vibrations are primar-
ily due to Sb atoms. The dominant contributor to the
phonon DOS for 170 < ω < 230 cm−1 is Nb, whereas for
ω > 230 cm−1 lattice vibrations are predominantly due
to Fe with a small contribution from Nb. The Nb atomic
vibrations have the biggest frequency spread among the
constituents of the material. In addition, the mass dif-
ference between Nb and the dopant atoms (here assumed
to be Ti) leads to an increase in the scattering strength.
Thus, the lattice thermal conductivity κlatt of NbFeSb
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Figure 2. Colour maps of the electronic TE properties of p-
type NbFeSb. The magnitude of the electrical conductivity σ

(top right) and electronic thermal conductivity κel (bottom
left) is given on a log scale. A maximum power factor (bottom
right) value of PF = S2σ = 9.15 mW/(m·K2) is obtained at
300 K and nh = 7× 1020cm−3 (x = 0.037).

can be reduced significantly by doping. Our results show
the clear presence of a phonon gap at ω ≈ 275 cm−1,
something which is not observed either by Hong et al. or
Zeeshan et al.[12]. The reason for this discrepancy comes
from the choice of the ~q-point grid for the phonon calcu-
lations. The phonon DOS converges slowly and the gap
only becomes apparent when the ~q-point mesh is at least
3× 3× 3 or equivalently a spacing of 0.056 2πÅ−1 .
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Figure 3. Phonon density of states of NbFeSb.

Next we focus on the estimated value for the lattice
thermal conductivity and how different contributions af-
fect it. The intrinsic value of κlatt obtained from Sheng-
BTE is 21.82 and 6.49 Wm−1K−1 at 300 and 1000 K,
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respectively. This agrees very well with the theoretical
result obtained by Hong et al. [5] but is a bit higher than
the experimental measurements [1, 4]. The main rea-
sons for this discrepancy is the fact that there are no
defects such as grain boundaries, point defects or dopant
atoms in the modelled structure. To correct this, we
include the effect of all mentioned impurities by using
Klemens’ model[22] and calculating the impact on the
intrinsic value obtained from ShengBTE.
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Figure 4. The impact of grain boundaries on the lattice ther-
mal conductivity of NbFeSb at 300 K.

The study conducted by He at al. reports that the
size of the grain boundaries in NbFeSb varies between
0.3 and 4.5 µm, depending on the hot pressing tempera-
ture. Figure 4 shows how the lattice thermal conductiv-
ity of phonons with a given mean free path changes at
room temperature when grain boundaries are included
in the theoretical model. The graph illustrates the effect
of grain boundaries (LGB) by considering two different
average sizes of LGB = 4.5 and 0.5 µm. Blue circles
represent the intrinsic values of κlatt and it can be seen
that LGB = 4.5 µm, illustrated with black and white
squares, have an almost negligible impact on κlatt. How-
ever, there is a noticeable change in κlatt when the size of
the grain boundaries is reduced to 0.5 µm (orange trian-
gles), and the accumulated value of κlatt becomes 18.84
Wm−1K−1. For completeness, LGB = 0.3 µm was also
tested and yielded a result of κlatt = 17.59 Wm−1K−1

at 300 K. Both results for LGB = 0.3 and 0.5 µm are
within the margin of error of the experimental value of
κlatt ≈ 17 Wm−1K−1 (undoped NbFeSb, 12% relative
error).
To complete the calculation, we include the effect of

point defects and electron-phonon interaction to κlatt.
The computation of the electron-phonon interaction re-
quires knowledge of the electron τ . The lack of doping
level dependence in the constant relaxation time approx-
imation makes it unsuitable for calculating the electron-
phonon contribution. The experimental data from the
He et al. study, including the temperature and doping
dependencies, was used in accordance to the theoretical
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Figure 5. Figure (a) shows the contribution of grain bound-
aries GB, point defects PD and electron-phonon interaction
EP to the lattice thermal conductivity κint of NbFeSb. Fig-
ure (b) compares the theoretical prediction of this study (solid
lines) for Nb1-xTixFeSb with LGB = 0.5 µm to the experimen-
tal results (stars and circles).

model and is discussed in more details in the supplemen-
tary materials. Figure 5(a) shows how the lattice thermal
conductivity of Nb1−xTixFeSb is reduced when all con-
tributions are included. The results are presented for
doping x = 0.05 and the best match to the experimen-
tal data is obtained with LGB = 0.5 µm. Figure 5(b)
compares κlatt when all contributions have been added
to the experimental results. The computed values for the
lattice thermal conductivity agree very well with the ex-
perimental study, particularly with the He et al. study at
temperature up to 700 K. There is a slight underestimate
of the theoretical value of κlatt at higher temperature for
x=0.04 and x=0.05. This can be explained with the lack
of a bipolar thermal conductivity (κbip) term in the calcu-
lations. In order to compute that, one needs to calculate
a value for the electron relaxation time which depends
on the doping level. Therefore, using the constant relax-
ation time approximation to compute κbip would yield
inaccurate results. However, as it can be seen in Fig-
ure 5(b), the contribution of κbip is sufficiently small that
the computed values are still in a good agreement with
the experimental measurements.
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4. Figure of merit

The final results on the thermoelectric figure of merit
ZT for the p-type Nb1−xTixFeSb are presented in Fig. 6.
A comparison between ZT values obtained in this study
and the experimental data is shown in Figure 6(a). There
is a good agreement up to T = 650 K between our re-
sults and the measurements conducted by He et al. The
overestimate of ZT above this temperature for x = 0.04
and 0.05 can be explained by the missing κbip term in
the lattice thermal conductivity. This has already been
discussed in the previous section and explains why the
agreement between the experimental and theoretical re-
sults at high temperatures improves with the increase of
the doping concentration. Additionally, the limitations
of the constant relaxation time approximation, e.g. no
dependence on the chemical potential and no inclusion
of the extrinsic scattering mechanisms, can easily add up
and lead to the observed discrepancies at lower temper-
atures. The results in this study slightly overestimate
ZT when compared to Fu et al.[4] However, as with the
lattice thermal conductivity results, there is a mismatch
between the experimental results presented by He et al.
and Fu et al. The latter uses a much lower annealing
temperature, and so the density of the grain boundaries
in the sample is expected to be higher. This further con-
firms that the constant relaxation time approximation
could play a major role along with the bipolar term in
the discrepancy between the theoretical and experimen-
tal results. The sample preparation in the Fu et al. study
influences both the electrical and thermal conductivity,
and as a consequence, the measured ZT values are ex-
pected to be a bit lower than the ones obtained in our
calculations.
The colour map in Fig. 6(b) shows that NbFeSb re-

mains most efficient at high temperature, despite the big
power factor of PF = 9.3 mW/(m·K2) at 300 K. The p-
doped NbFesb displays its best figure of merit (ZT≈1.0)
at T = 1000 K and high doping levels between x = 0.05
and 0.10, corresponding to nh = 1 × 1021 and 2 × 1021

cm−3. This result is typical for half-Heusler alloys[23]
and illustrates that a reduction of κlatt can significantly
enhance the thermoelectric performance of similar half-
Heusler alloys.

B. TaFeSb

1. Electronic structure

The crystal structure of TaFeSb is very similar to
NbFeSb with the only difference being the atomic species
on the X-site. The lattice constant is calculated to be
5.95 Å. The band structure and density of states (DOS)
are presented in Fig. 7. The band gap of TaFeSb is cal-
culated to be 0.86 eV, close to the value ǫg = 0.93eV
computed by Bhattachrya and Madsen[9]. It can be seen
that the valence bands and DOS near the Fermi level re-
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Figure 6. Comparison between our theoretical results and
experimental measurements on p-type NbFeSb at x = 0.04,
0.05 and 0.10 (a). Subfigure (b) is a colour map which shows
the ZT of p-type NbFeSb with respect to the charge carrier
concentration and temperature, with a maximum ZT of 1 at
nh = 2× 1021 cm −3 (x=0.1) and T = 1000 K.

main almost unchanged when compared to NbFeSb. This
suggests that the p-type S, σ and κel should exhibit the
same behaviour as in NbFeSb, leaving the relaxation time
as the determining factor for any change in the electronic
TE properties.

2. Electronic TE properties

The relaxation time along with the parameters neces-
sary for its calculation are shown in Table II. There is a
noticeable reduction in the deformation potential values
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Figure 7. Density of states (a) and band structure (b) graphs
of TaFeSb.

for both holes VDP = −11.06 eV (−13.98 eV for NbFeSb)
and electrons VDP = −11.81 eV (−14.53 eV for NbFeSb).
This means that stress has less effect on the electronic
structure of TaFeSb. In addition, a slight reduction in
the effective mass is also observed, with m∗

h = 1.57(me).
As a result, the mobility of the holes and relaxation time
are increased to µh = 53.11 cm2V−1s−1 and τh = 47.32
fs.

Table II. Parameters needed for electron and hole τ calcu-
lations of TaFeSb. These include the deformation potential
constant (VDP ), effective mass of charge carriers (m* ), carrier
mobility (µ) and relaxation time (τ) at 300 K for electrons
and holes.

Carrier type VDP (eV) m* (me) µ (cm2V−1s−1) τ (fs)
holes −11.06 1.57 53.11 47.32
electrons −11.81 0.38 1629.74 350.26

Next we present the electronic TE properties of TaFeSb
in the form of colour maps in Fig. 8. The colour maps in-
vestigate a very wide doping and temperature range and
might not be intuitive for comparison purposes. For that
reason, we also provide 2D plots in Fig. 9, which com-
pare the electronic properties of TaFeSb and NbFeSb for
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Figure 8. Colour maps of the electronic TE properties of p-
type TaFeSb. The magnitude of the electrical conductivity σ

(top right) and electronic thermal conductivity κel (bottom
left) is given on a log scale. A maximum power factor (bottom
right) value of PF = S2σ = 16.11 mW/(m·K2) is obtained at
300 K and nh = 7× 1020 cm−3 (x = 0.037).

the common doping levels of x = 0.04, 0.05 and 0.10.
The value of the p-type Seebeck coefficient for x=0.05
is calculated to be 113.81 and 247.5 µV/K at 300 and
1000 K, respectively. The change in S with respect to
the NbFeSb results for the same doping concentration
is less than 1%, which is expected due to the similarity
in the valence bands of both materials. On the other
hand, the bigger band gap in TaFeSb results in a bigger
p-type S at a very low doping concentration and temper-
ature around 600 K. This is visualised with an increase
of the red area in Fig. 8(a) when compared to NbFeSb in
Fig. 2(a). The results confirm that not only does TaFeSb
exhibit a competitive Seebeck coefficient around the ex-
perimentally investigated doping levels, but also shows a
significant improvement at very low nh and moderate T.

The results obtained from BoltzTraP for σ and κel pre-
dict a behaviour analogous to the changes observed for
p-type S. Therefore, the increase of τ (holes), which is
≈ 80%, yields a significant improvement in σ, and an
increase in κel. The increase of σ leads to an astonish-
ing power factor of PF ≈ 16 mW/(m·K2) at room tem-
perature and x=0.03-0.05. For comparison, the power
factor of NbFeSb is estimated to be 9-10 mW/(m·K2),
and the maximum value for Fe2VAl is measured to be
5.5 mW/(m·K2) [24]. The compounds based on the al-
ready established TE material Bi2Te3 have a power factor
between 1.5 and 6 mW/(m·K2) [3, 25, 26]. The improve-
ment in PF of TaFeSb over NbFeSb is maintained over
a wide range of doping levels from nh = 1020 cm−3 to
nh = 2×1021 cm−3 and at higher temperatures (compare
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Fig. 8(d) and Fig. 2(d) and note the unchanged ranges).
In summary, TaFeSb has a significantly better electronic
TE performance than NbFeSb due to the increased band
gap and higher mobility of the charge carriers.
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Figure 9. Comparison of the thermoelectric properties of
TaFeSb and NbFeSb for x = 0.04, 0.05 and 0.10. The subfig-
ures compare the Seebeck coefficient (a), electrical conductiv-
ity (b), electronic thermal conductivity (c), and power factor
(d).

3. Lattice thermal conductivity

The phonon density of states of TaFeSb, presented in
Fig. 10, show a close resemblance to the NbFeSb results.
There are no imaginary frequencies and so this structure
is also mechanically stable. The data is again in a very
good agreement with the results obtained by Zeeshan et
al. [12] The low frequency region is up to 150 cm−1 and
is dominated by Sb. The intermediate region between
150 and 220 cm−1 is due to Ta, instead of Nb. The last
region is dominated by Fe atomic vibrations and occupies
the high frequencies up to 350 cm−1. It is also noticeable
that a gap is formed in between the regions dominated
by Ta and Fe. Our calculations show that the intrinsic
value of κlatt is 20.57 and 5.75 Wm−1K−1 at 300 and 1000
K, respectively. This is slightly lower than the NbFeSb
results and can be accounted for by the gap between Ta
and Fe in Fig. 10.
The effect of grain boundaries on κlatt of TaFeSb at

300 K is shown in Fig. 11. Grain boundaries of size 4.5
µm have an almost negligible effect on the lattice ther-
mal conductivity. When their size is reduced to 0.5 µm
κlatt is computed to be 17.63 Wm−1K−1. Although a
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Figure 10. Phonon density of states of TaFeSb.

similar behaviour was noticed in NbFeSb, the presence
of an additional gap in the phonon DOS of TaFeSb leads
to a different phonon mean free path λmfp distribution.
A common dip in the phonon thermal conductivity is
observed for both TaFeSb and NbFeSb between 0.3 and
0.4 µm. This can be explained by the common gap in
the phonon DOS at ω ≈ 275 cm−1. However, whilst the
Ta-Fe gap in TaFeSb leads to an extra dip at 0.08 µm,
this has a small effect as phonons with λmfp less than 0.3
µm contribute less to the total lattice thermal conductiv-
ity. Despite this difference, grain boundaries of the same
size seem to reduce κlatt in both TaFeSb and NbFeSb
by a similar amount. This means that the change in the
phonon mean free path distribution has an effect only on
the intrinsic value of κlatt but little impact on the effect
of grain boundaries.
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Figure 11. The impact of grain boundaries on the lattice
thermal conductivity of TaFeSb at 300 K.

Next we proceed by adding the contribution of the
point defects due to Ti doping. The major difference be-
tween TaFeSb and NbFeSb is in the atomic mass of the
X element. The mass of Ta is 180.95 amu, whereas Nb is
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significantly lighter with a mass of 92.906 amu. One of
the crucial parameters in the Klemens model[22] for the
thermal conductivity of systems with point defects is the
mass difference between the dopant atom (Ti) and the
atoms which are substituted (Ta or Nb): a larger mass
difference results in a greater reduction in the lattice ther-
mal conductivity. Therefore, the lattice thermal conduc-
tivity of Ta1−xTixFeSb is expected to be affected signifi-
cantly by the Ti dopants. Fig. 12(a) illustrates this point
by comparing the Ta1−xTixFeSb and Nb1−xTixFeSb re-
sults. It is indeed seen that the reduction in κlatt of
the Ta-based compound due to point defects (Ti doping)
is much more significant. For Nb1−xTixFeSb the lattice
thermal conductivity is reduced by 23% and 9% at 300
K and 1000 K, respectively, when the point defects are
included. For Ta1−xTixFeSb these numbers increase to
37% and 18% at 300 K and 1000 K, respectively.
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Figure 12. Figure (a) compares the lattice thermal conductiv-
ity of Ta1-xTixFeSb (solid lines) and Nb1-xTixFeSb (dashed
lines) when the contribution of grain boundaries GB, point
defects PD and electron-phonon interaction EP are added.
The biggest change occurs when the contribution from point
defects is added to the Ta-based compound. Figure (b) com-
pares κlatt with all contributions included at different doping
levels.

The last contribution which needs to be added is the
electron-phonon interaction. As already described, it is
meaningless to use the constant relaxation time approxi-
mation to compute the electron-phonon interaction. For

that reason, experimental data was used earlier to obtain
a value for the NbFeSb compound. Unfortunately, there
are no experimental measurements which can be used
to extract a value for the electron-phonon contribution
in TaFeSb. For practical purposes and because of the
similarity in the electronic structure and phonon DOS
between TaFeSb and NbFeSb, we will use the electron-
phonon contribution which was extracted for NbFeSb. In
the worst case, such an approximation would lead to an
overestimate of κlatt and an underestimate of the ZT of
TaFeSb rather than the opposite.

Fig. 12(b) shows the lattice thermal conductivity of
Ta1−xTixFeSb and Nb1−xTixFeSb at different doping
levels with all contributions included. The trend shows
that κlatt of the Ta-based compound is lower at all dop-
ing levels. At x=0.05, κlatt is lower by 21% (κlatt=8.99
Wm−1K−1) and 15% (κlatt=4.04 Wm−1K−1) at 300 K
and 1000 K, respectively. At x=0.10, the reduction
is 23% (κlatt=8.43 Wm−1K−1) and 18% (κlatt= 3.20
Wm−1K−1) at 300 K and 1000 K, respectively. The im-
provement of 15-23%, as already discussed, comes from
the slightly lower intrinsic value of κlatt for TaFeSb and
the bigger mass difference between Ta and Ti. There
is also a noticeable similarity of the lattice thermal
conductivity of Ta1−xTixFeSb at x=0.05 and that of
Nb1−xTixFeSb at x=0.10. This hints that TaFeSb might
require less doping than NbFeSb to reach its maximum
ZT value.

C. Comparison between ZT of p-type TaFeSb and

NbFeSb

Finally, we present the results on ZT of Ta1−xTixFeSb
and compare them to the Nb1−xTixFeSb results. Fig. 13
shows that the maximum thermoelectric figure of merit
is obtained at T=1000 K, x=0.05 and is equal to
ZT=1.53. For comparison the maximum ZT value for
Nb1−xTixFeSb is only 1.01, and at x=0.10. Fig. 13(a)
shows that Ta1−xTixFeSb exhibits higher ZT across the
entire temperature range and at all doping levels. The
main difference to Nb1−xTixFeSb is that there is a 50%
increase in ZT and that the peak is achieved at x=0.05
rather than x=0.10, which is in agreement with the pre-
diction made in the lattice thermal conductivity section.

The colour map in Fig. 13(b) reveals a broad area be-
tween 800 and 1000 K, and x=0.02 and x=0.15 in which
the ZT of Ta1−xTixFeSb is higher than 1.2. At moder-
ate temperature (500-700 K) the ZT value drops to ≈ 1,
which is still considered as an excellent TE result. Even
at room temperature, the TE figure of merit (ZT=0.3) is
almost 2 times bigger than that of NbFeSb (ZT=0.17).
The wide range of conditions, which result in a good ZT
value, suggests that p-type TaFeSb can indeed be used
as a novel material for efficient thermoelectric devices.
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Figure 13. Comparison between p-type TaFeSb and NbFeSb
at x = 0.04, 0.05 and 0.10 (a). Subfigure (b) is a colour map
which shows the ZT of p-type TaFeSb with respect to the
charge carrier concentration and temperature, with a maxi-
mum ZT of 1.53 at nh = 1 × 1021 cm −3 (x=0.05) and T =
1000 K.

IV. CONCLUSIONS

We have conducted a thorough study of the thermo-
electric properties of p-type NbFeSb and TaFeSb. In ad-
dition to solving the Boltzmann transport equations for
electrons and phonon with ab initio inputs, several ap-
proximations were also included in the process. These
are the constant relaxation time approximation with no

dependence on the chemical potential due to doping, the
choice of grain boundary size and the inclusion of the
electron-phonon interaction based on experimental data.
This multi-step procedure needs to be executed with cau-
tion, and so at each step the results have been thoroughly
compared to the available experimental measurements.
We would like to point out that although the results in
this study look promising and are consistent with the ex-
pectations, one should not use the presented theoretical
framework lightly on fully unknown compounds. The key
feature of this study was to preserve the chemical envi-
ronment of NbFeSb and change it slightly to TaFeSb in
a way that the empirical Klemens’ equation is still appli-
cable.
In summary, the NbFeSb results agree extremely well

with multiple theoretical and experimental studies. The
same procedure was then used to perform a full-scale
computation on the TE properties of TaFeSb. The results
have shown that both compounds exhibit high power fac-
tor at room temperature and have a good thermoelectric
figure of merit at high temperatures. At 1000 K we find
PF = 9 mW/(m·K2) and ZT = 1 for NbFeSb and PF =
16 mW/(m·K2) and ZT = 1.5 for TaFeSb. The higher
atomic mass of Ta (compared to Nb) increases the scat-
tering strength in Ti-doped TaFeSb, which reduces the
lattice thermal conductivity of the compound. At the
same time, p-type charge carries in TaFeSb exhibit higher
mobility and relaxation time, which increases the power
factor. The net result is a material with an amazing
power factor of 16 mW/(m·K2) and ZT value which is
approximately 50% better than that of NbFeSb.
In conclusion, TaFeSb not only appears to be a better

TE material than NbFeSb, but it also opens a new path
of TE optimisation of materials based on the two alloys.
In theory, an alloy based on Nb1−xTaxFeSb should ex-
hibit good electrical properties due to the similarities in
the electronic structure of NbFeSb and TaFeSb. At the
same time, the mass difference between Nb and Ta should
create additional scattering centres which would suppress
the lattice thermal conductivity even before doping, and
so the final doped compound should exhibit an even
higher ZT value. This is further hinted by a very re-
cent experimental study by Yu et al.[8], which reports
the successful synthesis of Nb1−xTaxFeSb alloys and a
measured ZT of up to 1.6.
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Supplemental Materials: Computation of the thermoelectric properties of NbFeSb
and TaFeSb

V. THEORETICAL APPROACH

The usual theoretical approach is to split the thermoelectric calculations into two stages. The first stage solves the
semi-classical Boltzmann Transport Equation (BTE) for electrons which requires knowledge of the electron density of
states (DOS) of the material. The DOS can be easily calculated using first principles electronic structure programs.
The BTE for electrons in the constant relaxation time (τ) approximation is found using the computed DOS and the
BoltzTraP program[22]. The output of BoltzTraP includes the electronic conductivity σ and the electron thermal
conductivity κel as a function of the electron relaxation time τ . The choice of τ is usually arbitrary but Hong et al. [5]
showed that for NbFeSb a computationally inexpensive approach based upon deformation potential theory [19] can
be used to obtain reasonable results for τ .

The second stage is to calculate the phonon contribution to the thermal conductivity (κlatt) which is more com-
putationally demanding. There are several different approaches which can be used to obtain κlatt. These include (i)
calculating the phonon DOS and using the Boltzmann Transport Equations for phonons, [27] (ii) assuming an arbi-
trary value for κlatt [9], (iii) calculating a theoretical minimum of κlatt for a given compound [6] and (iv) obtaining
κlatt via Slack’s equation [28], which requires knowledge of the anharmonicity of the system (Grüneisen parameter γ)
and the Debye temperature (θD). The last two parameters can be calculated either via the bulk and shear moduli[29]
or via the quasi-harmonic approximation as shown in the Hong et al. study [5]. The main advantage of the last three
approaches is that they are not computationally intensive and provide a rough estimate of κlatt, which allows the
user to obtain a reasonable estimate for ZT. The drawback, however, is that the phonon contribution to κ is derived
indirectly via either the elastic constants, or by considering only the acoustic phonons. Hence such results neglect
the details of the geometry and chemical structure of the material and can often be inaccurate [29]. To the best of
our knowledge a full-scale computation of κlatt of NbFeSb using the phonon DOS and the anharmonic force constants
has not been published before. In this study, the ShengBTE program [21] is used to solve the BTE for phonons. In
addition, to the intrinsic value of κlatt obtained from ShengBTE, we add the contributions from grain boundaries,
point defects and electron-phonon interaction

A. Computing electron relaxation time

As mentioned in the manuscript, BoltzTraP actually calculates both σ/τ and κel/τ where τ is the relaxation
time. An evaluation of τ could be done either with the electron-phonon interaction using Wannier functions (EPW
method)[30] or via the deformation potential (DP) theory[19]. While the EPW method is the more sophisticated
approach, it can be prohibitively expensive for more complicated systems and still does not take into account the role
of point defects and grain boundaries. Although DP theory lacks dependence on the chemical potential, it is a lot
quicker and has been reported to predict a reasonable value for τ of NbFeSb[5]. Therefore, a value for τ was obtained
using the following DP formulae [19]:

µ =
2
√
2πe~4c11

3(kBT )3/2m∗5/2V 2

DP

(S1)

τ =
µm∗

e
(S2)

where µ is the mobility of the charge carriers, e is the charge of an electron, ~ is the reduced Planck’s constant, c11
is one of the three independent elastic constant, kB is the Boltzmann constant, and VDP is the DP constant which is
calculated using:

VDP =
dEedge

dα
, α =

a− a0
a0

(S3)

where Eedge is the energy at the valence band maximum (VBM) or conduction band minimum (CBM), α is the
uniaxial strain along the direction of the lattice vector a. The strain is defined by varying a with respect to the
calculated equilibrium lattice constant a0.
The effective mass m∗, which is used in Eqn. S1 and S2 is obtained with the ‘Effective Mass Calculator for

Semiconductors’ (EMC) [31]. The effective mass is calculated exactly at the VBM and CBM and is defined as:
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2

(

1

m∗

)

ij

=
1

~2

∂2Eedge(~k)

∂ki∂kj
, i, j = x, y, z (S4)

The heavy hole (hh) and light hole (lh) band yield a different characteristic relaxation time. However, from Eqn. S1

and S2 it can be seen that τ ∝ 1/m∗3/2 and different contributions to the relaxation time are summed by Matthiessen’s
rule. Therefore, a weighted effective mass of the heavy hole and light hole bands can be obtained using the following
equation:

m∗

h
3/2 = m∗

hh
3/2 +m∗

lh
3/2 (S5)

where m∗

hh and m∗

lh is the effective mass of the heavy hole and light hole band, respectively.

B. Computing lattice thermal conductivity

1. thirdorder.py supercell size

The thirdorder.py script is part of the ShengBTE suite. It computes the anharmonicity of the system using the finite-
displacement supercell approach. The size of the supercell in the thirdorder.py set (containing 332 jobs) corresponded
to a 2×2×2 cubic supercell containing 96 atoms. The interactions up to the third nearest neighbour were computed,
which corresponds to a cut-off radius Rc = 0.545 nm. Due to the finite-displacement direct approach, the shape of
the supercell should be as near-cubic as possible, in order to optimise the supercell size:Rc ratio and hence achieve
the best possible force constants convergence with the least amount of simulated particles. Thus, a cubic unit cell,
corresponding to four elementary rhombohedral cells, was used as a starting point for all phonon calculations.

In addition to the force constants, the CONTROL file in ShengBTE requires a few more convergence parameters
to be defined. In our case, a 9× 9× 9 grid of planes in reciprocal space and a scalebroad (smearing parameter) of 1.0
were enough to converge the lattice thermal conductivity.

2. Adding intrinsic and extrinsic contributions to κlatt

The total phonon relaxation time is in practice a combination of scattering rates of the different contributions.
Therefore it is calculated using Matthiessen’s rule:

τ−1

tot = τ−1

3P + τ−1

GB + τ−1

PD + τ−1

EP (S6)

where the subscripts 3P (three-phonon processes), GB (grain boundaries), PD (point defects) and EP (electron-phonon
interaction) indicate the type of interaction contributing to the final scattering rate.

The output of ShengBTE is the intrinsic lattice thermal conductivity κint, which only depends on τ3P . Hence all
additional contributions need be included separately.

3. Grain boundary scattering

The relaxation time due to grain boundaries can be calculated from their size (LGB) and the velocity of the phonons
(v):

τ−1

GB = v/LGB (S7)

The ShengBTE result (κint) can be approximated to be proportional to τ3P (κint ∝ constant × τ3P ). When
the contribution of grain boundary scattering is included alongside the ShengBTE result, τtot is calculated using
τ−1

tot = τ−1

3P + τ−1

GB . In such case, the value of the lattice thermal conductivity with the effect of the grain boundaries
(κGB) can be expressed as:

κGB =
κint

1 +
λmfp

LGB

(S8)

where λmfp is the mean free path of phonons. Although convenient, using a single value for λmfp is rather unreasonable
because not all phonons travel with the same velocity, nor do they have the same relaxation time, nor the same
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3

contribution to the total thermal conductivity (κint). Instead we differentiate the ShengBTE result for total intrinsic

lattice thermal conductivity with respect to λmfp. This gives us information on the lattice thermal conductivity (κ
′

int)

of phonons with a given mean free path (λ
′

mfp). Then Eqn. S8 is applied to every value of λ
′

mfp and its respective

κ
′

int. Then the final result is integrated back to obtain κGB .

4. Point defects

Doping introduces point defects into the structure and the lattice thermal conductivity with point defects included
(κPD) can be calculated using the empirical Klemens’ equation[32]:

κPD = κGB

(

ω0

ωm

)

arctan

(

ωm

ω0

)

(S9)

ω0

ωm
=

√

4γ2kBT

3πGHVaxa

M

∆M
(S10)

where κGB is the lattice thermal conductivity obtained at the previous stage (or κint if grain boundaries are to be
neglected). The Debye and point defects frequency cut-off are given by ωm and ω0, respectively. The other parameters
γ, GH, Va and xa represent the Grüneisen parameter, shear modulus, volume per atom and doping concentration per
atom in the unit cell. In our case xa = xd/12 with xd being the calculation specified doping level. The mass of the
host atom (Nb or Ta) is given by M , whereas the mass difference between the host atom and the dopant atom is
given by ∆M .

5. Electron-phonon interaction

The computation of the electron-phonon interaction from first-principles is expensive. However, a more empirical,
but tested, approach based on the Callaway model [1, 33] can be used to gain an insight of how the electron-phonon
interaction affects the lattice thermal conductivity in terms of temperature and doping concentration. The relaxation
time due to electron-phonon interaction satisfies[34]:

τ−1

EP = Cω2 (S11)

where C is given by[35]:

C =
4nm∗veλe

15ρv2
(S12)

where ω is the phonon frequency, n is the doping concentration, m∗ is the effective mass, ve is the electron velocity, λe

is the mean free path of the electrons, ρ is the mass density, and v is the phonon velocity. In principle, the value of C
can be calculated from first principles. In practice, however, the value of ve and λe is related to the relaxation time,
which is modelled to be constant with respect to doping. Therefore, estimating a parameter, which aims to show how
doping affects the electron-phonon interaction, with a relaxation time, which is modelled to be insensitive to doping,
would lead to a significant inaccuracy in the final results. Instead, we use the experimental results presented by He
et al.[1] to obtain a value proportional to C at T = 300 K and x = 0.05, and then we include the doping dependency
(C ∝ nh) and temperature dependency (C ∝ T−1/2) to the model.

Despite the necessity of using experimental data to obtain C, this step also serves as a valuable estimate of the
quality of all previous stages in modelling κlatt. Fig. 5 shows that when all contributions are included, there is an
extremely good match between experimental measurements for NbFeSb and our theoretical results.

VI. USING ELASTIC CONSTANTS TO COMPUTE LATTICE THERMAL CONDUCTIVITY

As discussed in the manuscript, the intrinsic lattice thermal conductivity can be calculated in several ways. Here we
compare the results obtained for NbFeSb and TaFeSb by solving the phonon BTE (ShengBTE) and Slack’s equation.
For Slack’s equation, we use the approach suggested by Jia et al. [29], where ΘD and γ are calculated from the
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4

Table S1. Elastic constants, bulk (BH) and shear (GH) moduli of NbFeSb and TaFeSb. The longitudinal, transverse and
average phonon velocities are given by vL, vT, vav, respectively. Grüneisen parameter and Debye temperature are given by γ and
ΘD. Experimental results are taken from Tavassoli et al.,[2] where the data is obtained via Resonant Ultrasound Spectroscopy
(RUS) at room temperature.

Compound NbFeSb (this work) NbFeSb (exp RUS [2]) TaFeSb (this work)
c11 (GPa) 311.5 - 326.8
c12 (GPa) 94.3 - 100.3
c44 (GPa) 66.0 - 77.6
BH (GPa) 166.7 156 175.8
GH (GPa) 80.7 81 89.6
vL (m/s) 5 674 5 597 5 115
vT (m/s) 3 082 3 099 2 818
vav (m/s) 3 438 3 452 3 140
γ [from phonon BTE] 1.76 - 1.79
γ [from elastic moduli] 1.72 - 1.64
ΘD (K) 393.4 394 359.5

300 400 500 600 700 800 900 1000
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25

300 400 500 600 700 800 900 1000
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� in
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Figure S1. Comparison of the intrinsic lattice thermal conductivity of NbFeSb (left) and TaFeSb (right) when obtained by
solving the phonon BTE and the Slack’s equation.

bulk and shear moduli. We also compare the NbFeSb results to the one obtained by Hong et al., who employed the
quasi-harmonic approximation (QHA) to calculate ΘD and γ before solving Slack’s equation. In terms of speed, Jia
et al. approach is the fastest one, followed by QHA method, while the phonon BTE remains last.

Figure S1 shows that all tested methods yield relatively close results for NbFeSb, with the largest difference between
the values of κint being 11% at room temperature. The TaFeSb results, however, show a difference up to 27% at room
temperature, which will have a noticeable impact on the rest of the ZT calculations. Our analysis suggests the larger
discrepancy in the TaFeSb results is mainly due to the different Grüneisen parameter (a measure of the anharmonicity
of the system) obtained using ShengBTE or the elastic moduli, as shown in Table S1. Therefore, it can be concluded
that Slack’s equation offers a rather inexpensive way of calculating the lattice thermal conductivity of NbFeSb, but
a more sophisticated approach, like the phonon BTE, is required to calculate accurately the anharmonicity and the
lattice thermal conductivity of TaFeSb.

The mathematical formulae needed to follow the Jia et al. [29] approach are presented below. The intrinsic lattice
thermal conductivity can be calculated via the bulk and shear moduli of the material using Slack’s equation[28]:

κint = A
Θ3

D
V

1/3
a mav

γ2n2/3T
(S13)

where ΘD, Va, mav, γ and n are the Debye temperature, the volume per atom (in Å), the average atomic mass (in
amu), the Grüneisen parameter and the number of atoms in the unit cell, respectively. The parameter A is given by
the following equation:
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A =
2.43× 10−6

1− 0.514
γ + 0.228

γ2

(S14)

The averaged sound velocity vav can be calculated from the velocities of the longitude vL and shear vT:

vL =

√

BH + (4/3)GH

ρ
, vT =

√

GH

ρ
, vav =

[

1

3

(

1

v3
L

+
2

v3
T

)]

−
1

3

. (S15)

where BH, GH and ρ are the bulk modulus, shear modulus and the density of the compound, respectively. The Debye
temperature ΘD can be calculated using the sound velocity::

ΘD =
~

kB
vav

(

6π2n

Va

)
1

3

(S16)

where ~ and kB are the reduced Planck’s constant and Boltzmann constant.
The only remaining parameter needed for the calculation of κint is the Grüneisen parameter γ and it can be obtained

from the Poisson ratio ν in the following way:

γ =
3

2

(

1 + ν

2− 3ν

)

, ν =
1− 2(vT/vL)

2

2− 2(vT/vL)2
. (S17)

VII. FORMATION ENERGY

The formation energy of NbFeSb and TaFeSb in Table S2 show that the crystal structure of both compounds is
energetically stable, as expected from experimental results. This complements the observation of mechanical stability
as seen in the phonon calculations.

Table S2. Formation energy of NbFeSb and TaFeSb.

Compound Space group Total energy (eV)
Nb (1 atom/unit cell) 229 −1656.6056
Ta (1 atom/unit cell) 229 −8434.1596
Fe (1 atom/unit cell) 229 −862.9631
Sb (2 atoms/unit cell) 166 −4769.5524

Formation energy/atom (eV/atom)
NbFeSb (3 atoms/unit cell) 216 −4905.4042 −0.3531
TaFeSb (3 atoms/unit cell) 216 −11682.7633 −0.2881
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