
This is a repository copy of Partially shared cache and adaptive replacement algorithm for
NoC-based many-core systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145787/

Version: Accepted Version

Article:

Yang, P, Wang, Q, Ye, H et al. (1 more author) (2019) Partially shared cache and adaptive
replacement algorithm for NoC-based many-core systems. Journal of Systems
Architecture, 98. pp. 424-433. ISSN 1383-7621

https://doi.org/10.1016/j.sysarc.2019.05.002

© 2019 Elsevier B.V. All rights reserved. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Partially Shared Cache and Adaptive
Replacement Algorithm for NoC-based

Many-core Systems
Pengfei Yang, Quan Wang, Hongwei Ye, Zhiqiang Zhang

Abstract—. The Network-on-Chip(NoC) is a promising alternative to traditional bus-based architectures that has been widely applied

to interconnect multi/many-core systems due to its scalable and modular design. Undoubtedly, the memory wall problem is one of the

most important challenges; however, this problem can now be somewhat be alleviated by cache subsystems. In this paper, to

overcome the high resource consumption and low data-sharing rate problems of the private cache scheme, we propose a partially

shared cache structure and a corresponding replacement algorithm based on a mesh NoC. In this scheme, the L2 cache is shared by

each group of four cores that connected as a cluster to a given node by the local bus. To maximize the performance of this partially

shared cache structure, we propose a core-aware re-reference interval prediction (CA-RRIP) replacement algorithm. The algorithm

performs dynamic virtual partitioning on the partially shared cache; the core that initiated the cache access request will be given top

priority when a cache area needs to be replaced or inserted. This approach guarantees cache exclusivity and can mitigate interactions

among cores using different access patterns. We implement the traditional private, the proposed partially shared and the row-shared

cache subsystems in our experiments. The comparisons indicate that the overall system resource occupation can be reduced by 20%

with the same number of cores, and the instructions per cycle(IPC) of the system could increase by up to 49.2%. Moreover, the system

throughput(STP) increased by an average of 5.89%. Our experimental results showed that the proposed CA-RRIP algorithm also

reduces the average cache miss rate of the system under various cache access patterns.

Index Terms—Many-core System, NoC, Cache Structure, Replacemant Algorithm.

F

1 INTRODUCTION

The last decade has witnessed significant improvement
in embedded system performance, because many cores can
now be integrated into a single chip package. As the number
of cores continues to increase, the current bus architecture
is no longer suitable. Traditionally, cores are usually in-
terconnected by single or multiple layers of shared buses,
which provide benefits such as low system resource cost,
simple topology and extensibility. However, such struc-
tures have some obvious disadvantages, including com-
plicated design process, high power consumption, unpre-
dictable delays and non-scalability. Therefore, the Network-
on-Chip(NoC), which integrates a large number of process-
ing elements(PEs), memory elements and a communication
network connecting them, has been developed to replace
traditional bus structures to improve the communication
efficiency among different cores [1] and the overall system
performance [2]. This new trend brings about a set of
challenges, one of which is cache distribution among cores.

The gap between the speed of computing resources and
storage resources is growing rapidly. The memory hierarchy,
which consists of processor registers, different levels of
caches and main memory, has an inevitable impact on all

• Pengfei Yang, Quan Wang and Hongwei Ye are with the School of
Computer Science and Technology, Xidian University.
E-mail: pfyang@xidian.edu.cn

• Zhiqiang Zhang is with the School of Electronic and Electrical Engineer-
ing, University of Leeds, UK.

The paper is supported by the Natural Science Foundation of China(NSFC:
61702395,61572385,61711530248), the Fundamental Research Funds for the
Central Universities(No. JBF180301)

the parameters of a system, including area requirements,
power consumption and performance. On-chip caches play
important roles in improving processor performance. How-
ever, the current cache structure is another bottleneck that
limits the system performance. Thus far, three levels of cache
structure have been widely applied in modern multi/many-
core systems [3] [4]. As shown in Figure 1, the L1 and
L2 cache are private, while the L3 cache is shared by
all the cores. Although this structure provides each core
with fast access to resources, it requires excessive system
resources to construct such private cache structures for each
core. The structure may also cause destructive interference
between threads, leading to thrashing, unfairness and poor
Quality-of-Service(QoS) [4] [5]. Thus, to reduce the cache
miss rate and access data from other cores’ on-chip cache
memory, a better cache replacement algorithm is required.
Unfortunately, the existing algorithms are always access
pattern and application specific, and no single replacement
algorithm is applicable to all the various access patterns.
For example, the Least Recently Used(LRU) is the most
effective algorithm because it is easy to implement. It has
high performance for the recency-friendly access pattern
which according to that more recently used blocks are likely
to be referenced again, it performs unsatisfactorily for the
trashing access pattern or the streaming access pattern. One
more thing, it does need a number of bits to maintain a
record for each block, which contains details such that when
a block is accessed before. Multiple-tasks with different
access patterns may run simultaneously within a many-core
system, the overall system performance may be severely

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Ă

L3 Cache\off-chip memory

Core
L1 Cache
L2 Cache

Core
L1 Cache
L2 Cache

Core
L1 Cache
L2 Cache

Fig. 1. Typical storage architecture of many-core system

affected by adopting any of the existing cache replacement
algorithms; therefore, a new cache replacement schemes
should be developed.

To increase the cache performance of NoC-based many-
core systems, this paper constructs a partially shared cache
structure and proposes the core-aware re-reference interval
prediction(CA-RRIP) algorithm based on a cluster-shared
cache. The proposed cache structure not only reduces sys-
tem size but also improves system throughput(STP); in
addition, the replacement algorithm reduces the average
cache miss rate and improves system performance. The
main contributions of this paper are as follows:

1) A new cache structure is constructed by integrating
the advantages of bus-on-chip with NoC. The pro-
posed L2 cache is shared by four cores that connected
to the given node by the local bus. This optimized
structure reduces the overall resource consumption
of the system and improves the efficiency of L2 cache
data sharing among cores.

2) The CA-RRIP cache replacement algorithm is pro-
posed based on the designed cache structure. Unlike
a fixed size L2 cache in the traditional cache struc-
ture, the algorithm performs dynamic virtual parti-
tioning on the partially shared cache, which mitigates
the interactions among cores using different access
patterns. When a cache area needs to be replaced
or inserted, the core that initiated the cache access
request is given top priority, thereby guaranteeing
cache exclusivity. The CA-RRIP algorithm reduces
the cache miss rate under various cache access pat-
terns and raises the overall performance of many-
core systems.

We implement the traditional private, the proposed par-
tially shared and the row-shared cache subsystems in our
experiments. A comparison revealed that the size of the
system can reduced by 20% with the same number of cores;
the IPC of the system can increase by up to 49.2%, and the
system throughput achieved an average boost of 5.89%. Our
experimental results showed that the proposed CA-RRIP
algorithm can also reduce the average cache miss rate with
a varity of cache access patterns.

The remainder of this paper is organized as follows.
Section II introduces related works on cache structures and
replacement algorithms. Section III proposes the optimized
cache structure and provides the details of the CA-RRIP

algorithm. The experimental results are presented in Section
IV. Finally, a summary and future work are given in Section
V.

2 RELATED WORK

There are two types of approaches to increase the cache
performance of many-core systems: modifying the cache
structure and designing a new cache replacement algorithm.
We elaborate these approaches in the following sub-sections.

2.1 Cache structure

Various cache architectures have been proposed since dif-
ferent parameters have direct impacts on the efficiency of
the memory design. Zhao et al. [6] proposed a directory-
based collaborative cache scheme for chip-level multipro-
cessing(CMP) systems. In this scheme, a distributed L2
cache is shared by different cores through the directory.
This scheme meets the requirements of different task loads,
and the data could be easily transferred to other L2 caches
when they had to be replaced. This scheme also reduced
the number of off-chip memory accesses by reducing the
frequency data exchanges between the cache and the off-
chip memory. However, as the number of cores increased,
the cache maintenance costs also increased, and the system’s
scalability decreased due to the shared bus-based storage
structure. Feng et al. [7] proposed a non-inclusive cache that
fully utilized only the last-level cache space for the CMP.
However, this solution optimized the last level cache only;
it did not reduce the average access latency of the NoC.
Zhang et al. [8] proposed a victim cache scheme based
on the NoC interconnected architecture that combined the
advantages of the shared and private L2 caches and reduced
the access latency of the L2 cache by saving the to-be-
released data into the L2 cache. However, this solution re-
quired saving a copy of the L2 cache, which reduced the L2
cache utilization ratio and reduced global sharing of the L2-
cache among all the cores. Therefore, the maintenance cost
increased rapidly when the number of cores increased. To
achieve energy-efficient optimization, Sampaio et al. [9] pro-
posed an approximation-aware multi-level cell STT-RAM
cache architecture. The technique attempeted to maximize
the application performance while minimizing the energy
consumption. Bengueddach et al. [10] proposed an optimal
two-level cache that employed the dynamic reconfiguration
technology in the multiprocessors and reduced the overall
energy consumption of the hardware/software architecture.
Mallya et al. [11] proposed a way halted prediction cache
structure that attempted to save system energy by reducing
the number of active ways to one when the prediction
was hit. Naderializadeh et al. [12] proposed an achievable
scheme and a particular cache placement pattern to maxi-
mize the overall efficiency of cache-aided transmits. Jadidi
et al. [13] proposed a criticality-aware compressed LLC
that favours lower latency over higher capacity based on
the criticality of the data blocks; however, in this scheme,
the last-level cache (LLC) is logically shared but physically
distributed among cores. Merino et al. [14] apportioned the
L2 cache among the private caches and it cache dynamically
according to different cache access patterns. This approach

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

reduced the average access latency by adjusting the cache
algorithm to save the private data to the private cache of
the corresponding core. However, the dynamic partitioning
process required too many system resources and did not
provide a better solution for the problem of many-core
systems based on a NoC.

2.2 Cache replacement algorithm

In the cache memory, when all the blocks in a set of cache
become full and a new block from main-memory needs to be
placed in cache, then the cache controller has to be discarded
a line from cache set and replace it with the new block
from main-memory. All cache replacement algorithms try
to reduce the cache miss rate for one or more cache access
patterns, because the cost of a cache miss is the largest
performance penalty for a cache replacement algorithm.
The Least Recently Used(LRU) [15], the Least Frequently
Used(LFU) [16], Not Recently Used(NRU) [17], the Dynamic
Aware Insertion Policy(DIP) [18], and related improved
algorithms are all in common use. The LRU provides good
performance for workloads with high-level data locality,
but limits the system performance when predicted near-
reference intervals are incorrect.

The LFU and LRU policies are consistent, except that the
LFU used the most recently uses frequency for the insert
and replace operations. Many previous researchers studied
and analyzed the performance of cache replacement algo-
rithms with several applications. The results showed that
the LRU has the better performance than other algorithms
just like Random, FIFO and LFU [19]. Many improved
replacement algorithms based on these basic policies exist
well. For example, Alghazo et al. [20] proposed a second
chance-frequency - least recently used(SF-LRU) replacement
algorithm that combined the LRU and LFU and considered
not only the number of cache blocks used, but also the re-
reference interval when the cache block was popped up.

However, this algorithm fit only for caches with recency-
friendly workloads. Qureshi et al. [18] proposed a DIP cache
algorithm that contained two insertion strategies: an LRU
Insertion Policy(LIP) and a Binominal Insertion Policy(BIP).
The LIP inserted a new cache block in place of the most
recently used (MRU), while the BIP inserted a new cache
block in place of the least recently used or the most re-
cently used with a small probability. The algorithm set the
sample cache group and determined the insertion policy
based on the sample cache miss rate. This scheme achieved
better cache performance for recency-friendly and trashing
access patterns. Jaleel et al. [21] proposed a thread-aware
dynamic insertion policy(TADIP) based on the DIP. TADIP
considered the memory requirements of the concurrently
executing applications, and chose the LIP or BIP according
to the core’s state. They also proposed re-reference interval
prediction(RRIP) [22] by setting a correlation counter for
each cache block that represented the re-reference interval
value(RRIV) of the block. TADIP and RRIP enhanced the
system caching performance, but did not solve the inter-
ference problem caused by other cores sharing the cache.
Qureshi et al. [23] also proposed utility cache partition-
ing(UCP), which had the same insertion and promotional
policies as LRU. It determined the size of the cache based

on the value of the utility monitor. The algorithm efficiently
used the cache space to improve the cache performance.
Beckmann et al. [24] proposed an adaptive selective repli-
cation(ASR) using the shared cache and private cache ar-
chitecture. The algorithm dynamically monitored program
behaviour and conducted data replication only if the cost of
cache replication exceeded the cost of cache miss. Dong et
al. [25] proposed a new dynamic shared-cache management
scheme called co-optimizing locality and utility(CLU) in
thread-aware capacity management based on locality and
utility values. The algorithm utilized the same apportioning
method as the UCP; the only difference was that the CLU
algorithm used the LRU and BIP values to determine the
utility value.

Most of the current replacement algorithms are based on
typical three-level storage architecture; they ignore the inter-
actions among cores with different access patterns and are
unsuitable for the partially shared cache structures. These
algorithms always result in poor cache performance for the
mixed access patterns of many-core systems. To resolve this
problem, this paper proposes the CA-RRIP algorithm, which
is a core-aware re-reference interval prediction algorithm.
The algorithm performs dynamic virtual partitioning on
the partially shared cache which mitigates the interactions
among cores using different access patterns. When a cache
area needs to be replaced or inserted, the core that initi-
ated the cache access request is given top priority which
guarantees cache exclusivity when it is being used. The CA-
RRIP algorithm reduces the cache miss rate under a varity of
cache access patterns and improves the overall performance
of many-core systems.

3 CACHE STRUCTURE AND REPLACEMENT ALGO-

RITHM OPTIMIZATION

3.1 Motivation

To verify the advantages of NoC, we built a typical NoC
system with 16 nodes on the SoCKit development board
as shown in Figure 2. We designed the system hardware
and software based on theoretical NoC research, including
fault-tolerant topology [26], the adaptive routing algorithm
[27], heuristic task scheduling and the mapping algorithm
[28]. Regarding the memory structure, the typical three-level
cache structure and LRU replacement algorithm put us at a
disadvantage. The effects of different cache parameters and
configurations of the platform are investigated. One reason
is that the L1 and L2 cache are private, it takes up too much
system resources to guarantee enough cache space for each
processing element. One more thing, the fixed size L2 cache
makes it difficult to fit all the cache access patterns. Another
reason is that the hit/miss ratio of a cache subsystem is an
application/access pattern specific parameter, which makes
finding a low complexity and energy efficient replacement
algorithm actually a difficulty.

There are four types of cache access patterns: recency-
friendly, thrashing, streaming and mixed access patterns
[29]. To better represent the differences between these
patterns, we provide the following descriptions [29]: ai
represents the address of a cache line, (a0a1a2...ak−1)
represents a temporal sequence of k address references,
(a0a1a2...ak−1)

N denotes that the sequence repeats N times

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

NoC Controller

Fig. 2. NoC Implementation based on SoCKit

and Pi(a0a1a2...ak−1)
N is the probability that the temporal

sequence will occurs.

(a0, a1, a2, ..., ak−1, ak−1, ..., a2, a1)
N (1)

(a0a1a2...ak−1)
N (K > cachesize) (2)

(a0a1a2...ak−1)(K =∞) (3)

[(a0, a1...ak−1, ak−1...a1)
APi(a0a1...ak−1...am)]N

[(a0, a1, a2...ak−1)
APi(b0b1b2...bm)]N

(4)

In the recency-friendly access pattern, k is equal to or less
than the total number of cache blocks, and N > 1(Formula
2). This access pattern benefits from the LRU replacement
algorithm; replacement algorithms other than LRU can de-
grade the system performance. The trashing access pat-
tern(Formula 3) is similar to the recency-friendly access pat-
tern, but in each access cycle, k is larger than the number of
cache blocks. If the LRU replacement algorithm is adopted
in the trashing access pattern, the algorithm will pop up
the data that will be accessed the next time during current
operation, causing frequent cache replacement. The LRU
provides no cache hits unless the cache size is sufficiently

L2 Cache
L1 D L1 I

Core

Router

L3 Cache\Main memory

Node

Node

Node

Node

Node Node

Node

NodeNode

Fig. 3. Typical cache structure of NoC

large to hold all k entries of the access pattern. For the
streaming access pattern(Formula 4), k tends towards infin-
ity, thus, the data to be accessed do not have local correlation
features, or long time intervals occur between accesses of the
same data. Consequently, streaming access patterns receive
no cache hits when using any replacement algorithm. The
mixed pattern is a combination of the different patterns
mentioned above.

Real-world many-core system applications required a
variety of cache access patterns. In addition, the cache
access pattern of a core changes with program requirements
change. Thus, a cache replacement algorithm must be de-
signed to achieve good performance across the different
access patterns. We employ the LRU replacement algo-
rithm and the system experiences significant performance
fluctuations for various tasks and occupies many system
resources. Then we implement and compare the optimal
cache structure and the CA-RRIP replacement algorithm.

3.2 Cache Structure Optimization

The typical cache architecture of NoC is shown in Figure 3,
the nodes are connected by a high-performance network in
a silicon chip. Every node consists of two parts, one is the
router, which connects to its neighbour nodes and the local
PE. The other part is the PE, it is made up of a core and the
cache. The core executes the task, and the cache is supposed
to knock down the growing disparity between CPU clock
and off-chip memory.

This structure solves communication problem between
the cores in many-core sysems satisfactorily, but it also
introduces new problems, such as the overhead occupation
of system resources and the access latency. The private L1
and L2 caches consume a large amount of system storage
resources, and the data-sharing latency among cores is large
because low-radix networks always introduce high network
latency caused by long diameters. In addition, many tasks
require multiple cores to work in parallel, which involves
massive and frequent data sharing among the cores. How-
ever, this separate private cache structure increases system
power consumption and causes performance fluctuations
across different tasks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

L3 Cache\Main memory

Node

Node

Node

Node

Node Node

Node

NodeNode

L2 Cache
L1 D L1 I

Core

L2 Cache

L1 D L1 I
Core_1

L1 D L1 I
Core_2

L1 D L1 I
Core_3

L1 D L1 I
Core_4

L3 Cache\Main memory

Node

Node

Node

Node

Node Node

Node

NodeNode

Router

Router

Fig. 4. Optimized cache structure

In this study, a partially shared cache architecture is
constructed as shown in Figure 4. The basic communication
network on the chip remains constant, and every node still
contains a router to transmit data between its neighbour
nodes and the PE. The difference is that each node no longer
contains only one processing core but a cluster, which is
composed of four cores connected with each other by a local
on-chip bus. Each core has its own private L1 cache, while
its L2 cache is shared by all four cores together. Compared
with the bus, the transmission rate of the NoC is extremely
fast, thus, the structure with four cores concentrated in one
node does not have a significant impact on the overall
system transmission. The optimized architecture combines
the advantages of private and shared caches. The usable L2
cache of each core becomes larger than before, nevertheless,
the overall system resources occupation does not increase.

All the cache structures and replacement algorithms aim
to reduce the cache miss rate, the cost of misses includes
bandwidth and power consumption and miss penalty. The
cache miss rate is usually used as the cache performance
evaluation metric [30]. For a many-core system based on
NoC, assume that the cache miss rate is H , the time to access
data on the cache is T1, the Manhattan distance between the
core and the cache block to be accessed is L, the average
data transmission time is T2, and the time to access data
in off-chip memory is T3, the access time for system T is
shown in Formula 5.

T = (1−H)× T1 +H × (L× T2 + T3) (5)

Usually, T2 ≫ T1 and T3 ≫ T1; therefore, a higher cache
miss rate means longer access time T .

The partially shared cache structure increases the avail-
able cache space of every core. The cache size is one of
most effect parameters in memory design. By increasing
the cache size, the probability of better cache hit rate is
increased. One more thing, bigger cache size means more

memory area occupation and more static power dissipation
of cache structure. The optimised architecture combines the
advantages of private and shared caches. For each core,
its usable L2 cache becomes larger than before, but the
overall memory area occupation is reduced. The optimized
cache structure also reduces the number of read-write and
inter-chip transmissions because data are shared among
different cores, which also helps to reduce system power
consumption and improve system scalability.

3.3 CA-RRIP Replacement Algorithm

The choice of a cache replacement algorithm in hybrid asso-
ciative cache subsystem has a considerable and direct effect
on the overrall system performance. Based on the partially
shared cache structure, the CA-RRIP replacement algorithm
is proposed. The algorithm quantifies the reuse of a cache
block according to the re-reference interval. It sets a counter
(RRIV) for every cache block that represents the reuse
prediction of the cache block. As the value of the counter
increases, the correlation interval becomes larger, and the
probability that the cache block will be reused decreases. In
general, the counter is set to N bits. Therefore, its maximum
value is 2N − 1. Here 2N − 1 is called the distant interval
value(DIV), while 2N − 2 is defined as the long interval
value(LIV). Different from the RRIP algorithm, the proposed
algorithm records the ID of the core that initiated access and
searches for blocks based on the core’s ID when the data
in the cache need to be replaced. The algorithm performs
dynamic virtual partitioning on the partially shared cache,
which mitigates the interactions among cores using different
access patterns. When a cache area needs to be replaced, the
core that initiated the cache access request will be given top
priority; this scheme guarantees cache exclusivity when it is
used.

All cache replacement algorithms can be divided along
three management strategies: a replacement policy, an in-
sertion policy and a promotional policy. The replacement
policy determines which cache block to pop up when a
new cache block is inserted. The insertion policy is used
to determine the state in which the cache block is inserted
into the cache. The promotional policy modifies the cache
state when a cache line is hit. We use these three strategies
to illustrate our cache replacement algorithm.

Insertion policy: When inserting the cache block, the
value of RRIV is set to 2N − 2(LIV).

Promotion policy: When the cache is hit, the RRIV value
of the cache block is decreased by one.

Replacement policy: First, scan the cache blocks occu-
pied by the current core and replace a cache block if its
RRIV is 2N−1(DIV). Otherwise, add one to the RRIV values
of the cache blocks occupied by the core. Then, determine
whether a cache block whose RRIV is 2N − 1 exist. When
such a block exists, it is replaced. If all the conditions above
fail, the RRIV values occupied by all the cores is increased
by one. Then, check again whether any other cache blocks
whose RRIV is 2N − 1 exist. This process will be carried out
repeatedly until the replacement accomplished. In any case,
it is necessary to preferentially detect the RRIV value of the
cache occupied by the current core. If multiple cache blocks
have the DIV value, the RRIV is selected according to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Insertion
Policy

Start

Hit ?

Corei
Initiate
Access

Increment
All Blocks

RRIV

BlocksęCorei
 RRIV =
 ?

Decrement RRIV
BlocksęCorei

 Replace Block
Set RRIV =

End

Promotion Policy

Replacement
Policy

2 2N

 All Blocks
 RRIV =
 ?

2 1N

No

Yes

Yes

Increment
RRIV

BlocksęCorei

BlocksęCorei
 RRIV =
 ?

YesNo

Yes

No

No

Fig. 5. Flowchart of CA-RRIP

index of the cache block. The algorithm flow is shown in
Figure 5.

An example of the CA-RRIP replacement algorithm is
shown in Figure 6. Assume that there are two cores sharing
the cache, the ID value is set to 2 bits, and the RRIV
value is also set to 2 bits. Initially, the shared cache is not
partitioned, and each core’s ID is recorded when the core
initiates cache access. When a cache block is inserted, the
insertion policy sets the value of the inserted cache block
to 2. The promotional policy is shown in lines 5 and 6
of Figure 6. When the cache is missed, memory access is
initiated by core 0, which first checks whether the RRIV of
the cache block occupied by the core is 3 (RRIVA = 1, RRIVB
= 2, and none = 3). The cache access algorithm increases
the RRIV of the cache block occupied by the core so that
RRIVA = 2 and RRIVB = 3. Then, cache block B is replaced
by D. Similarly, for line 13, the RRIV values of a and b
are increased by one firstly because they do not meet the
replacement conditions. The RRIV values for all the caches
of other cores are increased then, such that RRIVa= 2 and
RRIVb = 2, which do not meet the conditions. At this time,
when RRIVD = 3, cache block D is replaced by D, and core 1
occupies the cache space of core 0. The cache structure and
replacement algorithm relieve the interaction among cores
and make full use of the cache space. This approach achieves
a better application performance.

a

b

b

a

a

miss

miss

miss

hit

hit

miss

hit

hit

Access
Sequence CA-RRIP M=2bit

I, Invalid

A

B

A

D

A

A1 B2a2 b1

I2 I2 I2 I2

A2 I2 I2 I2

A2 a2 I2 I2

A2 a2 B2 I2

A2 a2 B2 b2

A1 B2a2 b2

A2 B3a2 b1

A2 D2a2 b1

A2 D2a1 b1

A1 D2a1 b1

A1 D2a0 b1

A0 D2a0 b1

miss

Core0 Core1

pop

pop

1

2

3

4

5

6

7

8

9

hit10

b

A

A0 D2a0 b0c

A0 D2a1 b1

A1 D3a2 b2

A1 c2a2 b2

hit

hit

miss

11

12

13

Fig. 6. Behavior example of CA-RRIP

TABLE 1
System parameters

Operation system Ubuntu 12.04 LTS-64bit
Memory size 2 GB
Processor model Intel Xeon E5620 quad-cores

4 IMPLEMENTATION AND COMPARISON

In this section, the sniper multi-core simulator tool [31] [32]
is used to evaluate the efficiency of our proposed design
based on simulation of real world benchmark suits.

Based on its interval core model and graphite simulation
infrastructure, the Sniper simulator allows a range of flexible
simulation options when exploring different homogeneous
and heterogeneous many-core architectures [33]. The sim-
ulator needs to modify the system architecture parameters
only when setting up a comparison scenario. We run the
Sniper on the VMware virtual machine with the system
parameters set as shown in Table 1.

4.1 Cache Structure Comparison

Instructions per cycle(IPC) is used to evaluate the perfor-
mance of a single-core system. For a many-core system,
the IPCsum is the sum of each core’s IPC . As shown in
Formula 6, N indicates the number of cores, and i is the
index of the ith core. The system throughput(STP) is used
to measure the system performance which is calculated in
Formula 7, where IPCMP

i indicates the IPC of the ith

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 2
System’s configuration

System Parameter
Processor 4Cores, 2.66GHZ, Nehalem
Private L1 Inst. Private L1 Inst. 32KB, 64B block-

size, 4-way, LRU
Private L1 Data 32KB, 64B block-size, 8-way,

LRU
DRAM Controller Number 8(each controller 8Gb/s)
DRAM Bandwidth 64GB/s, 100ns access latency

program, and IPCSP
i indicates the corresponding IPC

of a single-core system. The performance improvement of
the entire optimized system is calculated by Formula 8,
where IPCicluster is the IPC of the ith program based
on the partially shared cache, and IPCiprivate is the same
program’s IPC based on the private cache.

IPCsum =

N∑

i=1

IPCi (6)

STP =

N∑

i=1

IPCMP
i

IPCSP
i

(7)

ImproRate =

N∑

i=1

IPCicluster − IPCiprivate

IPCiprivate
(8)

We build three separate systems that use the proposed
partially shared L2 cache, the private L2 cache, and the row-
shared L2 cache respectively. The size of the partially shared
L2 cache is 1 MB, the size of the private L2 cache is 256
KB, and the size of the row-shared L2 cache is 2MB. All
the systems contain 64 cores, and all of which are based on
Intel’s Nehalem architecture. The DRAM bandwidth is set
to 64 Gb/s, and the access latency is 100 ns. The specific
parameters of the system’s configuration are shown in Table
2.

Then the Princeton Application Repository for Shared-
Memory Computers (PARSEC) benchmark is used to com-
pare the performance of the systems based on different
cache structures [34]. The PARSEC benchmark suite is com-
posed of multithreaded programs. The suite focuses on
emerging workloads and is designed to be representative
of next-generation programs for chip-multiprocessors. PAR-
SEC is integrated into the Sniper simulation tool, and it is
easy to select the granularity, working set size, data sharing
and exchange characteristics within the program. It includes
test programs from many fields, including blackscholes, can-
neal, dedup, facesim, ferret, fluidanimate, raytrace, swap-
tions, vips, x264, and others. These applications are the
most well established and common benchmarks which are
considered in the current works on NoC domain for general
purpose applications . As shown in Figure 7, the different
test programs have their own features in the application
domain, such as parallelization, working set and data usage.

In general, because of the multiple forwarding via nodes
and the sharing competition, the performance of the row-
shared cache structure is the worst. Compared with the

Algorithm 1 GetReplacementIndex(core id t, m core id,
CacheCntlr, *cntlr)

1: for i← 0 to m associativity-1 do
2: if m cache block info array[i] then
3: m rrip bits[i]← m rrip insert

4: m core bits[i]← m core id

5: return i

6: end if
7: end for
8: for i← 0 to m rrip max do
9: for i← 0 to m associativity-1 do

10: if m core id == m core bits[i] && m rrip bits[i]
≥ m rrip max then

11: m rrip bits[i]← m rrip insert

12: return i

13: else
14: m rrip bits[i] + +
15: end if
16: end for
17: end for
18: for i← 0 to m associativity-1 do
19: if m core id == m core bits[i] && m rrip bits[i] ≥

m rrip max then
20: m rrip bits[i]← m rrip insert

21: return i

22: end if
23: for i← 0 to m associativity-1 do
24: if m rrip bits[i] ≥ rrip max then
25: m rrip bits[i]← m rrip max

26: return i

27: if m rrip bits[i] < m rrip insert then
28: m rrip bits[i]← m rrip max

29: m rrip bits[i] + +
30: end if
31: end if
32: end for
33: end for

private cache structure, the overall system resource occu-
pation of the proposed partially shared cache system can be
reduced by 20% with the same number of cores. The IPC
of different test programs based on two cache structures
are shown in Figure 8. While there are huge differences
for different test programs due to their disparate features,
the IPC of the system with the partially shared L2 cache
is generally higher than any other system, especially for
the canneal test program, where its IPC increased by up
to 49.23%. The STP of the partially shared cache structure
increased by 5.89% on average. The parallel processing
capability is also enhanced.

4.2 Cache Replacement Algorithm Comparison

The Sniper simulation tool is also applied to validate the
cache replacement algorithm. The related cache classes are
shown in Figure 9. The classes include the methods for
reading and writing the cache, and each method returns a
result to show whether the cache was hit or not. The cache
manager uses this return value to update the simulation
performance parameters such as the number of hits, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

澳

Fig. 7. Test programs of PARESEC

澳

濵濿濴濶濾瀆濶濻瀂濿濸瀆

濶濴瀁瀁濸濴濿

濷濸濷瀈瀃

濹濴濶濸瀆濼瀀

濹濸瀅瀅濸瀇

濹濿瀈濼濷濴瀁濼瀀濴瀇濸

濹瀅濸瀄瀀濼瀁濸

瀅濴瀌瀇瀅濴濶濸

瀆瀊濴瀃瀇濼瀂瀁瀆

瀉濼瀃瀆

瀋濅濉濇

濥瀂瀊激瀆濻濴瀅濸濷澳濦瀇瀅瀈濶瀇瀈瀅濸 濣瀅瀂瀃瀂瀆濸濷澳濦瀇瀅瀈濶瀇瀈瀅濸 濣瀅濼瀉濴瀇濸澳濦瀇瀅瀈濶瀇瀈瀅濸

Fig. 8. Comparison of the IPC

Core

MemoryManager

CacheController Cache

CacheSetInfo

CacheSet

Fig. 9. The cache class

simulation time, and so on. The CacheSet class creates
the cache and modifies the cache management algorithm.
All the cache blocks are allowed to use the CacheSetInfo
instance. CacheSetInfo stores information about the cache
group, including the cache status cache size, and so on.

In the algorithm implementation, the cache access func-
tion needs to be rewritten in the Core model file, and the

functions of finding, inserting, and replacing information in
the cache replacement algorithms must be rewritten as well.
We added the m core id field to the function that initiates
the cache application; this field is recorded as a function of
the cache management algorithm. The CacheSet CA-RRIP
inherits from the CacheSet function. When initializing the
cache, it is necessary to record the data structure of the
core ID and RRIV. The pseudocode for the key algorithm
is shown in Algorithm 1.

Based on the partially shared cache system structures,
we continue testing the cache replacement algorithm. The
system configuration is the same as that shown in Table 2.
The configuration parameters for the L1 cache are shown
in Table 3. According to Intel’s Nehalem architecture, the
L1 data cache and instruction cache are both 32 KB, the
data associativity is 8, and the instruction associativity is 4.
Assuming that the system clock frequency is set as 1 GHz,
the access latency is 3 ns.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 10. The comparison results of cache miss rate

TABLE 3
The configuration of L1 cache

Cache Data Instruction
Cache Size 32KB 32KB
BlockSize 64B 64B
Assiociativity 8 4
AccessCycles(Tag) 1 1
AccessCycles(Data) 3 3
AccessTime(Tag) 1ns 1ns
AccessTime(Data) 3ns 3ns

TABLE 4
The configuration of L2 cache

L2 Cache Size 256KB 512KB 1024KB 2048KB
BlockSize 64B 64B 64B 64B
Assiociativity 16 16 16 16
AccessCycles(Tag) 3ns 3ns 3ns 3ns
AccessCycles(Data) 9ns 9ns 9ns 9ns

The L2 cache sizes are set as shown in Table 4. We com-
pare the cache replacement algorithms with four different
L2 cache sizes: 256 KB, 512 KB, 1,024 KB and 2,048 KB. Two
types of test programs with various cache access patterns are
used as comparisons: one type consists of programs with
low data-sharing frequency among cores that include the
blackscholes, fluidanimate, and vips programs. The other
type consists of programs with high data-sharing frequency
that include bodytrack, dedup, and x264. We implement
three different cache replacement algorithms, LRU, SRRIP
and CA-RRIP, and compare the cache miss rate among them.
The results are shown in Figure 10.

As the experimental results show, for all the programs,
the cache miss rate diminishes as the cache size increases,
which is easy to understand because a larger cache size
means more data buffering is available. For the programs
with low data-sharing-frequency among cores, relatively in-
dependent cache spaces are required for every core, and the
interactions among different cache access patterns should
also be reduced. The CA-RRIP algorithm achieves better

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

performance in this case due to its pseudo-partitioning for
the shared cache and because it grants the core that initi-
ated the cache access request top priority, which increases
the cache hit rate as well. In the best case, the CA-RRIP
algorithm reduces the cache miss rate by 31% compared
with the LRU algorithm, and it is 13% lower than that
of the RRIP algorithm. For the programs with high data-
sharing frequency, all the cores attempt to read/write the
cache simultaneously. Thus, the advantage of the CA-RRIP
algorithm is not obvious because the L2 cache is shared by
four cores, which affects the average read-write speed of any
individual core.

Generally, the CA-RRIP algorithm reduces the inter-
actions among many-core architectures by increasing the
number of bits in the RRIP algorithm to record the ID
of every core and implement pseudo-partitioning for the
shared cache. These operations not only have small system
resource consumption but also reduce the cache miss rate
and improve the system’s performance effectively . One
more thing, it is easy to implement and is more capable.

5 SUMMARY

The advanced semiconductor and System-on-Chip tech-
nologies allow dozens of or even more cores to be integrated
into a single die. In particular, the NoC architecture sep-
arates task-computing from the communication structure
and has become the inevitable choice for the next generation
of sophisticated system architectures. However, the typical
cache structure and replacement algorithms have difficulty
meeting the requirements of the increasing number of cores
of many-core systems based on NoC due to their high
resource consumption and long access latencies.

This paper describes the construction of a partially
shared cache structure and proposes a CA-RRIP cache
replacement algorithm. Through the hybrid interconnect
technology of bus-on-chip and NoC, this optimized cache
structure reduces the overall system resource occupation
and improves the data-sharing efficiency in the L2 cache
among cores, increasing system throughput by 5.89% on
average. The CA-RRIP cache replacement algorithm reduces
the cache miss rate of programs with various cache access
patterns and improves the overall performance of many-
core systems. Based on these research results, applying the
optimized cache structure and replacement algorithm to
practical systems is part of our ongoing work.

REFERENCES

[1] H. Temuçin and K. M. İmre, “Scheduling computation and com-
munication on a software-defined photonic network-on-chip ar-
chitecture for high-performance real-time systems,” Journal of Sys-
tems Architecture, vol. 90, pp. 54–71, 2018.

[2] M. O. Agyeman, A. Ahmadinia, and N. Bagherzadeh, “Energy and
performance-aware application mapping for inhomogeneous 3d
networks-on-chip,” Journal of Systems Architecture, vol. 89, pp. 103–
117, 2018.

[3] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in ACM International Conference on Supercomput-
ing 25th Anniversary Volume, pp. 402–412, ACM, 2014.

[4] S. M. Shahtouri and R. T. Ma, “App: adaptively protective policy
against cache thrashing and pollution,” in Local and Metropolitan
Area Networks (LANMAN), 2015 IEEE International Workshop on,
pp. 1–6, IEEE, 2015.

[5] C. Lin and J.-N. Chiou, “High-endurance hybrid cache design
in cmp architecture with cache partitioning and access-aware
policies,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 10, pp. 2149–2161, 2015.

[6] Z. Xiaoyu and W. Junmin, “Collaborative directory-based cache
design for cmp,” Computer Engineering, vol. 32, no. 21, 2010.

[7] H. Feng and W. Chengyong, “Design and performance analysis of
cmp architecture without caching,” Computer Engineering, vol. 29,
no. 7, 2008.

[8] M. Zhang and K. Asanovic, “Victim replication: Maximizing ca-
pacity while hiding wire delay in tiled chip multiprocessors,” in
Computer Architecture, 2005. ISCA’05. Proceedings. 32nd International
Symposium on, pp. 336–345, IEEE, 2005.

[9] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel,
“Approximation-aware multi-level cells stt-ram cache architec-
ture,” in Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2015 International Conference on, pp. 79–88, IEEE, 2015.

[10] A. Bengueddach, B. Senouci, S. Niar, and B. Beldjilali, “En-
ergy consumption in reconfigurable mpsoc architecture: Two-
level caches optimization oriented approach,” in Design and Test
Symposium (IDT), 2013 8th International, pp. 1–6, IEEE, 2013.

[11] B. Cilku, D. Prokesch, and P. Puschner, “A time-predictable
instruction-cache architecture that uses prefetching and cache
locking,” in Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops (ISORCW), 2015 IEEE International
Symposium on, pp. 74–79, IEEE, 2015.

[12] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr,
“Fundamental limits of cache-aided interference management,”
IEEE Transactions on Information Theory, vol. 63, no. 5, pp. 3092–
3107, 2017.

[13] A. Jadidi, M. Arjomand, M. T. Kandemir, and C. R. Das, “Hybrid-
comp: A criticality-aware compressed last-level cache,” in Quality
Electronic Design (ISQED), 2018 19th International Symposium on,
pp. 25–30, IEEE, 2018.

[14] J. Merino, V. Puente, P. Prieto, and J. Á. Gregorio, “Sp-nuca:
a cost effective dynamic non-uniform cache architecture,” ACM
SIGARCH Computer Architecture News, vol. 36, no. 2, pp. 64–71,
2008.

[15] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in
information-centric networking,” in Computer Communication and
Networks (ICCCN), 2014 23rd International Conference on, pp. 1–8,
IEEE, 2014.

[16] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “Lrfu: A spectrum of policies that subsumes the least
recently used and least frequently used policies,” IEEE transactions
on Computers, vol. 50, no. 12, pp. 1352–1361, 2001.

[17] M. Kharbutli and R. Sheikh, “Lacs: A locality-aware cost-sensitive
cache replacement algorithm,” IEEE Transactions on Computers,
vol. 63, no. 8, pp. 1975–1987, 2014.

[18] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
ACM SIGARCH Computer Architecture News, vol. 35, pp. 381–391,
ACM, 2007.

[19] S. Kumar and P. Singh, “An overview of modern cache memory
and performance analysis of replacement policies,” in Engineering
and Technology (ICETECH), 2016 IEEE International Conference on,
pp. 210–214, IEEE, 2016.

[20] J. Alghazo, A. Akaaboune, and N. Botros, “Sf-lru cache replace-
ment algorithm,” in Memory Technology, Design and Testing, 2004.
Records of the 2004 International Workshop on, pp. 19–24, IEEE, 2004.

[21] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely Jr,
and J. Emer, “Adaptive insertion policies for managing shared
caches,” in Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pp. 208–219, ACM, 2008.

[22] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High per-
formance cache replacement using re-reference interval prediction
(rrip),” in ACM SIGARCH Computer Architecture News, vol. 38,
pp. 60–71, ACM, 2010.

[23] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches,” in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, pp. 423–432, IEEE, 2006.

[24] B. M. Beckmann, M. R. Marty, and D. A. Wood, “Asr: Adaptive
selective replication for cmp caches,” in Microarchitecture, 2006.
MICRO-39. 39th Annual IEEE/ACM International Symposium on,
pp. 443–454, IEEE, 2006.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[25] D. Zhan, H. Jiang, and S. C. Seth, “Clu: Co-optimizing locality and
utility in thread-aware capacity management for shared last level
caches,” IEEE Transactions on Computers, vol. 63, no. 7, pp. 1656–
1667, 2014.

[26] P. Yang, Q. Wang, W. Li, Z. Yu, and H. Ye, “A fault tolerance noc
topology and adaptive routing algorithm,” in Embedded Software
and Systems (ICESS), 2016 13th International Conference on, pp. 42–
47, IEEE, 2016.

[27] P. Yang and Q. Wang, “Heterogeneous honeycomb-like noc topol-
ogy and routing based on communication division,” International
Journal of Future Generation Communication and Networking, vol. 8,
no. 1, pp. 19–26, 2015.

[28] P.-F. Yang and Q. Wang, “Effective task scheduling and ip map-
ping algorithm for heterogeneous noc-based mpsoc,” Mathematical
Problems in Engineering, vol. 2014, 2014.

[29] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer, “High
performing cache hierarchies for server workloads: Relaxing in-
clusion to capture the latency benefits of exclusive caches,” in
High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, pp. 343–353, IEEE, 2015.

[30] S. Wu, B. Mao, Y. Lin, and H. Jiang, “Improving performance
for flash-based storage systems through gc-aware cache manage-
ment,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 10, pp. 2852–2865, 2017.

[31] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2011 International Conference for, pp. 1–12, IEEE,
2011.

[32] W. Heirman, T. Carlson, and L. Eeckhout, “Sniper: Scalable and
accurate parallel multi-core simulation,” in 8th International Sum-
mer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES-2012), pp. 91–94,
High-Performance and Embedded Architecture and Compilation
Network of Excellence (HiPEAC), 2012.

[33] T. Carlson and W. Heirman, “The sniper user manual,” 2013.
[34] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark

suite: Characterization and architectural implications,” in Proceed-
ings of the 17th international conference on Parallel architectures and
compilation techniques, pp. 72–81, ACM, 2008.

