

This is a repository copy of *Screw reinforcement on dowel-type moment-resisting connections with cracks*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/145700/

Version: Accepted Version

Article:

Zhang, C. orcid.org/0000-0002-6719-7026, Guo, H., Jung, K. et al. (2 more authors) (2019) Screw reinforcement on dowel-type moment-resisting connections with cracks. Construction and Building Materials, 215. pp. 59-72. ISSN 0950-0618

https://doi.org/10.1016/j.conbuildmat.2019.04.160

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

- 1 Title: Screw reinforcement on dowel-type moment-resisting connections with cracks
- 2

3 Author names and affiliations:

- 4 Cong Zhang^a, Haibo Guo^b, Kiho Jung^c, Richard Harris^d, Wen-Shao Chang^e
- 5
- ⁶ ^aDepartment of Architecture and Civil Engineering, University of Bath, Bath, UK
- 7 c.zhang@bath.ac.uk
- 8 ^bSchool of Architecture, Harbin Institute of Technology, Harbin, China
- 9 guohb@hit.edu.cn
- 10 [°]Faculty of Education, University of Shizouka, Shizouka, Japan
- 11 ekjung@ipc.shizuoka.ac.jp
- 12 ^dTime For Timber Ltd, Bath, UK
- 13 r.harris@timefortimber.co.uk
- 14 ^eSheffield School of Architecture, University of Sheffield, Sheffield, UK
- 15 w.chang@sheffield.ac.uk
- 16

17 Corresponding author:

- 18 Wen-Shao Chang
- 19 Sheffield School of Architecture, University of Sheffield, Sheffield, UK
- 20 w.chang@sheffield.ac.uk
- 21

22 Abstract

- 23 This study uses partially threaded self-tapping screws to enhance the mechanical properties
- 24 of damaged and undamaged dowel-type timber connections. The damaged connections
- 25 have a 1.5mm wide artificial crack across the middle row of the fasteners. Test results
- showed that screw reinforcement can restore the rotation capacity of damaged connections.
- 27 The rotational capacity of reinforced connections without cracks is 45.6% higher than
- 28 unreinforced connections while the improvement on moment-resisting capacity is slight.
- 29 Digital image correlation (DIC) was used to detect the movement of the connections and
- 30 validated that the fasteners rotate around the centre of rotation in reinforced connections.
- 31 Screw reinforcement also demonstrated the ability to control crack propagation, with the
- 32 reinforced groups showed a reduction of crack length by at least 37% when compared to the
- 33 unreinforced groups. A calculation method is proposed to calculate the characteristic
- 34 moment-resisting capacity of damaged and undamaged screw reinforced connections. The
- 35 calculated values are proven to be conservative when compared with the characteristic
- 36 value based on the experimental results.
- 37

38 Highlights

- Self-tapping screws restored the rotational capacity of connections with cracks
 - Partially threaded screws showed a trend to effectively control crack propagation
- A theoretical prediction method is demonstrated
- 42

40

43 Keywords

44 Self-tapping screws, reinforcement, timber dowel-type connections, moment-resisting,

- 45 theoretical prediction
- 46

47 1. Introduction

48 Dowel-type connections are widely used in timber construction. As timber is weak in

49 transferring load perpendicular to the grain, international standards have set ground rules to

- 50 prevent splitting by limiting the minimum fastener spacing, end and edge distance in design.
- 51 However, cracks can occur to existing timber connections due to moisture fluctuations. As
- 52 the relative humidity varies in the environment, the wood tends to change its moisture
- 53 content to achieve a balance. The material will change in size as it swells (increase in
- 54 moisture content) or shrinks (decrease in moisture content). As the dimension of the wood 55 changes, the fasteners in the connections tend to restrain this movement and stress will be
- 56 concentrated in the wood around the fasteners. Excessive stresses can lead to cracking of
- 57 the timber member and reduce the moment-resisting capacity and ductility of the
- 58 connections. The moment-resisting capacity and ductility of a connection is usually critical,
- 59 especially for high-rise timber buildings and structures in seismically active areas.
- 60 Studies [1-3] have used steel plates and FRPs (fibre-reinforced polymers) as reinforcement
- to repair damaged timber members. However, both reinforcement methods require a large
- 62 amount of work and involve complex installation procedures. In addition, when such
- reinforcement is to be placed on the timber member, accessibility to a large surface area of
- 64 the structural components is usually required and this can limit their application when
- 65 repairing certain historical buildings.
- 66 Recent studies have indicated the potential use of self-tapping screws as reinforcement to
- 67 dowel-type connections [4-6]. Their work shows that self-tapping screws can effectively
- reduce the splitting tendency of the connections. Other studies investigated the effectiveness
- 69 of using self-tapping screws as reinforcement in bolted timber connections under dynamic
- 70 load [7-10]. Lam, Gehloff and Closen [9] reported that screw reinforcement increased the
- 71 moment-resisting capacity by 170% under reverse cyclic loading. In addition, self-tapping
- 72 screws are easy to install and are less intrusive. A practical use of self-tapping screws to
- repair cracked dowel-type connections is shown in Figure 1.
- 74 Previous studies have investigated the influence of thread configuration of self-tapping
- 75 screws as reinforcement to dowel-type connections [11, 12]. The results indicated that
- read on the point end achieved similar performance as reinforcement to
- that of screws with complete thread. The studies suggested using partially threaded screws,
- as fully threaded screws are prone to damage due to the high frictional force induced during
- 79 installation [11, 12].
- 80 Delahunty, Chui and McCormick [13] applied self-tapping screws to reinforce connections
- 81 with artificial cracks and confirmed that the reinforcement can improve the load-carrying
- 82 capacity of cracked connections. However, their work is limited to bolted connections loaded
- 83 parallel to the grain.

85

86 Figure 1: Self-tapping screws are installed from the bottom to repair the connection at the Forum, Exeter.

87 Currently, there is limited knowledge on using self-tapping screws to reinforce or repair

88 dowel-type moment-resisting connections. Therefore, the purpose of this study is to examine

89 the effectiveness of self-tapping screws with various thread configurations in enhancing the

90 moment resistance of timber connections with and without artificial cracks.

91 This study also intends to use the embedment properties of wood to predict the moment-

92 resisting capacity of screw reinforced dowel-type connections. There are studies on testing

the unreinforced embedment strength of single-dowel connections [14-17] providing mean

94 embedment strength values and only [18] presents both characteristic and mean

95 embedment strength values. In addition, there is limited research focused on the

96 embedment strength of screw reinforcement [19, 20] and their works found that screw

97 reinforcement can enhance the embedment strength of connection. However, their results

98 are presented with mean values. For design purposes, characteristic embedment strength

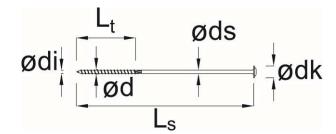
values are used rather than mean values. Therefore, due to limitation in available database,
 the prediction method proposed by this study used the characteristic embedment strength

100 the prediction method proposed by this study used the characteristic en 101 that were acquired from projects within the scope of this research.

102 2. Materials and methods

In this study, self-tapping screws were used in dowel-type connections with artificial crack
 and compared the strength with uncracked connections. The effects of cracks in timber
 connections were also examined.

Based on previous works [11, 12], this study tends to use self-tapping screws with reduced thread length along their shank. This is practically necessary when long screws are used to reinforce members in large-scale timber structures. The fully threaded screws are vulnerable to damage during installation as large friction forces are generated. Thus, a 300mm long self-tapping screws (Screw X), with 100mm threaded part on the point end, were used to examine the performance of reinforcement.


112 2.1. Material preparation

113 The commercial glulam beams in this test were prepared from European Whitewood

114 (Norway spruce (Picea abies) or silver fir (Abies alba)) classified to GL24c. They were

115 conditioned to equilibrium moisture content before and after fabrication (at 21.6°C

- temperature and 59% RH). The measured average density is 419kg/m³ (CoV=3.5%) and
- 117 average moisture content (M.C.) is 8.4% (CoV=10.0%). A drawing of the screw with flange
- 118 head is shown in Figure 2 and its detailed specifications and material properties from the
- 119 technical approval [21] are listed in Table 1.

120 121

Figure 2: Self-tapping Screw X (8.0mm×300mm) used in this study.

122

Table 1: Specifications of the self-tapping screw [21].

L _s (mm)	L _t (mm)	øds (mm)	ødi (mm)	øds (mm)	ødk (mm)
Screw length	Thread length	Shank diameter	Inner diameter	Outer diameter	Head diameter
300.00	100.00	8.00	5.30	5.90	20.00
Characteristic yi 22.6	eld moment (Nm)		Characteristic tension resistance (kN) 8.56		

123

124 In this study, the specimen was simplified to one timber member to simulate a timber-steel-

timber connection. The span of the glulam beam was 1500mm and was taken to be

126 sufficient to keep the effect of shear deflection in the beam to a negligible value.

127

Table 2: Summary of each groups

Group	Description	No of tests	Mean density (kg/m ³) (CoV)	Mean M.C.% (CoV)
MCU	Moment Connection Unreinforced	6	419 (6.0%)	7.8 (11.7%)
CMCU	Cracked Moment Connection Unreinforced, 1.5mm crack width	6	419 (2.2%)	8.8 (5.0%)
MCBS	Moment Connection Reinforced by Screw X	6	419 (2.5%)	8.8 (5.5%)
CMCBS	Cracked Moment Connection Reinforced by Screw X, 1.5mm crack width	6	421 (5.4%)	7.8 (15.9%)

128

129 In total, 24 tests using 9 glulam beams were conducted and Table 2 lists the details of each

130 group. The specimens for group CMCU were prepared from the tested groups MCU and

131 MCBS using 6 beams (three from each group). One end of the tested beams was cut off and 132 new fastener holes were prepared on the remaining part.

raz new rastener noies were prepared on the remaining part.

133 The timber-steel-timber connections consisted of 5mm steel plates slotted into the glulam

beam with 67mm thickness on each timber side member. The configuration of the

135 connections was designed according to Eurocode 5 (EC5 hereafter) [22] and the details are

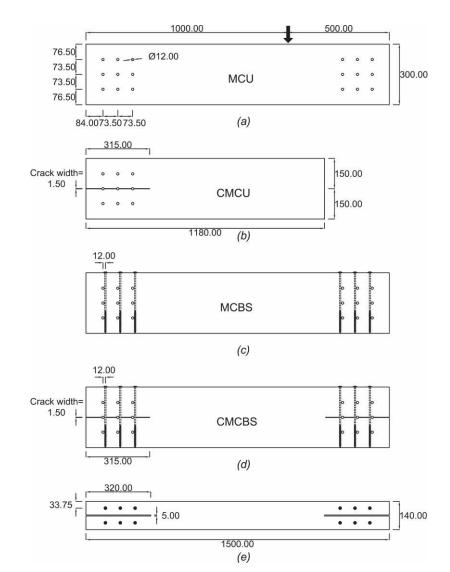
136 shown in Figure 3. The diameter of the dowel was 12mm and a 3x3 fastener group was

137 used for the connections. The steel dowels and steel plates were made from bright mild steel

138 080A15T and S275, respectively.

139 The artificial crack was prepared using a bandsaw which had a width of the saw of 1.5mm.

140 The crack was located at the middle row of the dowels and the length was 315mm. A 6mm


141 wide slot was then cut using the bandsaw on both ends of the beam for mounting the 5mm

steel plate as the central member. A pre-drilled hole with 5.5mm diameter and 80mm depth

143 was prepared using a pillar drill to ensure the 300mm self-tapping screw could be placed

144 perpendicular to the grain.

145

146

Figure 3: Specimen configurations: (a) Moment Connection Unreinforced (MCU), (b) Cracked Moment
 Connection Unreinforced (CMCU), (c) Moment Connection Reinforced with Screw (MCBS), (d) Cracked Moment
 Connection Reinforced with Screw (CMCBS) and (e) top view of the glulam beam indicating the positions of the
 screw reinforcement.

After fabrication of the specimens, one side of the glulam beam on both ends was painted with black speckle patterns in a matt white background for Digital Image Correlation (DIC).

153 The painted side covered an area of 300mm×315mm where the fastener group was located.

154 DIC was used to track crack propagation and observe surface strain distribution. The painted 155 surface had no difference from the non-DIC side; therefore, cracks could not be controlled to

156 appear on the painted side for analysis.

Moment-resisting connection test set-up 2.2. 157

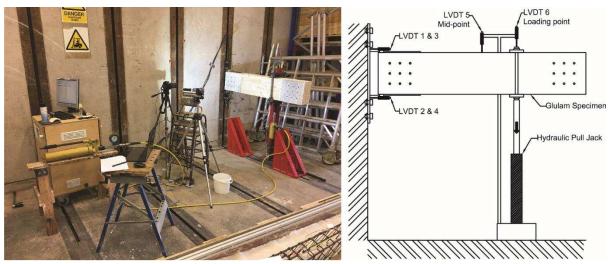
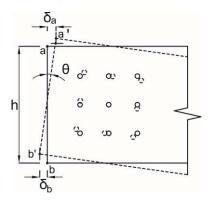


Figure 4: Moment-resisting connection test set-up (left) and locations of the LVDTs (right).

160 A general view of the test set-up is shown in Figure 4. The glulam beam and the steel plate


161 were placed at 1200mm above the ground and a hydraulic pull jack (with 100kN capacity

162 and 150mm stroke) was bolted to the strong floor in the laboratory. The hydraulic jack pulled

163 the beam downwards 1 metre away from the fixed end and the load was distributed through a steel plate. In this static test, the connection specimens were loaded to failure with around

164 165 15-20% load drop from where the peak load was observed. The test was conducted in load-

166 control and at each 0.5kN increment a picture was taken for DIC analysis.

167

168

Figure 5: Schematic to measure the rotation of the connections.

169 A total of 6 linear variable differential transformers (LVDT) (100mm stroke, ±0.01mm accuracy) were deployed in each test and Figure 4 (right) shows their locations. LVDTs 5

170

171 and 6 measured the vertical displacement at the mid-point and loading point, respectively.

172 The rotation of the connections is calculated by considering the relative displacement

between the LVDT on top and bottom of the beam. As shown in Figure 5, LVDT 1 measured 173

174 the horizontal displacement from a to a' and LVDT 2 gave the measurement from b to b'.

175 The angle of rotation of the connections can be calculated as:

176
$$\theta = \arctan\left\{\frac{(a'-a)+(b'-b)}{h}\right\} = \arctan\left\{\frac{\delta_a+\delta_b}{h}\right\}$$
(1)

where:

h is the vertical distance between the top and bottom LVDTs and was measured as 335mm in this study;

 δ_a and δ_b are the relative horizontal displacements of the two LVDTs.

177 3. Results and discussion

178 3.1. Moment-rotation curves

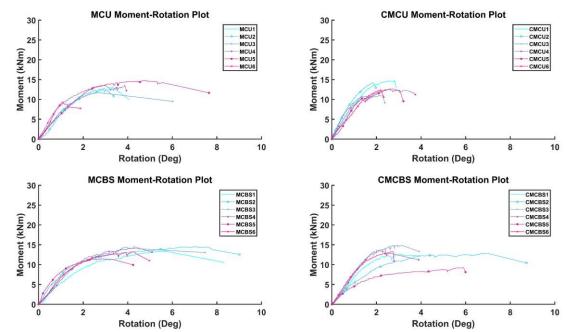


Figure 6: Moment-rotation curves for each group.

Figure 6 demonstrates the moment-rotation curves for the four groups. During the test, the

readings of some LVDTs stopped as the stroke on the LVDT was reached or the LVDT stuckdue to the movement of the beam. Therefore, to reflect the actual rotational capacity of the

184 connections, the rotation of the connections in the last image from DIC was calculated. A

185 final point can be plotted with the rotation and the corresponding moment. A straight line is

186 drawn between the last available data from the LVDT measurement and the calculated final

187 point. Another method is to use the displacement of LVDT 5 which was placed at the mid-

point of the beam. It was used to check the results of the former method. The average

189 percentage difference is found to be 8.9% between the two methods.

As can be seen in Figure 6, even though a similar mean density and variation has been
achieved (see Table 2), the connections within a group still display variation in momentrotation curves. This could result from factors relating to local material defects such as knots.

193 Table 3 summarises the results of the moment-resisting connection test. The density of

194 connections varies in a range of 398-447kg/m³ and is considered to have an impact on the

test results. A higher density of wood can lead to higher embedment strength and thus a

196 higher moment-resisting capacity. ANCOVA (Analysis of Covariance) is applied to examine

197 the difference between the three groups after effectively removing the influence of density 198 variation.

In terms of moment-resisting capacity, no significant difference was found between the fourgroups in Table 3. The average capacity of the reinforced group MCBS is about 6.5% higher

than the unreinforced group MCU. This implies that partially threaded self-tapping screws
 can slightly improve the moment-resisting capacity when placed at 1d distance to the dowel.
 Comparing with group CMCU, it shows that screw reinforcement in group CMCBS did not
 effectively improve the moment-resisting capacity when the connection was damaged by an
 artificial crack.

206

Group	Average moment-resisting capacity (kNm) (CoV) *	Average maximum rotation (% (CoV) *	Stiffness (kNm per degree) (CoV) *
MCU	13.07 (13%)	4.47 (49%)	9.26 (20%)
CMCU	13.35 (10%)	2.74 (23%)	11.30 (22%)
MCBS	13.92 (8%)	6.51 (31%)	9.18 (26%)
CMCBS	13.35 (15%)	4.95 (44%)	8.28 (25%)

* The values are adjusted by ANCOVA, except the CoV remains for the value before the adjustment.

For the connections designed in this study, a crack due to moisture variation may appear on

the top, middle and bottom rows of the fastener group. This study focuses exclusively on

connections that have a crack developed at the middle row. Group MCU shows a slightly

211 lower capacity than group CMCU, which has a crack located at the middle row. The result

212 may indicate that a crack located at the middle row may not significantly influence the

213 moment-resisting capacity of a connection. The moment-resisting calculations later in this

section also indicate that the middle dowels have the lowest capacity as the force acts

215 perpendicular to the grain (wood with the lowest embedment strength), and they also have

the shortest distance to the rotation centre.

For a connection, both the moment-resisting capacity and ductility are important. In this

study, the rotational capacity of the connections is considered as an indicator of the ductility

of the connections. A crack located at the middle row did not significantly reduce the

220 moment-resisting capacity but it significantly reduced the rotational capacity of the

221 connections which is a crucial factor for designing structures in seismic areas.

222 In terms of average rotation, the unreinforced group CMCU with artificial cracks showed the 223 lowest value; it had only 61% capacity of the original unreinforced group MCU. This indicates 224 that timber cracking can greatly reduce the rotational capacity of a connection. The 225 reinforced group CMCBS that contained artificial cracks achieved the second-best maximum 226 rotation; it had a capacity even higher than the unreinforced, undamaged ones, by 10.7%. 227 This implies that screw reinforcement can restore the rotational capacity of damaged 228 connections. Finally, the reinforced group MCBS showed the highest rotation, which met 229 expectations, it improved the rotational capacity by 45.6%, when comparing with group 230 MCU. The variation of rotation angle was higher for group MCU and CMCBS which could be

a result of the inherent variability of wood materials.

232 As mentioned in the previous section, the specimens in group CMCU were prepared from the tested beams in groups MCU and MCBS. Specimens CMCU1-3 were prepared from 233 234 MCU1, 3 and 6, respectively. Using the same beam reduces the variation of material 235 properties due to defects and a comparison of the moment-resisting capacity before and 236 after the application of an artificial crack was made. Overall, it showed an increase of 237 moment-resisting capacity of 13%, 19% and 11% for CMCU1-3 with an artificial crack. Such increase may explain why the group CMCU achieved higher moment-resisting capacity than 238 239 group MCU. A possible explanation could be due to the local defects, as knots were 240 identified in the glulam beams. After the beams were reused, the fastener groups were 241 located on different locations. Thus, different locations of the fastener group along the beam may have different numbers of defects and the implication is difficult to measure. Therefore, 242 243 more tests are recommended to minimise the influence of local defects.

For CMCU4-6, the specimens were prepared from group MCBS. However, a similar
 comparison is not possible with two variables because group CMCU contains artificial cracks
 without reinforcement while group MCBS contains reinforcement without artificial cracks.

A similar calculation of rotation angle is performed for the connections in groups MCU and CMCU using the same timber beams. An average of 73% of reduction of rotation angle was found when a crack was applied to the middle row. The results provide good correlation to the comparison of the rotation angle between groups MCU and CMCU.

- To summarise, self-tapping screws with thread on the point end can slightly improve the
 moment-resisting capacity and rotational capacity of dowel-type connections when placed at
 1d distance from the dowel. It can also restore the rotational capacity of damaged
- 254 connections to their original status.

255 3.2. Failure modes

256 The major failure mode during this test was splitting failure of the beam parallel to the grain 257 and the cracks were mostly located at the top rows of the fasteners group. All of the 258 observed splitting of timber was sudden and accompanied by significant load drop. Table 4 259 provides a summary of the inspection of each specimen after failure. As the test 260 configuration cannot control the initiation of crack to happen on a specific side, it is difficult to give a detailed observation of the cracks that appeared on the non-DIC side, which had no 261 recording from the DSLR camera or digital video camera. The crack length on the DIC side 262 263 was measured by the DIC software and for cracks on the non-DIC side, a tape measure was 264 used.

As can be seen in Table 4, the majority of the unreinforced undamaged specimens had splitting on either side of the beam and all the unreinforced specimens with artificial cracks had significant wood splitting. The crack initiated, around the end of the beam and most of the crack propagated either to or beyond the third dowel on the top row. An example of crack propagation in the unreinforced group is shown in Figure 7 (a). The average crack lengths

- for groups MCU and CMCU were 392mm and 356mm, respectively.
- 271

272

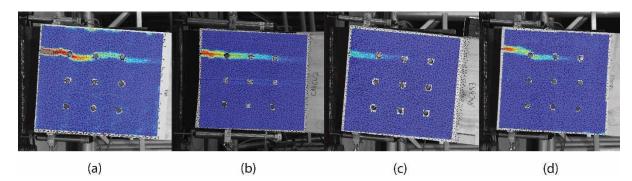
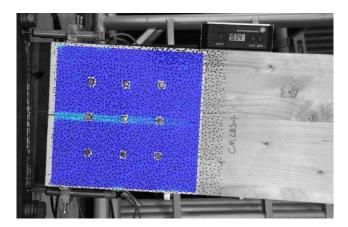


Figure 7: Observation from DIC on crack propagation at failure point (from left to right): (a) MCU1, (b) CMCU2, (c) MCBS3 and (d) CMCBS1.


In the reinforced group without artificial cracks, only two specimens, MCBS3 and MCBS4,
developed a crack on the top row and their cracks reached the second dowel at the point of
failure. An example of crack on specimen MCBS3 is shown in Figure 7 (c). The average
crack length for group MCBS was 155mm, approximately 60% reduction in length when
compared with the unreinforced group MCU.

280 As for the reinforced specimens with artificial cracks, two of the connections developed new 281 cracks apart from the existing pre-made crack. Their developed cracks reached the third 282 dowel but did not propagate any further at the point of failure, as illustrated in Figure 7 (d). The rest of the group developed no additional cracks and DIC showed stress concentration 283 284 along the artificial crack, as shown in Figure 8. The stress concentration along the crack was 285 insignificant compared to the crack developed on the top row in Figure 7 (d) and thus was not shown in the image. The average crack length for group CMCBS was 223mm which is 286 37% shorter than that of the cracked unreinforced group CMCU. 287

288

Table 4: A detailed report on specimens after failure.

Specimen	Crack location and longest length on the DIC side	Crack location and longest length on the non-DIC side
MCU1	Top row, 311mm	No crack
MCU2	Top row, 228mm	No crack
MCU3	No crack	No crack
MCU4	Top row, 559mm	No crack
MCU5	Bottom row, 459mm	No crack
MCU6	No crack	Top row, 402mm
CMCU1	No crack	Top row, 227mm
CMCU2	Top row, 353mm	No crack
CMCU3	Top row, 446mm	Top row, 312mm
CMCU4	Top and bottom row, 677mm	Top and bottom row, 617mm
CMCU5	Top and middle row, 273mm	Top and middle row, 246mm
CMCU6	No crack	Top row, 273mm
MCBS1	No crack	No crack
MCBS2	Top row, 159mm	No crack
MCBS3	Top row, 151mm	No crack
MCBS4	No crack	No crack
MCBS5	No crack	No crack
MCBS6	No crack	No crack
CMCBS1	Top row, 229mm; stress concentration on artificial crack	No crack
CMCBS2	Top row, 214mm; stress concentration on artificial crack	Top and bottom row, 221mm
CMCBS3	No crack; stress concentration on artificial crack	No crack
CMCBS4	No crack; stress concentration on artificial crack	No crack
CMCBS5	No crack; stress concentration on artificial crack	No crack
CMCBS6	No crack; stress concentration on artificial crack	No crack

- 289
- Figure 8: DIC analysis showing stress concentration around the artificial crack at the failure point of specimen CMCBS4.

By comparing the occurrence of splitting failure in the four groups, a preliminary conclusion

is that self-tapping screws with partial thread on the point end can reduce the chance of

294 crack initiation and effectively prevent crack propagation in moment-resisting dowel-type

295 connections. The cracks in both reinforced groups show significant reduction in length 296 compared to the unreinforced groups.

- 297
- 298 299

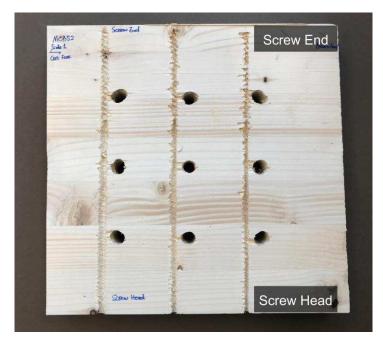
Figure 9: Bending of 5mm steel plates (left) and 15mm steel base plate (middle) and yielding of steel dowels (right).

300 In the test, bending of the steel dowels and steel plates was also observed, as shown in

Figure 9. All the dowels except the central one in the moment-resisting connectionsdisplayed a level of yielding with a hinge formed at the midpoint of the axial length of the

dowels. The yielding of the screw explains the reason for some connections showing load drop without the formation of a crack in Table 4. According to EC5, the failure mode of the connections is mode type 2 which is a combination of embedment failure and single yield failure of the fastener.

However, none of the self-tapping screws used in this study displayed significant screw head embedment into the wood as shown in Figure 10. In previous studies [11, 12], screw head embedment is a result of a combination of bending of the screw and the action to split the wood by tensile load perpendicular to the grain. The self-tapping screws were retrieved after the test while visual observation does not identify significant damage to the screws.



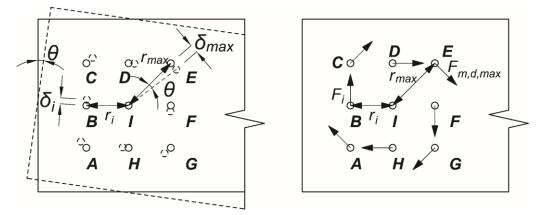
313 314

Figure 10: The specimen from MCBS5 shows no sign of screw head embedment after the test.

One possible explanation is that some dowels were not in contact with the screw at the point 315 316 of failure, because the self-tapping screws were placed at 1d (\approx 12mm) distance from the 317 dowel. The purpose of a 1d spacing was to avoid the risk of the screw passing through the 318 holes for the fasteners due to the existence of knots that may have caused the screw to 319 deviate from its original vertical course during installation. The action of bending of the screw 320 was not possible, thus, the embedment of the screw head was insignificant. The connection 321 part of MCBS2 was cut off from the beam and a band saw was used to separate the part into 322 two for inspection. In Figure 11, it is observed that, as suggested above, the dowels were not 323 in contact with the screws by the point of failure of the connection.

324

- 325
- 326


Figure 11: Inspection of screw and dowel interaction in the connection area in group MCBS2.

Therefore, the tendency for screw head embedment mainly depends on the splitting action of wood. However, as recorded in Table 4, the reinforced connections showed no significant cracking, indicating that the splitting action is also reduced. This implies that self-tapping screws as reinforcement can effectively control crack propagation as a higher rotational capacity is found in the reinforced groups in Table 3.

4. Theoretical prediction of moment-resisting capacity of dowel-type connections

Currently, the industry is promoting the use of glulam products and proposing large-scale, high-rise timber buildings. Studies have indicated that self-tapping screws are effective as reinforcement and also possess the advantage of simplicity, as they are easy to install and require less space than steel or FRP reinforcement. On the other hand, there is no guidance given in standards to calculate the moment-resisting capacity of dowel-type connections reinforced by self-tapping screws. Therefore, this study proposes a method to calculate the moment-resisting capacity of screw-reinforced dowel-type connections.

342 4.1. Assumption and procedures

343

344

Figure 12: The rotational behaviour of the fasteners in the tested specimen.

345 Key points of the proposed prediction method are summarised in the following paragraphs.

The connection is regarded as rotationally rigid. For a rigid model, one important assumption is that the centre of rotation remains fixed under loading. In addition, the centre of rotation is taken as the centre of the fastener group and all the fasteners are applied with the same linear-stiffness behaviour in the analysis. Figure 12 shows the rotation of fasteners around the centre at angle, θ , and transfer loads normal to the direct distance from the centre.

The method is based on the calculation model that was demonstrated in Blaß [23] and Porteous and Kermani [24] for a rotationally rigid connection:

$$M_d = \left(\frac{F_{m,d,max}}{r_{max}} \sum_{i=1}^n r_i^2\right) \cdot n_{sp} \tag{2}$$

where:

M_d is the design moment-resisting capacity of the connections;

 $F_{m,d,max}$ is the maximum load normal to its distance to the centre of rotation due to the moment imposed on the connections;

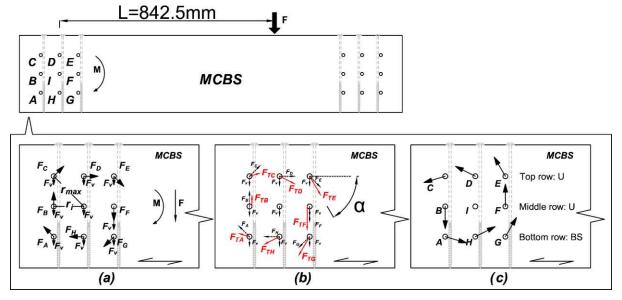
- r_{max} is the maximum distance between the dowel and the centre of rotation;
- n is the number of dowels;
- i represents the dowel in the connections;
- r_i is the distance between the dowel and the centre of rotation;

n_{sp} is the number of shear planes.

In the experimental tests of this study, mode type 2 failure (including the embedment failure of wood and single yield failure of the dowel) was observed. For convenience, the labels for the dowels are used to represent the area where mode type 2 failure has occurred. For instance, '*failure of Area A*' indicates that dowel A and the wood around it has failed.

358 In the proposed method, the vertical load, F, acting on the beam is considered into 359 calculation. With the additional vertical load, the angle of the total load on the dowel to the 360 grain direction is changed and the corresponding embedment strength can be different, 361 leading to various F_{m,d,max} and M_d, for the dowels furthest from the centre of rotation (e.g. dowels A and C comparing to dowels E and G in Figure 13 (b) in the next section). 362 363 Therefore, the fastener areas may not fail simultaneously even though they have same direct distance to the centre of rotation, as the local mechanical properties are influenced by 364 365 the loading direction, reinforcement and artificial damage.

Thus, the fundamental idea of the proposed method is to input the characteristic embedment strength from previous study [11] (listed in Table 5) to predict the $F_{m,k,max}$ and M_k based on the loading condition of each dowel. Then, finding the sequence of failure of the areas by sorting the acquired M_k values from the smallest to the largest. Finally, calculating the characteristic moment-resisting capacity of the connections by considering the early failure


- 371 of certain areas.
- 372 The proposed method estimates the moment-resisting capacity at ultimate load. Due to the 373 nature of the reinforcement method, not all the fasteners are bearing on the reinforced wood. 374 Some of the fasteners are bearing on unreinforced wood leading to a lower load-carrying 375 capacity and that area around it would tend to fail earlier than those having fasteners bearing 376 on reinforced wood. It is less accurate to use the load-carrying capacity, which is calculated 377 based on the condition that the fastener is bearing on unreinforced wood, to predict the 378 moment-resisting capacity of the reinforced connections. In this case, an assumption is 379 made that the connection is effective until failure has occurred to three or four fastener 380 areas, and the failed areas continue to provide their full load-carrying capacity and support to 381 vertical load until the total number of failed areas reaches to 3 or 4 (involving at least one 382 failure area that is reinforced). This is done in order to include the reinforcement effect when 383 calculating the capacity of reinforced connections. To ensure consistency, this assumption is applied to all types of connections tested in this study. 384
- 385 It is proposed that the criteria to consider failure of reinforced connections is the prediction 386 must involve the failure of at least one reinforced area.

Furthermore, this study assumes the vertical load on the dowels is evenly distributed. In a real connection, there is a lack of fit of the dowels (gaps around the dowels) at the beginning and the gaps close as the dowels take up load progressively. Therefore, the prediction in this study is based on the situation after initial rotation has closed the gaps around the dowels.

- The characteristic moment-resisting capacity of the four types of connections are given in
 Table 6 and a demonstration of calculation is shown for the reinforced connections without
 crack.
- 394 4.2. Reinforced connections MCBS

The perpendicular distance L of the vertical load, F, to the centre of rotation of the connections is 842.5mm and the load is equally divided into nine components acting on the fasteners by two shear planes with each denoted as, F_v , as shown in Figure 13. The forces

- 398 on the dowels due to the moment, M, are denoted as, F_x. The total forces acting on the
- dowels are represented by F_{TX} and their angles to the grain direction are represented by α_{TX}
- 400 as demonstrated in Figure 13 (b) where X is the letter representing the dowel as shown in
- 401 Figure 13. The direction of the total force on each dowel is different depending on the
- 402 combination of the imposed loads. The maximum and minimum perpendicular distances
- 403 from a fastener to the centre of rotation are 103.94mm (r_{max}) and 73.50mm (r_i), respectively.

404

405 406 407 Figure 13: Forces and their directions on each dowel in group MCBS: (a) vertical load F_V and load due to rotation σ_{TX} ; (c) the relative direction of movement of the dowels due to rotation.

Based on the demonstration in Figure 13, it can be found that dowels E and G are the critical points as they sustain the highest total load, which is a combination of the load due to

410 moment and the vertical load. However, as indicated in Figure 13 (c), the relative movement

of the dowels is anti-clockwise. Thus, only dowels A, H and G are bearing on screw

reinforced wood with a higher embedment strength and a higher load-carrying capacity.

413 Therefore, it is assumed that failure occurs to Area E first.

414 The moment-resisting capacity of the connections, M_k can be expressed as:

$$M_{k} = FL = [(F_{A} + F_{C} + F_{E} + F_{G}) \cdot r_{max} + (F_{B} + F_{D} + F_{F} + F_{H}) \cdot r_{i}] \cdot n_{sp}$$

where:

- F is the vertical load acting on the beam in Figure 13;
- L is the perpendicular distance of the vertical load, F, to the centre of rotation of the connections and is measured to be 842.5mm in this study;
- r_{max} is the distance from the centre of the fastener group to the furthest fastener;
- r_i is the distance from the centre of the fastener group to the furthest fastener;
- n_{sp} is the number of shear planes.

416 In this study, a moment acting on the connection causes a rotation of θ and a displacement

417 of δ_{max} in dowel E as shown in Figure 14. The load on the dowel due to the rotation is the

418 product of the slip modulus and the displacement. For a rigid model, the dowels with equal

(3)

perpendicular distance, either r_{max} or r_i , to the centre of rotation are subject to the same amount of load assuming they have same slip modulus, K, and rotation angle, θ . Thus:

421
$$F_A = F_C = F_E = F_G = K \cdot \delta_{max} = K \cdot r_{max} \cdot \theta \tag{4}$$

422

$$F_B = F_D = F_F = F_H = K \cdot \delta_i = K \cdot r_i \cdot \theta \tag{5}$$

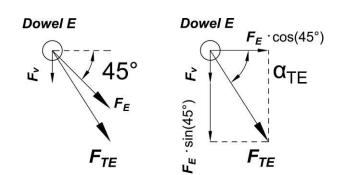
where:

- K is the slip modulus for each fastener and assumed to be a constant in here;
- δ is the displacement of the fastener;
- θ is the rotation of the connection.

423 The force F_E , acting on dowel E is under consideration in this step. The forces on dowels B, 424 D, F and H are the same and their magnitude can be found by knowing the proportion 425 between r_{max} and r_i based on equations (4) and (5), therefore:

$$F_B = F_D = F_F = F_H = \frac{F_E}{r_{max}} \cdot r_i \tag{6}$$

The loads on dowels A, C, E and G are the same and substituting the load on each fastener
in relation to the load on dowel E into Equation (3), the equation to calculate the
characteristic moment-resisting capacity of the connections can be simplified and expressed


430 as:

431
$$M_k = FL = (4F_E \cdot r_{max} + 4\frac{F_E}{r_{max}} \cdot r_i^2) \cdot n_{sp}$$
(7)

432 Rearranging the equation:

$$F_E = \frac{FL}{4n_{sp}} \cdot \frac{1}{(r_{max} + \frac{r_i^2}{r_{max}})}$$
(8)

434

435

436 Figure 14: (a) The loads acting on dowel E; (b) Resolving the loads into vertical and horizontal components.

437 As shown in Figure 14 (b), the magnitude and angle of the total load on dowel E, F_{TE} , can be 438 found by resolving F_v and F_E into horizontal and vertical components. The load due to 439 moment, F_E , is at 45° to the horizontal direction. The load in the vertical direction is the sum 440 of the F_v and the components of F_E :

441
$$F_{vertical} = F_v + F_E \cdot sin(45^\circ) = \frac{F}{n_{sp}n} + F_E \cdot sin(45^\circ) = \frac{F}{2\times9} + \frac{\sqrt{2}}{2}F_E = \frac{F}{18} + \frac{\sqrt{2}}{2}F_E$$
(9)

where:

- F_v is the vertical load on the fastener;
- F_E is the load on the fastener due to moment;
- F is the vertical load on the connection;
- n_{sp} is the number of shear planes;
- n is the number of fasteners.
- 442 The horizontal component is contributed from the load F_E only. Therefore, the following 443 equation can be established:

$$tan(\alpha_{TE}) = \frac{(\frac{F}{18} + \frac{\sqrt{2}}{2}F_E)}{\frac{\sqrt{2}}{2}F_E}$$
(10)

445 By substituting Equation (8) and the values for L, n_{sp} , r_{max} and r_i into Equation (10), the angle 446 of F_{TE} to the grain direction, α_{TE} is:

447
$$\alpha_{TE} = tan^{-1} \left[1 + \frac{8\sqrt{2}}{18L} \cdot \left(r_{max} + \frac{r_i^2}{r_{max}} \right) \right] = 48.15^{\circ}$$
(11)

448 Thus, the total load on the dowel F_{TE} should not exceed the load-carrying capacity in this 449 direction. The load-carrying capacity can be calculated using the following equations from 450 EC5 [22]:

$$F_{v,Rk} = min \begin{cases} f_{h,1,k}t_1d & (f) \\ f_{h,1,k}t_1d \left[\sqrt{2 + \frac{4M_{y,Rk}}{f_{h,1,k}dt_1^2}} - 1\right] + \frac{F_{ax,Rk}}{4} & (g) \\ 2.3\sqrt{M_{y,Rk}f_{h,1,k}d} + \frac{F_{ax,Rk}}{4} & (h) \end{cases}$$
(12)

where:

444

451

- $f_{h,1,k}$ is the characteristic embedment strength in the timber member;
- t₁ is the smaller of the thicknesses of the timber side member or the penetration depth:
- d is the fastener diameter;
- M_{y,Rk} is the characteristic fastener yield moment;
- $F_{ax,Rk} \hspace{0.5cm} \text{is the characteristic withdrawal capacity of the fastener and is equal to zero for steel dowels.}$
- 452 $F_{v,Rk}$ depends on the characteristic embedment strength of the wood, $f_{h,1,k}$, in the loaded 453 angle, α_{TE} , to the grain direction and in here is 0°, 45° and 90° as shown in Figure 12. Based 454 on the characteristic embedment strength parallel to the grain, $f_{h,0,k}$, acquired from [11], as 455 shown in Table 5, $f_{h,1,k}$, can be calculated through the Hankinson formula given in clause 456 8.5.1.1 (2) in EC5:

457
$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90}sin^2\alpha + cos^2\alpha}$$
(13)

where:

- k₉₀ is equal to 1.53 for a member made of softwood and connected by 12mm diameter dowels.
- 458 The embedment tests from Table 5 were acquired from previous tests of European
- 459 Whitewood using 16mm dowels with same material properties for the 12mm dowels used in 460 this study. The loading direction of the embedment test was parallel to the grain.
- 461

Table 5: Summary of characteristic values calculated based on previous test [11].

Group	Description	Characteristic embedment strength from previous test, fh,o, k (N/mm ²)
U	No crack, unreinforced	20.07
BS	No crack, reinforced by screw with 33% thread on the point end	24.80
C1.5U	1.5mm crack, unreinforced	14.91

462

As mentioned previously, the wood that dowel E is bearing on is unreinforced due to the relative movement of the dowel during rotation; and, for a connection with dowel E, the loadcarrying capacity can be found by using the unreinforced embedment strength (U) at 48.15° to the grain direction. For unreinforced wood, if no reference values are available from tests, the use of the formulas in EC5 Equation 8.31 is recommended to calculate the characteristic embedment strength. Another approach is to acquire the embedment strength experimentally following BS EN 383:2007 [25] and using BS EN 14358:2016 [26] to calculate

- 470 the characteristic value.
- 471 There is other available literature that presents values of embedment strength of
- 472 unreinforced and screw-reinforced wood in [14-20]. However, most of the available results473 are not characteristic values but mean values.
- 474 Thus, from Equation (12), $F_{v,Rk}$ is calculated to be 6.74kN (mode type 2 failure) and F_{TE} is not 475 greater than this value. As the horizontal component of F_{TE} is contributed by F_E (see Figure
- 476 14), a relationship between F_{TE} and F_{E} is demonstrated below:
- 477 $F_{TE} \cdot \cos(48.15^{\circ}) = \frac{\sqrt{2}}{2} F_E$ (14)
- 478 Therefore, F_E equals to 6.36kN when the maximum value of 6.74kN is assigned to F_{TE}.
- 479 Substituting the value of F_E into Equation (7), the characteristic moment-resisting capacity of

the reinforced connections based on the load-carrying capacity of a connection containsdowel E is found to be 7.93kNm.

482 By this point, only one area has failed and the prediction does not consider the

483 enhancement of embedment strength due to the screw reinforcement. Therefore, the

484 predicted value is not accurate enough for a reinforced connection. As previously mentioned,
 485 the failed area will still provide the load-carrying capacity and vertical support until two or

three more areas fail. The ultimate state of the connections has not yet been reached.

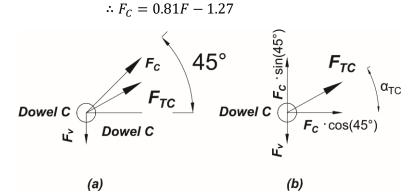
487 To have a more accurate prediction, the capacity of the reinforced connections is checked 488 regarding to Areas C, F and G, respectively, based on the failure of Area E (a combination of 489 embedment failure and fastener failure). The connections are likely to fail at these locations 490 with a higher total load (see Figure 13 (b)). A new equation is established based on the load 491 on dowel C (F_c is equal to F_A) for demonstration:

$$M_k = FL = (3F_C \cdot r_{max} + 4\frac{F_C}{r_{max}} \cdot r_i^2 + F_E \cdot r_{max}) \cdot n_{sp}$$
(15)

493 Rearranging the equation:

494
$$F_C = \frac{FL - F_E \cdot r_{max} \cdot n_{sp}}{(3 \cdot r_{max} + 4 \cdot \frac{r_i^2}{r_{max}}) \cdot n_{sp}}$$
(16)

495 The above equation can be represented by:


$$F_C = xF - y \tag{17}$$

497 Substituting the constants and the values for F_E from the previous calculation into the 498 expressions:

499
$$x = \frac{L}{(3 \cdot r_{max} + 4 \cdot \frac{r_i^2}{r_{max}}) \cdot n_{sp}} = 0.81 \qquad y = \frac{F_E \cdot r_{max} \cdot n_{sp}}{(3 \cdot r_{max} + 4 \cdot \frac{r_i^2}{r_{max}}) \cdot n_{sp}} = 1.27$$
(18)

496

492

501

The angle between the total load on dowel C and the grain direction, α_{TC} , is assumed to be the angle when failure occurs to Area E. Unlike the expression in equation (10), the load F_C, due to moment acting on dowel C, is in the opposite direction to the vertical load F_v, see Figure 13 (b) and Figure 15 (a). Therefore, the relationship between α_{TC} and the horizontal and vertical components of F_{TC} is now:

508
$$tan(\alpha_{TC}) = \frac{\left(\frac{\sqrt{2}}{2}F_{C} - \frac{F}{18}\right)}{\frac{\sqrt{2}}{2}F_{C}} = 1 - \frac{F}{18} \cdot \frac{\sqrt{2}}{F_{C}}$$
(20)

509 The corresponding load F_c on dowel C at that moment can be found using the relationship 510 identified in Equation (4). Dowels C and E have the same distance to the centre of rotation 511 r_{max} , slip modulus K and rotation angle θ .

512
$$F_C = \frac{K \cdot r_{max} \cdot \theta}{K \cdot r_{max} \cdot \theta} F_E$$
(21)

The vertical load F_v on dowel C at that moment is the vertical load F on the beam divided by 18 (with nine dowels and two shear planes) (when dowel E has failed) and is calculated to be 0.52kN (from previous calculation on dowel E). Thus, the angle of the total load on dowel C can be found by substituting Equation (21) into Equation (20) and knowing the value of load FE also from previous calculation on dowel E:

518
$$\alpha_{TC} = tan^{-1} \left[\frac{\left(\frac{\sqrt{2}K \cdot r_{max} \cdot \theta}{2 \ K \cdot r_{max} \cdot \theta} F_E - \frac{F}{18}\right)}{\frac{\sqrt{2}K \cdot r_{max} \cdot \theta}{2 \ K \cdot r_{max} \cdot \theta} F_E} \right] = tan^{-1} \left(1 - \frac{F}{18} \cdot \frac{\sqrt{2}}{F_E}\right) = 41.47^{\circ}$$
(22)

(19)

- 519 Dowel C will move away from the self-tapping screw (see Figure 13 (c)), meaning that the
- 520 wood it bears on is not reinforced. Thus, the embedment strength is taken for the
- 521 unreinforced value (U) in Table 5 at 41.47° to the grain direction using the Hankinson
- 522 formula (Equation (13)). The embedment strength is then substituting into the load-carrying
- 523 capacity equations for a connection (Equation (12)). Therefore, the load-carrying capacity of 524 a connection contains dowel C can be found as 7.01kN and the total load F_{TC} cannot be
- 525 greater than this value.

526 For dowel C, a relationship between the total load F_{TC} , the load F_C due to the moment and 527 the vertical load F_v can be established (see Figure 15 (b)):

528
$$F_{TC}^2 = \left(\frac{\sqrt{2}}{2}F_C\right)^2 + \left(\frac{\sqrt{2}}{2}F_C - \frac{F}{18}\right)^2$$
(23)

529 Substituting Equation (19) into Equation (23), a quadratic equation with unknown F can be 530 written as following:

531
$$0 = (x^2 - \frac{x\sqrt{2}}{18} + \frac{1}{324})F^2 + (-2xy + \frac{y\sqrt{2}}{18})F + (y^2 - F_{TC}^2)$$
(24)

532 Where F_{TC} can be found using Equations (12) and (13) and the above equation can be 533 solved which gives the values of F to be 10.72 or -7.43. The value of the load F is taken to 534 be the positive solution of the quadratic equation. The characteristic moment-resisting 535 capacity of the reinforced connections at the ultimate state is the product of the load on the 536 beam (F) and the perpendicular distance of load to the centre of rotation (L) and is 537 calculated to be 9.03kNm.

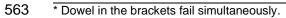
538 Using the same method for Area C, the characteristic moment-resisting capacity of the 539 connections can be found when Areas F (at 9.15kNm) and G (at 9.17kNm) fail respectively, 540 with prior failure to Area E. With a higher moment-resisting capacity than 9.03kNm, it implies 541 that areas fail in a sequence of E, C, F and G.

The next step is to find the moment-resisting capacity of the connections when Area F fails
with Areas E and C having already failed. Similarly, an equation can be established as
follows:

545
$$M_k = FL = (2F_F \cdot r_{max} + 4\frac{F_F}{r_{max}} \cdot r_i^2 + F_E \cdot r_{max} + F_C \cdot r_{max}) \cdot n_{sp}$$
(25)

Repeating the above steps and using the unreinforced embedment strength (U) for the wood
around dowel F, the characteristic moment-resisting capacity of the connections when Areas
E, C and F have failed is 9.13kNm. As can be seen, the moment-resisting capacity has
increased 16% from the first failure of Area E. However, the additional capacity due to the
enhanced embedment strength from reinforcement is not considered as the wood around
dowels E, C and F is unreinforced due to the movement of the dowels.

552 Thus, the final step is to calculate the moment-resisting capacity of the connections based 553 on Area G with Areas E, C and F having failed already. Another equation is established:


554
$$M_k = FL = (2F_G \cdot r_{max} + 3\frac{F_G}{r_{max}} \cdot r_i^2 + F_E \cdot r_{max} + F_C \cdot r_{max} + F_F \cdot r_i) \cdot n_{sp}$$
(26)

555 The wood around dowel G is assumed to be reinforced with an enhanced embedment 556 strength calculated from (BS) in Table 5 and the final characteristic moment-resisting 557 capacity of the reinforced connections MCBS is found to be 9.14kNm.

559 4.3. Predicted values for characteristic moment-resisting capacity

Table 6: Summary of predicted values for the connections in this study and brief details for each calculation steps.

	Step	Calculation based on	Early failure of	Embedment	Total load to grain angle α	Load on the	Moment-
		dowel	area	strength based on previous study	grain angle u	early failed dowel (kN)	resisting capacity (kNm)
-	1	E (G) *	N/A	U	48.15°	N/A	7.93
	2	C (A) *	N/A	Ŭ	41.47°	N/A	9.27
	3	C (A) *	E&G	U	41.47°	F _E =6.36	<u>8.80</u>
	5	0 (7)			TI.T/	T E=0.00	0.00
_		~ >	МСИ				
MCU		D E	b Top row: U				
ž		0.0	Middle roug II				
		B ^O I ^O F ▼	Middle row: U	>			
		A	Bottom row: U				
				$M_{\rm k} = FL = (2F_{\rm C} \cdot r_{\rm m})$	$r_{i}^{2} + 4 \frac{F_{C}}{F_{C}} \cdot r_{i}^{2} +$	$F_{\rm F} \cdot r_{\rm max} + F_{\rm C} \cdot r_{\rm max}$	$(max) \cdot n_{sn}$
	4		N1/A				
	1	F F (C) *	N/A	C1.5U	90.00°	N/A	7.55
	2	E (G) *	F	U	48.15°	F _F =4.28	<u>7.90</u>
			CMCU				
		D E	Top row: U				
CMCU			Middle row: C1.5L	1			
б			~ <	>			
		49-140	Bottom row: U	12 ·			
		A -n 6	~	$M_{\rm c} = EI = (AE + m)$	$\pm 2^{F_{\rm E}} \cdot m^2$	F(r)	
				$M_{\rm k} = FL = (4F_{\rm E} \cdot r_{\rm max})$	$r_{\text{ax}} + 5 \frac{r_{\text{max}}}{r_{\text{max}}} \cdot r_{\text{i}} + 1$	$r_{\rm F} \cdot r_{\rm i} \cdot n_{\rm sp}$	
·	1	E	N/A	U	48.15°	N/A	7.93
	2	G	E	BS	48.15°	F _E =6.36	9.17
	3	F	E	U	90.00°	$F_{E}=6.36$	9.15
	4	С	E	U	41.47°	F _E =6.36	9.03
	5	F	E&C	Ū	90.00°	$F_{E}=6.36$,	9.13
	-			-		Fc=7.42	
	6	G	E, C & F	BS	48.15°	F _E =6.36,	<u>9.14</u>
လ္ဆ			,			F _C =7.42,	
MCBS						F _F =5.33	
Σ			MCBS				
		~~~~	Top row: U				
		Ĉ D E	4				
		B ^O I ^O F	Middle row: U				
		1	1				
		A A	Bottom row: BS		F		
		titite and the		$M_{\rm k} = FL = (2F_{\rm G} \cdot r_{\rm max})$	$r_{ax} + 3 \frac{r_G}{r_{max}} \cdot r_i^2 + \frac{r_G}{r_i}$	$F_{\rm E} \cdot r_{\rm max} + F_{\rm C} \cdot r_{\rm m}$	$h_{\max} + F_{F} \cdot r_{i}) \cdot n_{sp}$
	1	F	N/A	C1.5U	90.00°	N/A	7.55
	2	E	F	U	48.15°	F _F =4.28	7.90
	3	С	F&E	U	41.47°	F _F =4.28,	8.88
						F _E =6.36	
	4	G	F&E	BS	48.15°	F _F =4.28,	9.02
						F _E =6.36	
	5	G	F, E & C	BS	48.15°	F _F =4.28,	<u>8.99</u>
BS						F _E =6.36,	
CMCBS						F _C =7.40,	
б		The second secon	CMCBS			·	
-			Top row: U				
		C D E	Middle row: C1.5L				
		B^QOF		]			
		<b>*</b>	1	>			
		A H G	Bottom row: BS				
		111111		$M_{\rm k} = FL = (2F_{\rm G} \cdot r_{\rm max})$	$_{\rm x} + 3 \frac{F_{\rm G}}{\cdot} \cdot r_{\rm i}^2 + H$	$F_{\rm E} \cdot r_{\rm max} + F_{\rm C} \cdot r_{\rm m}$	$_{ax} + F_{F} \cdot r_{i} \cdot n_{sn}$
					$r_{\rm max}$	2 max · C · III	

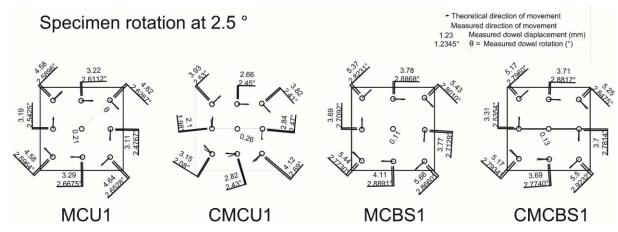


- Table 6 lists the calculation steps for each group tested in this study. In groups CMCU and CMCBS, the dowels B and F will tend to move parallel to the grain direction and a crack passes through the dowels. Therefore, cracked unreinforced embedment strength of wood (C1.5U) from Table 5 is used.
- Table 7 summarises the predicted capacity compared with the characteristic momentresisting capacity from the connection tests. The characteristic moment-resisting capacity
  from the connection tests is calculated according to the 5-percentile method in BS EN
  14358:2016 [26].

572 As can be seen from Table 7, the calculation method gives underestimated values when 573 compared to the characteristic values calculated from the test which is in line with 574 expectation that prediction should provide a conservative value. Comparing the calculated 575 characteristic values with the predicted values, the unreinforced group MCU shows a 5% 576 difference. This implies that the method is conservative but is still an accurate estimation of 577 the moment-resisting capacity of the connections. As for the other three groups, the 578 prediction method is also conservative but with a higher percentage error. The proposed 579 method is based on the existing method which does not consider the influence of crack and 580 reinforcement. Applying the embedment strength for each different situation in the proposed 581 method would gain a more accurate estimation but the reduction of the percentage error 582 requires further investigation and modification of the method. The proposed method provides 583 an insight into predicting the moment-resisting capacity of screw-reinforced dowel-type 584 connections.

585 586

 Table 7: Calculated characteristic moment-resisting capacity from tests and estimated characteristic moment-resisting capacity based on proposed calculation method.


	MCU	CMCU	MCBS	CMCBS
Characteristic moment-resisting capacity calculated based on six repetitions (kNm)	9.26	10.41	12.94	12.06
Characteristic moment-resisting capacity of connections estimated by using the characteristic value of embedment tests (kNm)	8.80	7.90	9.14	8.99
Percentage error between the characteristic test and predicted values	5.0%	24.1%	29.4%	25.5%

#### 587

588 As screw reinforcement involves strengthening the wood material, it has been assumed that 589 such reinforcement could change the basic assumption that all the steel dowels rotate 590 around the centre of the fastener group. To further validate the credibility of the proposed 591 modes, DIC analysis was used to identify the movement of fasteners under certain rotations 592 of the connections. Specimen rotation at 2.5° was chosen and the corresponding images 593 were selected. DIC analysis can show the horizontal and vertical displacement of points 594 around the dowels on the images and the movement of the dowels (displacement and 595 direction) can be calculated. This method helps to demonstrate whether the fasteners in the 596 reinforced specimens rotate around the centre of rotation, as illustrated in Figure 12.

597 The result is shown in Figure 16 with the theoretical rotation direction of the dowels 598 represented by a solid line with an arrow. The actual rotation direction of the dowel is 599 represented by a dashed line. The theoretical displacement can be found by calculating the 600 distances between the dowels and the centre of rotation but is not displayed in Figure 16. 601 Overall, the realistic movement of the fastener in all specimens showed good correlation to 602 theoretical movement in both displacement and rotation. Therefore, it confirms that 603 specimens reinforced by self-tapping screws placed at 1d fastener spacing follows the

- assumption that all fasteners rotate around the centre of the fastener group and validates the
   proposed method for calculating the moment-resisting capacity of reinforced dowel-type
   connections.
- Furthermore, DIC analysis calculated the displacement of the centre dowel as shown in
   Figure 16. The values of displacement for all four groups are small and negligible. This
- 609 confirms the previous assumption that the centre of the fastener group remains fixed. The
- 610 displacements of the centre dowels at smaller theoretical and measured rotation (e.g. 1° and
- 611 29 are not shown in this study, while their values are also found to be small.



613Figure 16: Measured dowel displacement at 2.5° rotation angle. Most of the dashed lines representing the actual614direction are hardly visible due to the high correlation with the theoretical direction.

## 615 5. Conclusion

612

623

624

625

This study investigates the performance of dowel-type moment-resisting connections
reinforced by self-tapping screws compared with unreinforced connections. Enhancement of
screw reinforcement on artificially damaged connections is also investigated. The following
points can be concluded from the results in this study:

- Partially threaded self-tapping screws placed at one fastener spacing to the dowel
   can enhance rotational capacity while the improvement in moment-resisting capacity
   is slight.
  - When a connection was damaged by making a 1.5mm artificial crack at the middle row of its fastener group, self-tapping screws as reinforcement restored the rotational capacity to its original undamaged state.
- Based on experimental observation, the tendency of splitting failure was greatly controlled by the application of self-tapping screws. In addition, according to images from DIC, crack propagation was also controlled by having self-tapping screws. The average crack lengths in the unreinforced groups MCU and CMCU were 392mm and 356mm, respectively. The average crack lengths in the reinforced groups MCBS and CMCBS were 155mm and 223mm, respectively. The average crack length in reinforced specimens was at least 37% shorter than in the unreinforced ones.
- A calculation method for predicting the moment-resisting capacity of connections
   reinforced by screws is proposed and shows conservative values when compared
   with experimental results (percentage error ranging from 5-29.4%). The displacement
   results from DIC also validated that the steel dowels in the reinforced specimen
   followed the assumption that they rotate around the centre of the fastener group.
   Therefore, the proposed method can be used to predict the moment-resisting

- 639 capacity of screw reinforced dowel-type connections with similar configuration of640 connections and screw reinforcement.
- An important conclusion in this study is that screw reinforcement leads to a more ductile,
  safer failure. It may not be worth using the screws with partial thread for increased
  strength but it is certainly worth using them to restore the ductility after the development
  cracks and ensure a less brittle failure.
- 645 In addition, the proposed calculation method establishes a path to find the moment-646 resisting capacity of dowel-type connections reinforced by self-tapping screws. The 647 experiment is based on a small sample size, and more repetitions should be performed 648 to reduce the variability in the results that is induced by the inherent material characteristic of wood. Furthermore, the applicability of the proposed method to other 649 650 configurations of reinforced connections can be achieved with available embedment 651 strength of timber that is reinforced by screw with similar thread configuration and screw 652 to dowel distance.

## 653 Acknowledgement

This work was supported by the National Natural Science Foundation of China [NSFC: 51608144]; the Time For Timber Ltd consulting company; and the Simpson Strong Tie

655 51608144]; the 656 Company Inc.

## 657 References

658 [1] A. D'Ambrisi, F. Focacci, R. Luciano, Experimental investigation on flexural behavior of 659 timber beams repaired with CFRP plates, Composite Structures 108 (2014) 720-728.

660 [2] G. Metelli, M. Preti, E. Giuriani, On the delamination phenomenon in the repair of timber 661 beams with steel plates, Construction and Building Materials 102 (2016) 1018-1028.

[3] B. Pizzo, M. Gavioli, M.P. Lauriola, Evaluation of a design approach to the on-site
structural repair of decayed old timber end beams, Engineering Structures 48 (2013) 611622.

[4] I. Bejtka, H. Blaß, Self-tapping screws as reinforcements in connections with dowel-type
fasteners, International Council for Research and Innovation in Building and ConstructionWorking Commission W18-Timber Structure (CIB-W18), Universität Karlsruhe, Karlsruhe,
Germany, 2005.

- [5] H.J. Blaß, P. Schädle, Ductility aspects of reinforced and non-reinforced timber joints,
   Engineering Structures 33(11) (2011) 3018-3026.
- [6] H.J. Blaß, M. Schmid, Self-tapping screws as reinforcement perpendicular to the grain in
  timber connections, in: S. Aicher, H.W. Reinhardt (Eds.) RILEM Symposium: Joints in
  Timber Structures, RILEM, Stuttgart, Germany, 2001, pp. 163-172.
- [7] M. Closen, F. Lam, Performance of moment resisting self-tapping screw assembly under
  reverse cyclic load, World Conference on Timber Engineering, Auckland, New Zealand,
  2012, pp. 433-440.
- [8] M. Gehloff, M. Closen, F. Lam, Reduced edge distances in bolted timber momentconnections with perpendicular to grain reinforcements, World Conference on Timber
- 679 Engineering, 2010.

[9] F. Lam, M. Gehloff, M. Closen, Moment-resisting bolted timber connections, Proceedings
 of the Institution of Civil Engineers-Structures and Buildings 163(4) (2010) 267-274.

[10] F. Lam, M. Schulte-Wrede, C. Yao, J. Gu, Moment resistance of bolted timber
connections with perpendicular to grain reinforcements, 10th World Conference on Timber
Engineering Miyazaki, Japan, 2008.

- [11] C. Zhang, W. Chang, R. Harris, Investigation of thread configuration for self-tapping
  screws as reinforcement for embedment strength, International Network on Timber
  Engineering Research, University of Zagreb, Šibenik, Croatia, 2015, pp. 449-451.
- [12] C. Zhang, W. Chang, R. Harris, Investigation of thread configuration of self-tapping
  screws as reinforcement for dowel-type connection, World Conference on Timber
  Engineering 2016, University of Vienna, Vienna, Austria, 2016, pp. 1440-1448.
- [13] S. Delahunty, Y.H. Chui, M. McCormick, Use of double-threaded self-tapping screws for
  in-situ repair of cracked timber connecitons, World Conference on Timber Engineering,
  Quebec City, Canada, 2014.
- [14] K. Sawata, M. Yasumura, Determination of embedding strength of wood for dowel-typefasteners, Journal of Wood Science 48(2) (2002) 138-146.
- [15] C. Sandhaas, G. Ravenshorst, H. Blass, J. Van de Kuilen, Embedment tests parallel-tograin and ductility aspects using various wood species, European Journal of Wood and
  Wood Products 71(5) (2013) 599-608.
- [16] B.-H. Xu, A. Bouchaïr, M. Taazount, P. Racher, Numerical simulation of embedding
  strength of glued laminated timber for dowel-type fasteners, Journal of Wood Science 59(1)
  (2013) 17-23.
- [17] S. Franke, N. Magnière, The embedment failure of European beech compared to spruce
   wood and standards, Materials and Joints in Timber Structures, Springer2014, pp. 221-229.
- [18] T. Reynolds, B. Sharma, K. Harries, M. Ramage, Dowelled structural connections in
   laminated bamboo and timber, J Composites Part B: Engineering 90 (2016) 232-240.
- [19] C. Echavarría, Bolted timber joints with self-tapping screws, Revista EIA (8) (2007) 37-47.
- [20] W. Lederer, T.K. Bader, G. Unger, J. Eberhardsteiner, Influence of different types of
   reinforcements on the embedment behavior of steel dowels in wood, European Journal of
   Wood and Wood Products 74(6) (2016) 793-807.
- [21] OIB, European Technical Approval ETA-13/0796 of 15.12.2017, Österreichische Institut
   für Bautechnik (OIB), 2017.
- [22] BSI (2004) BS EN 1995-1-1:2004+A2:2014. Eurocode 5: Design of timber structures.
   General. Common rules and rules for buildings. BSI, London, United Kingdom.
- [23] H.J. Blaß, Timber engineering. Step 1: basis of design, material properties, structuralcomponents and joints, 1995.
- [24] J. Porteous, A. Kermani, Structural timber design to Eurocode 5, John Wiley &Sons2013.

- [25] BSI (2007) BS EN 383:2007. Timber structures. Test methods. Determination of
- embedment strength and foundation values for dowel type fasteners. BSI, London, United Kingdom.
- [26] BSI (2016) BS EN 14358:2016. Timber structures. Calculation and verification of characteristic values. BSI, London, United Kingdom.