
This is a repository copy of On the impact of the cutoff time on the performance of
algorithm configurators.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145576/

Version: Accepted Version

Proceedings Paper:
Hall, G.T., Oliveto, P. and Sudholt, D. orcid.org/0000-0001-6020-1646 (2019) On the
impact of the cutoff time on the performance of algorithm configurators. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2019). Genetic and
Evolutionary Computation Conference (GECCO 2019), 13-17 Jul 2019, Prague, Czech
Republic. ACM , pp. 907-915. ISBN 9781450361118

https://doi.org/10.1145/3321707.3321879

© 2019 ACM. [https://dl.acm.org/] This is an author-produced version of a paper accepted
for publication in the Proceedings of GECCO 2019. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

On the Impact of the Cutof Time on the Performance of
Algorithm Configurators

George T. Hall
Department of Computer Science

University of Sheield, Sheield, UK

Pietro S. Oliveto
Department of Computer Science

University of Sheield, Sheield, UK

Dirk Sudholt
Department of Computer Science

University of Sheield, Sheield, UK

ABSTRACT

Algorithm conigurators are automated methods to optimise the
parameters of an algorithm for a class of problems. We evaluate the
performance of a simple random local search conigurator (Param-
RLS) for tuning the neighbourhood size k of the RLSk algorithm.
We measure performance as the expected number of coniguration
evaluations required to identify the optimal value for the parameter.
We analyse the impact of the cutof time κ (the time spent evaluat-
ing a coniguration for a problem instance) on the expected number
of coniguration evaluations required to ind the optimal parameter
value, where we compare conigurations using either best found
itness values (ParamRLS-F) or optimisation times (ParamRLS-T).
We consider tuning RLSk for a variant of the Ridge function class
(Ridge*), where the performance of each parameter value does not
change during the run, and for the OneMax function class, where
longer runs favour smaller k . We rigorously prove that ParamRLS-
F eiciently tunes RLSk for Ridge* for any κ while ParamRLS-T
requires at least quadratic κ. For OneMax ParamRLS-F identiies
k = 1 as optimal with linear κ while ParamRLS-T requires a κ of
at least Ω(n logn). For smaller κ ParamRLS-F identiies that k > 1
performs better while ParamRLS-T returns k chosen uniformly at
random.

KEYWORDS

Parameter tuning, Algorithm conigurators, Runtime analysis

1 INTRODUCTION

General purpose heuristics, such as evolutionary algorithms, have
the advantage that they can generate high quality solutions to opti-
misation problems without requiring much knowledge about the
problem at hand. All that is required to apply a general purpose
heuristic is a suitable representation for candidate solutions and a
measure (the itness function) that allows us to compare the quality
of diferent solutions against each other. However, it is well under-
stood that diferent design choices and diferent settings of their
numerous parameters (e.g., mutation rate, crossover rate, selective
pressure and population size for generational genetic algorithms
(GAs)) may considerably afect their performance and in turn the
quality of the identiied solutions. In particular, the capability of
heuristics to identify high quality solutions in a short time depends
crucially on the use of suitable parameter settings [17].

Traditionally the design and parameter tuning of the algorithm
for the problem at hand has mainly been done manually. Typically,
the developer chooses some algorithmic designs and values for
the associated parameters and executes them on instances of the
problem. Reinements are then made according to how well each
algorithm/parameter coniguration has performed.

However, such a procedure (or a similar one) is a time-consuming
and error-prone process. From a scientiic research point of view, it
is also biased by personal experience hence diicult to reproduce.
Consequently it has become increasingly common to use automated
and principled methodologies for algorithm development. In the
literature, researchers have typically referred to the automated opti-
misation of algorithm performance as automated parameter tuning

and automated algorithm coniguration [46]. Recently more ambi-
tious methodologies have emerged such as automated construction

of heuristic algorithms [20, 28] automated algorithm generation [24]
and hyper-heuristics [7].

Although automating the algorithmic design has gained signif-
icant momentum in recent years, the idea has been around for
over thirty years. In 1986 Grefenstette used a GA to optimise the
parameters of another GA [22]. Since then several other heuristic
methodologies have been employed to optimise algorithmic param-
eters including hill-climbing [21], beam search [38], iterated local
search (ParamILS) [24], gender-based GAs [2] and more traditional
GAs (EVOCA) [43]. Recently more sophisticated methodologies
have appeared based on racing [37] approaches for comparing sev-
eral conigurations in parallel and integrating statistical testing
methods [6]. These include the popular irace conigurator [36].
Also surrogate models have been introduced to predict the compu-
tational cost of testing speciic conigurations in order to avoid poor
choices. Popular examples of surrogate-based conigurators are se-
quential parameter optimisation (SPOT) [4, 5] and the sequential
model-based algorithm coniguration (SMAC) [25].

While varying in several algorithmic details, all algorithm conig-
urators generally aim to evolve better and better parameter values
by evaluating the performance of candidate conigurations on a
training set of instances and using some perturbation mechanism
(e.g., iterated local search in ParamILS or updating the sampling
distributions in irace) to generate new ones based on the better
performing ones in the previous generation. The overall aim is that
the ultimately identiied parameter values perform well (generalise)
on unseen instances of the tackled problem. Many of the mentioned
algorithm conigurators have gained widespread usage since they
have often identiied better parameter values compared to carefully
chosen default conigurations [4, 5, 24, 25, 36].

Despite their popularity, there is a lack of theoretical understand-
ing of such conigurators. For instance, it is unclear how good the
identiied parameters are compared to optimal ones for a given
target algorithm and optimisation problem. In particular, if optimal
parameter values may be identiied by a given conigurator, no
indications are available regarding how large the total tuning bud-
get should be for the task. Similarly, it is unclear how long should
each coniguration be run for (i.e., cutof time) when evaluating its
performance on a training set instance.

In this paper, we take a irst step towards establishing a theo-
retical grounding of algorithm conigurators. Similarly to the time
complexity analysis of other ields [3] we begin by analysing sim-
pliied algorithms and problems with the aim of building up a set of
mathematical techniques for future analyses of more sophisticated
systems and to shed light on for which classes of problems more
sophistication is required for good performance.

We consider a simple hillclimbing tuner, which we call Param-
RLS because it is a simpliied version of the popular ParamILS
tuner. The tuner mutates the value of one of its parameters chosen
uniformly at random to create an ofspring coniguration which
will be accepted if it performs at least as well as its parent on the
training set. Regarding coniguration performance evaluations, we
consider two versions of ParamRLS. One, ParamRLS-T, compares
the average runtimes required by the diferent conigurations to
identify the optimal solution of the target instances. If the instance
is not solved by a coniguration, then the cutof time is returned
multiplied by a penalty factor called penalisation constant. This
performance measure originates in the SAT community, where it
is called penalised average runtime (PAR) [28]. The other version,
ParamRLS-F, compares the number of times that solutions of better
itness are identiied within the cutof time by the diferent conig-
urations and breaks ties by preferring the coniguration that took
less time to identify them. We analyse time-based comparisons
because they are typically used in ParamILS, and are also available
in SMAC and irace. We compare them with the latter strategy.

While the tuner is very simple, the mathematical methods devel-
oped for its analysis are quite sophisticated and can be built upon
for the analysis of more complicated algorithm conigurators since
the performance comparison of (at least) two parameter conigura-
tions is at the heart of virtually any parameter tuner. To the best of
our knowledge, this is the irst time that a rigorous time complex-
ity analysis of algorithm conigurators has been performed. The
only related theoretical work regards the performance analysis of
(online) parameter control of randomised search heuristics during
the function optimisation phase [1, 10, 14, 29, 33ś35, 42].

We will analyse the number of iterations required by ParamRLS
to identify optimal parameter values with overwhelming probability
(w. o. p.)1 for the randomised local search (RLSk) algorithm, where
k , the only parameter, is the local search neighbourhood size (i.e., k
bits are lipped without replacement in each iteration). Our aim is to
characterise the impact of the cutof time on the performance of the
tuner. We will perform the analysis for two well-known black-box
benchmark function classes: a modiied version of Ridge (called
Ridge*) and OneMax2 [16]. Since for both function classes, a given
parameter coniguration will have the same performance for all
instances, these classes allow us to avoid the problems of deciding
how many instances should be used in the training set (i.e., one
instance suices) and of evaluating the generalisation capabilities
of the evolved parameters (i.e., the performance will be the same

1We say that a probability is overwhelming if it is at least 1 − 2−Ω(n
ε) for some

constant ε > 0. We frequently use that by a union bound, any polynomial number of
events that all occur w. o. p. occur together with overwhelming probability.
2TheOneMax function class consists of 2n functions over {0, 1}n eachwith a diferent
global optimum and for each function the itness decreases with the Hamming distance
to the optimum.

for all instances). Hence, we can concentrate on the impact of the
cutof time in isolation.

The two function classes have diferent characteristics. ForRidge*,
each parameter value has the same improvement probability inde-
pendent of the position of the candidate solution in the search space.
For OneMax, it is better to lip fewer bits the closer the candidate
solution is to the optimum. This implies that for Ridge* the optimal
parameter value is the same independent of how long the algorithm
is run for i.e., k = 1will have better performance even for very small
cutof times as long as a suicient number of comparisons between
diferent conigurations are performed. For OneMax, short runs
of RLSk with larger values of k inds better solutions, whereas for
longer runs smaller values of k perform better.

Our analysis shows that ParamRLS-F can eiciently identify that
k = 1 is the optimal parameter value for Ridge* independent of
the cutof time as long as the performance for each parameter con-
iguration is evaluated a suicient number of times. For OneMax,
instead, ParamRLS-F identiies that k = 1 is the optimal parameter
for any cutof time greater than 4n. If the cutof time is considerably
smaller, then ParamRLS-F will identify that the optimal value is
k > 1. On the other hand, ParamRLS-T returns a parameter value
chosen uniformly at random for any function containing up to an
exponential number of optima if the cutof time is smaller than
(n lnn)/2. We show that for Ridge* the cutof time for ParamRLS-F
has to be at least quadratic in the problem size.

This paper is split into three sections. In Section 2, we describe
the algorithm coniguration problem, the algorithms and the func-
tion classes considered in this paper. We analyse ParamRLS tuning
RLSk for Ridge* and OneMax in Sections 3 and 4, respectively.
Some proofs are omitted due to space restrictions3.

2 PRELIMINARIES

2.1 The Algorithm Coniguration Problem

Informally, given an algorithm A, its set of parameters θA =
{P1, . . . , PNP

} and an optimisation problem P, the algorithm con-

iguration problem is that of identifying the set of parameter values
θ∗ for which A achieves best performance on P. We call the algo-
rithm solving the coniguration problem the conigurator and the
algorithm to be tuned (A) the target algorithm4.

More formally, we use Θ to denote the parameter coniguration

space of A (i.e., the search space of all feasible parameter conig-
urations) and we denote a speciic coniguration by θ ∈ Θ. The
performance of diferent conigurations for the problem P is evalu-
ated on a training set of instances Π which should be representative
of the problem. Finally, let cost be a measure of the performance of
running A(θ) over the training set Π. Then the algorithm conigu-
ration problem is that of inding

θ∗ ∈ argmin
θ ∈Θ

cost(θ)

The cost function estimates the performance of algorithm A
on a training set of problem instances Π. To do so the following
decisions need to be made:

3A version of this paper with all proofs included is on arXiv [23].
4Note that throughout the paper we use the terms conigurator and tuner
interchangeably.

2

• Which instances (and how many) should be used in the
training set Π;
• Cutof time κ: the amount of time that the algorithm A is
run on each instance πi ∈ Π;
• Runs r : the number of times the evaluation (of duration κ)
should be repeated for each instance πi ∈ Π;
• Metric: the quantity that is measured to evaluate how well
A(θ) performs on each πi ∈ Π;
• How to aggregate the measure of performance over all in-
stances.

Since for the two instance classes considered in this paper (see
Section 2.4) one random instance suices for perfect generalisation5,
we do not need to worry about the choice of the training set nor how
to aggregate performances over it. We will consider two diferent
metrics:

(1) The time required for A(θ) to ind the optimal solution of
an instance πi . If the optimum is not found before the cutof
time κ, then p · κ is taken as the time to reach the optimum,
where p is a penalty constant. This metric is commonly used
in ParamILS [24].

(2) The itness of the best solution found within the cutof time.

Let T be the number of tested conigurations before the optimal
coniguration θ∗ is identiied. We call this the number of evaluated
conigurations, or the number of evaluations. Then the total tuning
time will be B = T · |Π | · κ · r .

Our aim in this paper is to estimate, for each metric, how the
cutof time κ and the number of runs r impact the number of eval-
uated conigurations T and the total tuning time B for a simple
conigurator called ParamRLS.

2.2 The Conigurator: ParamRLS

We design our simple conigurator following the framework laid
out for ParamILS [24]:

(1) Initialise the conigurator with some initial coniguration θ ;
(2) mutate θ by modifying a single parameter and accept the

new coniguration θ ′ if it results in improved performance;
(3) repeat Step 2 until no single parameter change yields an

improvement.

Essentially we follow the above scheme where we initialise the
conigurator choosing a coniguration uniformly at random from
Θ and we change the acceptance criterion to accept a new conig-
uration if it performs at least as well as its parent. Note that we
occasionally refer to the current value of θ in Algorithm 1 as the
active parameter. Concerning Step 2, ParamILS applies an Iterated
Local Search procedure.

We instead consider the following two more simple random local
search operators and, thus, call the algorithm ParamRLS:

• ±1: the chosen parameter value is increased or decreased by
1 uniformly at random;
• ±{1, 2}: the chosen parameter value is increased or decreased
by 1 or by 2 uniformly at random.

The irst operator has previously been analysed for the optimisation
of functions deined over search spaces with larger alphabets than

5Perfect generalisation means that the algorithm coniguration will work equally well
on problem instances that are not in the training set.

Algorithm 1 ParamRLS (A,Θ,Π,κ, r)
1: θ ←initial parameter value chosen uniformly at random
2: while termination condition not satisied do

3: θ ′ ← mutate(θ)

4: θ ← eval(A, θ, θ ′,κ, r)
5: return θ

Algorithm 2 The eval-F(A, θ , θ ′, πi ,κ, r) subroutine in
ParamRLS-F

1: Wins ← 0;Wins ′ ← 0 –count number of wins for θ and θ ′˝
2: R ← 0

3: while R < r do

4: ImprovementTime ← 0

5: ImprovementTime ′ ← 0

6: Fitness ← A(θ , πi) itness after κ iterations;
7: Fitness ′ ← A(θ ′, πi) itness after κ iterations;
8: ImprovementTime ←time of last impr of A(θ, πi)
9: ImprovementTime ′ ←time of last impr of A(θ ′, πi)
10: if Fitness > Fitness ′ then
11: Wins ←Wins + 1

12: else if Fitness ′ > Fitness then

13: Wins ′ ←Wins ′ + 1
14: else

15: if ImprovementTime < ImprovementTime ′ then
16: Wins ←Wins + 1

17: else if ImprovementTime ′ < ImprovementTime then

18: Wins ′ ←Wins ′ + 1
19: R ← R + 1

20: ifWins >Wins ′ then return θ

21: else ifWins ′ >Wins then return θ ′

22: else return a uniform choice of θ or θ ′

those that can be represented using bitstrings [9]. The second one
slightly enlarges the neighbourhood size. For both operators we
use the interval-metric such that any mutation that oversteps a
boundary is considered infeasible. The resulting conigurator is
described in Algorithm 1. The termination condition may be either
a predetermined number of iterations without a change in conig-
uration (i.e., the solution is likely a local or global optimum) or a
ixed number of iterations. In this paper we calculate the number of
iterations until the conigurator identiies the optimal coniguration
and will not leave it with overwhelming probability, hence we also
provide bounds on the termination criterion.

If the conigurator uses the itness-based metric for performance
evaluation described in the previous section, then we will call
the algorithm ParamRLS-F while if it uses the time-based met-
ric, then we will refer to it as ParamRLS-T. The two evaluation
procedures are described respectively in Algorithm 2 and in Al-
gorithm 3. In Algorithm 3, we denote the capped optimisation
time for A(θ) on πi with cutof time κ and penalty constant p as
CappedOptTime(A(θ, πi),κ,p).

2.3 The Target Algorithm: RLSk
In this paper we will evaluate the ParamRLS conigurator for tuning
the RLSk algorithm which has only one parameter k . RLSk difers

3

Algorithm 3 The eval-T(A, θ , θ ′, πi ,κ, r) subroutine in
ParamRLS-T

1: Time ← 0; Time ′ ← 0 –count optimisation times for A(θ , πi)
and A(θ ′, πi)˝

2: R ← 0

3: while R < r do

4: Time ← Time + CappedOptTime(A(θ, πi),κ,p)
5: Time ′ ← Time ′ + CappedOptTime(A(θ ′, πi),κ,p)
6: R ← R + 1

7: if Time < Time ′ then return θ

8: else if Time ′ < Time then return θ ′

9: else return a uniform choice of θ or θ ′

Algorithm 4 RLSk for the maximisation of a function f

1: initialise x –according to initialisation scheme˝
2: while termination criterion not met do
3: x ′ ← x with k distinct bits lipped
4: if f (x ′) ≥ f (x) then x ← x ′

from conventional RLS in that the latter lips exactly one bit per
iteration whereas RLSk lips exactly k bits per iteration, selected
without replacement. Our aim is to identify the time required by
our simple tuner to identify the best value for the parameter k . We
provide the pseudocode for RLSk in Algorithm 4. We deine the
permitted values for k as the range 1, . . . ,ϕ.

2.4 The Function Classes Ridge* and OneMax

We will analyse the performance of ParamRLS for tuning RLSk for
two optimisation problems with considerably diferent characteris-
tics. One where the performance of each parameter coniguration
does not change throughout the search space and another where
according to the cutof times diferent conigurations will perform
better.

For the irst problem we consider a modiied version of the
standard Ridge benchmark problem [16]. The conventional Ridge
function consists of a gradient of increasing itness with the increase
of the number of 0-bits in the bitstring that leads towards the 0n bit
string (i.e., ZeroMax). From there a path of n points, consisting of
consecutive 1-bits followed only by 0-bits, may be found that leads
to the global optimum (i.e. the 1n bit string). To achieve the sought
behaviour and at the same time simplify the analysis, we remove
the ZeroMax part by assuming that the algorithm is initialised in
the 0n bit string. This technique was used by Jansen and Zarges in
order to simplify their early ixed budget analyses [26]. As a result
any bit string not in the form 1i0n−i will be rejected. We call our
modiied function Ridge*:

Ridge*(x) =
{

i, if x in form 1i0n−i

−1, otherwise

Since we are using RLSk to optimise Ridge*, it will not always be
possible to reach the optimum (i.e. 1n). The optimal value of Ridge*
which we are able to reach when using RLSk is in fact ⌊ n

k
⌋k . In this

work, we will consider reaching this value as having optimised the
function.

The black box optimisation version of Ridge* consists of 2n

functions. For each a ∈ {0, 1}n the itness of a solution x for the
corresponding function can be calculated using the following XOR
transformation: Ridge∗a (x) := Ridge∗(x1 ⊕ a1 . . . xn ⊕ an) [15]. For
convenience of analysis we will use the Ridge∗0n function displayed
above where the path starts in the 0n bit string and terminates in
the 1n bit string. The best parameter value for RLSk for a random
instance will naturally be optimal also for any other instance of the
black box class.

The second optimisation problem we will consider is the well-
studied OneMax benchmark function. Its black box class consists
of 2n functions each of which has a diferent bit string as global
optimum and the itness of each other bit string decreases with the
Hamming distance to the optimum. We tune the parameter for only
one instance since the identiied optimal parameter will naturally
also be the best parameter for any of the other 2n instances. In
particular, we will use the instance: OneMax(x) = ∑n

i=1 xi .

2.5 A General Result for ParamRLS-T

In this section we show that for ParamRLS-T the cutof time has to
be at least superlinear in the instance size or it will not work. We
can show that, for any κ ≤ (n lnn)/2 and any function with up to
an exponential number of optima, ParamRLS-T with overwhelm-
ing probability will return a parameter value chosen uniformly
at random, for any polynomial number of evaluations and runs
per evaluation. In Section 3 we will show that κ has to be at least
quadratic for ParamRLS-T to identify the optimal coniguration of
RLSk for Ridge*.

Theorem 2.1. For RLSk on any functionwith up to exp(
√
n/log2 n)

optima, ParamRLS-T with cutof time κ ≤ (n lnn)/2, local search op-

erator ±1 or ±{1, 2}, and any polynomial number of evaluations T

and runs per evaluation r , will return a value for k chosen uniformly

at random, with overwhelming probability.

Proof. Note that RLSk belongs to the class of unary unbiased
black-box algorithms as deined in [31]. Then [30, Theorem 20]
(applied with δ := 1/2) tells us that all RLSk algorithms require at
least (n lnn)/2 iterations to reach the optimum, with probability 1−
exp(−Ω(

√
n/logn)). By the union bound, the probability that none

of theT ·r total runs of RLSk reaches the optimum within (n lnn)/2
iterations is at least 1 −T · r · exp(−Ω(

√
n/logn)), which is again

overwhelming for any polynomial choices of T and r . This implies
that the tuner has no information to guide the search process, and
therefore accepts the new value ofk with probability 0.5. It is easy to
show that the tuner returns a value for k uniformly at random. �

3 PARAMRLS FOR RLSk AND RIDGE*

In this section we will prove that ParamRLS-F identiies the opti-
mal parameter k = 1 for RLSk and Ridge* for any cutof time. If
the cutof time is large enough i.e., κ = ω(n), then even just one
run per coniguration evaluation suices. For smaller cutof times,
ParamRLS-F requires more runs per coniguration evaluation to
identify that RLS1 is better than any other RLSk for k > 1. We

will show this for the extreme case κ = 1 for which n3/2 runs per
evaluation suice for ParamRLS-F to identify the correct parameter

4

w.o.p. On the other hand, ParamRLS-T will return a random conig-
uration for any κ < n2/2. The range of parameter values goes up
to ϕ =

√
n; larger values of k degrade to random search.

3.1 Analysis of RLSk on Ridge*

In this section we analyse how the performance of RLSk for Ridge*
changes with the parameter k .

Lemma 3.1. For k ≤ n/2, the expected optimisation time of RLSk

on Ridge* is
⌊

n
k

⌋

(n
k

)

.

Proof. During a single iteration, it is only possible to increase
the itness of an individual by exactly k since we must lip exactly
the irst k zeroes in the bit string (any other combination of lips
will mean that the string is no longer in the form 1i0n−i and will
be rejected). We call an iteration in which we lip exactly the irst k
zeroes in the bit string a leap. There are

(n
k

)

possible ways in which
we can lip k bits and exactly one of these combinations lips the
irst k zeroes. Therefore the probability of making a leap at any
time T is 1/

(n
k

)

.

By the waiting time argument, we wait
(n
k

)

iterations in expecta-
tion to make a single leap. Since we need to make ⌊ n

k
⌋ leaps in order

to reach the optimum, we wait ⌊ n
k
⌋
(n
k

)

iterations in expectation
until we reach the optimum. �

Corollary 3.2. A value of k = 1 leads to the shortest expected

optimisation time for RLSk on Ridge* for any k ≤ n/2.

The optimisation time is also highly concentrated around the
expectation, with deviations by (say) a factor of 2 having an expo-
nentially small probability. The following lemma follows directly
from Chernof bounds.

Lemma 3.3. With probability at least 1 − exp(−Ω(n/k)), RLSk
requires at least

(n
k

)

⌊n/k⌋/2 and at most 2
(n
k

)

⌊n/k⌋ iterations to
optimise Ridge*.

We can now consider the relative performance of RLSa and RLSb
on Ridge*, for some a < b. We irst derive a general bound which
can be applied to any two random processes with probabilities of
improving which stay the same throughout the process. We derive
a lower bound on the probability that the process with the higher
probability of improving is ahead at some time t . We apply this to
RLSa and RLSb for Ridge*.

Lemma 3.4. LetA andB be two random processes which both take

values from the non-negative real numbers, and both start with value

0. At each time step, A increases by some real number α ≥ 0 with
probability pa , and otherwise stays put. At each time step, B increases

by some real number β ≥ 0 with probability pb , and otherwise stays

put. Let ∆at and ∆
b
t denote the total progress of A and B in t steps,

respectively. Let q := pa (1 − pb) + (1 − pa)pb , qa := pa (1 − pb)/q,
and qb := pb (1 − pa)/q. Then, for all 0 ≤ pb ≤ pa and α, β ≥ 0

Pr(∆bt ≥ ∆
a
t) ≤ exp

(

−qt
(

1 − 2qα/(α+β)
b

q
β/(α+β)
a

))

Proof. Let q := pa (1 − pb) + (1 − pa)pb be the probability
that exactly one process makes progress in a single time step. Let
qa := pa (1 − pb)/q be the conditional probability of A making
progress, given that one process makes progress, and deine qb

likewise. Assume that in t steps we have ℓ progressing steps. Then
the probability that B makes at least as much progress as A is
Pr(Bin(ℓ,qb) ≥ ⌈ℓα/(α + β)⌉). Then,

Pr(∆bt ≥ ∆
a
t) =

t
∑

ℓ=0

Pr(Bin(t,q) = ℓ) ·Pr(Bin(ℓ,qb) ≥ ⌈ℓα/(α+β)⌉)

(1)
Note that pb ≤ pa is equivalent to qb ≤ qa . Thus, qb/qa ≤ 1.

Hence

Pr(Bin(ℓ,qb) ≥ ⌈ℓα/(α + β)⌉) =
ℓ
∑

i= ⌈ℓα/(α+β)⌉

(

ℓ

i

)

qi
b
qℓ−ia

=

ℓ
∑

i= ⌈ℓα/(α+β)⌉

(

ℓ

i

)

q
ℓα/(α+β)
b

q
ℓ−(ℓα/(α+β))
a (qb/qa)i−(ℓα/(α+β))

≤ 2ℓq
ℓα/(α+β)
b

q
ℓ−(ℓα/(α+β))
a =

(

2q
α/(α+β)
b

q
β/(α+β)
a

)ℓ

.

Using the above in (1) and Pr(Bin(t,q) = ℓ) =
(t
ℓ

)

qℓ(1 − q)t−ℓ
yields,

Pr(∆bt ≥ ∆
a
t) ≤

t
∑

ℓ=0

(

t

ℓ

)

qℓ(1 − q)t−ℓ ·
(

2q
α/(α+β)
b

q
β/(α+β)
a

)ℓ

=

t
∑

ℓ=0

(

t

ℓ

)

(1 − q)t−ℓ ·
(

2q · qα/(α+β)
b

q
β/(α+β)
a

)ℓ

(using the Binomial Theorem)

=

(

1 − q + 2q · qα/(α+β)
b

q
β/(α+β)
a

)t

=

(

1 − q
(

1 − 2qα/(α+β)
b

q
β/(α+β)
a

))t

≤ exp
(

−qt
(

1 − 2qα/(α+β)
b

q
β/(α+β)
a

))

. �

Applying this lemma allows us to derive a lower bound on the
probability that RLSa wins against RLSb (a < b) with a cutof time
ofκ. Additional arguments for smallκ/

(n
a

)

show that the probability
that RLSa wins is always at least 1/2.

Lemma 3.5. For every 1 ≤ a < b = o(n), in an evaluation with

a single run on Ridge* with cutof time κ, RLSa wins against RLSb
with probability at least

max

{

1

2
, 1 − exp

(

−κ/
(

n

a

)

· (1 − o(1))
)

− exp(−Ω(n/b))
}

3.2 ParamRLS-F Performance Analysis

Using the above lemmas, we now consider the cutof time required
before ParamRLS returns k = 1 in expectation. The following
theorem shows that one run per coniguration evaluation suices
for large enough cutof times. Note that it is not suicient for the
active parameter merely to be set to the value 1, since it is still
possible for it to then change again to a diferent value.We therefore
require that the active parameter remains at 1 for the remainder of
the tuning time. We calculate this probability in the same theorem.

5

Theorem 3.6. ParamRLS-F for RLSk on Ridge* with ϕ ≤
√
n,

cutof time κ = ω(n), local search operator ±1 and any initial pa-

rameter value, in expectation after at most 2ϕ2 evaluations with a

single run each has active parameter k = 1. If ParamRLS-F runs for

T ≥ 4ϕ2 evaluations, then it returns the parameter value k = 1 with

probability at least 1 − 2−Ω(T /ϕ2) −T · (2−Ω(κ/n) + 2−Ω(n)).

Proof. By Lemma 3.5, the probability that RLSa beats RLSb in
an evaluation with any cutof time is at least 1/2. We can therefore
model the tuning process as the value of the active parameter per-
forming a lazy random walk over the states 1, . . . ,ϕ. We pessimisti-
cally assume that the active parameter decreases and increases by
1 with respective probabilities 1/4 and that it stays the same with
probability 1/2.

Using standard random walk arguments [18, 19], the expected
irst hitting time of state 1 is at most 2ϕ2. ByMarkov’s inequality, the
probability that state 1 has not been reached in 4ϕ2 steps is at most
1/2. Hence the probability that state 1 is not reached during ⌊T /4ϕ2⌋
periods each consisting of 4ϕ2 steps is 2−⌊T /4ϕ

2 ⌋
= 2−Ω(T /ϕ

2).
Once state 1 is reached, we remain there unless RLS2 beats RLS1

in a run. By Lemma 3.5, this event happens in a speciic evaluation

with probability at most 2−Ω(κ/n) + 2−Ω(n). By a union bound over
at most T evaluations, the probability that this ever happens is at

most T · (2−Ω(κ/n) + 2−Ω(n)). �

We now show that even for extremely small cutof times i.e.,
κ = 1, the algorithm can identify the correct coniguration as
long as suicient number of runs are executed per coniguration
evaluation.

Theorem 3.7. Consider ParamRLS-F for RLSk on Ridge* with

T evaluations, each consisting of n3/2 runs with cutof time κ = 1.

Assume we are using the local search operator ±1. In expectation

the tuner requires at most 2ϕ2 evaluations in order to set the active

parameter to k = 1. If the tuner is run for T ≥ 4ϕ2 evaluations then

it returns the value k = 1 with probability at least

1 − 2−Ω(T /ϕ2) −T · (2−Ω(κ/n) + 2−Ω(n)).

Proof. DeineXr as the number of runs out of r runs, each with
cutof time κ = 1, in which RLS1 makes progress. Deine Yr as

the corresponding variable for RLS2. Let T = n3/2. By Chernof
bounds, we can show that P(Xr >

√
n/2) ≥ 1 − exp(−Ω(

√
n)). We

can also show that, again by Chernof bounds, P(Yr <
√
n/2) ≥

1 − exp(−Ω(
√
n)). Therefore, with overwhelming probability, RLS1

has made progress in more of these n3/2 runs than RLS2. That is,
with overwhelming probability, RLS1 wins the evaluation.

It is easy to show that, for a < b, RLSa beats RLSb with probabil-
ity at least 1/2. This means that we can make the same pessimistic
assumption about the progress of the value of the active parameter
as we do in the proof of Theorem 3.6. The remainder of the proof
is identical. �

3.3 ParamRLS-T Performance Analysis

We conclude the section by showing that, unless the cutof time is
large, ParamRLS-T returns a value of k chosen uniformly at random
for RLSk and Ridge*.

Theorem 3.8. Consider ParamRLS-T for RLSk on Ridge* with

ϕ ≤
√
n, local search operator ±1 or ±{1, 2}, cutof time κ ≤ n2/2,

and T evaluations consisting each of r runs. With overwhelming

probability, for any polynomial choices of T and r , the tuner will

return a value for k chosen uniformly at random.

Proof. For all k ≤
√
n, we have κ ≤

(n
k

)

⌊n/k⌋/2. By Lemma 3.3

with probability at least 1 − exp(−Ω(n)), no RLSk with k ≤
√
n

will have reached the optimum of Ridge* within κ iterations. Thus,
with probability at least 1 − r ·T · (exp(−Ω(n))), no coniguration
reached the optimum of Ridge* in any of the r runs in any of the
T evaluations. In this case, we can simply use the random walk
argument as used in the proof of Theorem 3.6, but in this case the
value of the active parameter will not settle on k = 1, meaning
that ParamRLS-T will return a value for k chosen uniformly at
random. �

4 PARAMRLS FOR RLSk AND ONEMAX

In this section we analyse the performance of ParamRLS when
coniguring RLSk for OneMax. If RLSk is only allowed to run for
few itness function evaluations, then the algorithm with larger
parameter values for k performs better than with smaller ones. On
the other hand, if more itness evaluations are allowed, then RLS1
will be the fastest at identifying the optimum [12]. Our aim is to
show that ParamRLS-F can identify whether k = 1 is the optimal
parameter choice or whether a larger value for k performs better
according to whether the cutof time is small or large. Hence, to
prove our point it suices to consider the conigurator with the
following parameter vector: k ∈ [1, 2, 3, 4, 5] which also simpliies
the analysis. We will prove that ParamRLS-F identiies that k = 1
is optimal for any κ ≥ 4n even for single runs per coniguration
evaluation. This time is shorter than the expected time required
by any coniguration to optimise OneMax (i.e., Θ(n lnn)) [31]. If,
instead, the cutof time is smaller than 0.03n, then ParamRLS-F will
identify that k > 1 is a better choice, as desired.

The following lemma gives bounds on the expected progress
towards the optimum in one step.

Lemma 4.1. The expected progress ∆k (s) of RLSk with current

distance s to the optimum is

∆k (s) =
k
∑

i= ⌊k/2⌋+1
(2i − k) ·

(

s

i

) (

n − s
k − i

)

/
(

n

k

)

In particular, for s ≥ k ,

∆1(s) =
s

n

∆2(s) =
2s(s − 1)
n(n − 1) ≤ 2

(s

n

)2
∆3(s) =

3s(s − 1)
n(n − 1) ≤ 3

(s

n

)2

∆4(s) =
8s(s − 1)(s − 2)(n − s/2 − 3/2)

n(n − 1)(n − 2)(n − 3) ≤ 8
(s

n

)3

∆5(s) =
10s(s − 1)(s − 2)(n − s/2 − 3/2)

n(n − 1)(n − 2)(n − 3) ≤ 10
(s

n

)3
.

It is well known that RLS1 has the lowest expected optimi-
sation time on OneMax for all RLSk . It runs in expected time
n lnn±O(n), which is best possible for all unary unbiased black-box
algorithms [11, 12] up to terms of ±O(n). It is also known [11, 12]

6

that, regardless of the itness of the individual, lipping 2c bits never
gives higher expected drift than lipping 2c +1 bits (for any positive
integer c). For this reason, we use the local search operator ±{1, 2}.

4.1 k = 1 is Optimal for Large Cutof Times

For large cutof times, ParamRLS-F is able to identify the optimal
parameter value k = 1. The analysis is surprisingly challenging
as most existing methods in the runtime analysis of evolutionary
algorithms are geared towards irst hitting times. Results on the
expected itness after a given cutof time (ixed-budget results) are
rare [13, 26, 27, 32, 39] and do not cover RLSk for k > 1.

The following lemma establishes intervals [ℓi ,ui] such that the
current distance to the optimum is contained in these intervals with
overwhelming probability.

Lemma 4.2. Consider RLSk on OneMax with a cutof time κ ≥ 4n.

Divide the irst 4n generations into 80 periods of length n/20 each.
Deine ℓ0 = n/2 − n3/4 and u0 = n/2 + n3/4 and, for all 1 ≤ i ≤ 80,

ℓi = ℓi−1 −
n

20
∆k (ℓi−1) − o(n) and ui = ui−1 −

n

20
∆k (ℓi) + o(n).

Then, with overwhelming probability at the end of period i for 0 ≤
i ≤ 80, the current distance to the optimum is in the interval [ℓi ,ui]
and throughout period i , 1 ≤ i ≤ 80, it is in the interval [ui−1, ℓi].

Proof. We prove the statement by induction. At time 0, the

current distance to the optimum is in [n/2 − n3/4,n/2 + n3/4] with
overwhelming probability by Chernof bounds.

Now assume that at the end of period i − 1, the current distance
is in [ℓi−1,ui−1]. In order to determine the next lower bound ℓi on
the distance, we temporarily assume that at the end of period i − 1,
we are precisely at distance ℓi−1. This assumption is pessimistic
here since starting period i closer to the optimum can only decrease
the distance to the optimum at the end of period i .

During period i , since the current distance can only decrease
and the expected progress is non-decreasing in the distance, the
expected progress in each step is at most ∆k (ℓi−1). By the method
of bounded martingale diferences [45, Theorem 3.67], the total

progress in n/20 steps is thus at most n/20 · ∆k (ℓi−1)+ (n/20)3/4 =
n/20 · ∆k (ℓi−1) + o(n) with probability

1 − exp
(

−((n/20)3/4)2/(2k2n/20)
)

= 1 − exp(Ω(−n1/2)).

Hence we obtain ℓi = ℓi−1 − n
20∆k (ℓi−1) −o(n) as a lower bound on

the distance at the end of period i , with overwhelming probability.
While the distance in period i is at least ℓi , the expected progress

in every step is at least ∆k (ℓi). Again using the method of bounded
diferences, by the same calculations as above, the progress is at least
n/20 ·∆k (ℓi)−o(n)with overwhelming probability. This establishes
ui = ui−1 − n/20 · ∆k (ℓi) + o(n) as an upper bound on the distance
at the end of period i . Taking the union bound over all failure
probabilities proves the claim. �

Iterating the recurrent formulas from Lemma 4.2 shows the
following.

Lemma 4.3. After 4n steps, w. o. p. RLS1 is ahead of RLS2 and RLS3
by a linear distance: u80,1 ≤ ℓ80,2 − Ω(n) and u80,1 ≤ ℓ80,3 − Ω(n)
respectively. Furthermore, w. o. p. RLS3 is ahead of RLS4 and RLS5
by a linear distance: u80,3 ≤ ℓ80,4 − Ω(n) and u80,3 ≤ ℓ80,5 − Ω(n)

respectively. And w. o. p. the distance to the optimum is at most 0.17n
for RLS1, RLS3 and RLS5.

We conclude that for every κ ≥ 4n, smaller parameters win with
overwhelming probability.

Theorem 4.4. For every cutof time κ ≥ 4n, with overwhelming

probability RLS1 beats RLS2 as well as RLS3 and RLS3 beats RLS4 as

well as RLS5.

Proof. Lemma 4.3 proves the claim for a cutof time of κ = 4n.
For larger cutof times, it is possible for the algorithms that lag
behind to catch up. To this end, we deine the distance between two

algorithms RLSa , RLSb with a < b as Da,b
t := st ,b − st ,a , where

st ,a and st ,b refer to the respective distances to the optimum at

time t . Initially we have Da,b
t = Ω(n) for all considered algorithm

pairs. We then show that, as long as Da,b
t ≤ n1/4, the distance

has a tendency to increase. We then apply the negative drift the-
orem [40, 41] in the version for self-loops [44] to show that with

overwhelming probability D
a,b
t does not drop to 0 until RLSa has

found an optimum (st ,a < a). Details are omitted due to space
restrictions. �

We are now able to derive the expected number of evaluations
required for the tuner to return k = 1 for RLSk on OneMax with a
large enough cutof time (for these results to hold, we assume that
we use a local search operator of ±{1, 2}).

Theorem 4.5. For ParamRLS-F tuning RLSk for OneMax, with

cutof time κ ≥ 4n, ϕ = 5, local search operator ±{1, 2},T evaluations

and r runs per evaluation, with T and r both polynomial, then in ex-

pectation we require at most 8 evaluations before the active parameter

is set to k = 1 for the irst time. If T = Ω(nε) for some constant ε > 0
then the tuner returns the parameter k = 1 w. o. p.

Proof. We use a similar technique to that used in the proof
of Theorem 3.6. In this case, however, we split the state space of
the value of the active parameter into just three states: (1), (2, 3),
and (4, 5). We know from Theorem 4.4 that RLS3 beats RLS4 and
RLS5 with overwhelming probability in a run with cutof time
κ ≥ 4n. Let us assume that this always happens. Then the transition
probability from state (4, 5) to state (2, 3) is at least 1/4, since this is
the probability that we evaluate RLS5 against RLS3 or RLS4 against
RLS3. In all other cases, depending on whether RLS4 beats RLS2,
we either move to state (2, 3) or stay in state (4, 5). By a similar
argument, the transition probability from state (2, 3) to state (1) is
at least 1/4, and with probability at most 3/4 we remain in state
(2, 3). Therefore, in the worst case (where the initial choice for the
parameter k puts us in state (4, 5)), we require, in expectation, at
most 8 evaluations before we hit state (1).

A Chernof bound for geometric random variables [8, Theo-
rem 1.14] tells us that the probability that we require more than
T evaluations to hit state (1) when starting from state (4, 5) is at
most exp(−(T − 8)2/(16T)) = exp(−Ω(T)). If T = Ω(nε) for some
constant ε > 0 then w. o. p. T evaluations are suicient. Recall that
we still need the probability that we remain in state (1) after hitting
it for the irst time. In the worst case, this means that we require
that RLS1 beats RLS2 or RLS3 for all T · r runs within the tuning
process. Recall that w. o. p. RLS1 beats RLS2 and w. o. p. RLS1 beats

7

RLS3. By Theorem 4.4 and the deinition of overwhelming probabil-
ities, the probability that we remain in state (1) after hitting it for
the irst time is therefore at least 1 −T · r · exp(−Ω(nε ′)) for some
constant ε ′ > 0. �

4.2 k > 1 is Optimal for Small Cutof Times

We now show that if the cutof time is small, then ParamRLS-F
identiies that k = 1 is not optimal anymore as desired.

Lemma 4.6. For cutof time κ ≤ 0.03n the probability that RLS1

beats RLS3 is at most 4e−Ω(κ
2/n)
+ e−Ω(κ). The same holds for the

probability that RLS2 beats RLS3.
6

Proof. Let st ,1 be the distance to the optimum in RLS1 and st ,3
be the distance to the optimum in RLS3 at time t . Let ε > 0 be a
constant chosen later, then by Chernof bounds,

Pr(s0,1, s0,3 ∈ [(n − εκ)/2, (n + εκ)/2]) ≥ 1 − 4e−Ω(κ2/n)

We assume in the following that this is the case. Then RLS3 wins if
in κ steps RLS3’s progress exceeds that of RLS1 by at least εκ.

Deine Dt := (st+1,3 − st ,3) − (st+1,1 − st ,1) to be the diference
in the progress values made by the two algorithms. Along with the
drift bounds from Lemma 4.1,

E(Dt) =
st ,3

n
·
3(st ,3 − 1)
n − 1 −

st ,1

n
= 3(st ,3/n)2 − st ,1/n −O(1/n).

Note that the leading constant in κ is chosen as 0.03 < γ := 1/3 ·
(1/2 − 1/

√
6). This implies that for t ≤ 0.03n we always have

st ,1 ≤ n/2 + εκ ≤ n/2 + εn and st ,3 ≥ n/2 − εκ − 0.09n. We bound
the latter using εκ ≤ εn and 0.09n = 3γn− 3(γ − 0.03)n ≤ 3γn− 2εn
if we choose ε small enough, we have st ,3 ≥ n/2 − εn − (1/2 −
1/
√
6)n + 2εn = n/

√
6 + εn. Using these inequalities,

E(Dt) ≥ 3(1/
√
6 + ε)2 − (1/2 + ε) −O(1/n)

= 1/2 +
√
6ε + 3ε2 − 1/2 − ε −O(1/n) ≥ (

√
6 − 1)ε −O(1/n).

Now, for D :=
∑κ
t=1 Dt , using E(D) ≥ εκ + (

√
6 − 2)εκ −O(κ/n) =

εκ + Ω(κ) we derive Pr(D ≤ εκ) ≤ Pr(D ≤ E(D) − Ω(κ)). By the
method of bounded diferences [45, Theorem 3.67], this is at most
exp(−Ω(κ2)/Θ(κ)) = exp(−Ω(κ)). �

Theorem 4.7. When tuning RLSk for OneMax, the probability

that ParamRLS-F with cutof time κ ≤ 0.03n, local search operator

±1 or ±{1, 2} and ϕ = 5 returns the value k = 1, for any number of

evaluations T , is at most T · (4e−Ω(κ2/n)
+ e−Ω(κ)).

Proof. In order for ParamRLS-F to return a value of k = 1,
it is necessary for RLS1 to beat either RLS2 or RLS3 in at least
one evaluation. In the best case scenario, each evaluation in the
tuning process will be either RLS2 or RLS3 against RLS1, since
this maximises the number of opportunities in which RLS1 has
to win one of these evaluations. Using the upper bounds on the
probabilities of RLS1 beating RLS2 and RLS3 (see Lemma 4.6), the
union bound tells us that the probability that RLS1 wins any one of

these T evaluations is at most T · (4e−Ω(κ2/n)
+ e−Ω(κ)). �

6Note that the result is only meaningful for κ = Ω(
√
n) as otherwise we get a trivial

probability bound of 4e−Ω(κ
2/n) ≥ 1

5 CONCLUSIONS

We have shown that the cutof time only slightly impacts the per-
formance of ParamRLS-F. ParamRLS-F can identify that k = 1 is
the optimal parameter value for both optimisation problems for
large enough cutof times. Surprisingly, for such cutof times, a
single run per coniguration evaluation is suicient to achieve the
desired results. While we do not expect this to be the case for harder
optimisation problems, it is promising that for the simple unimodal
problems considered herein multiple coniguration evaluations are
not necessary. Furthermore the required cutof times of κ = ω(n)
and κ = 4n, respectively for Ridge* and OneMax, are considerably
smaller than the expected time for any parameter coniguration
to optimise either problem (i.e., Ω(n2) and Ω(n logn) respectively
for the best coniguration (k = 1)). On the other hand, if the cutof
times are small ParamRLS-F identiies that for Ridge* the optimal
parameter value is still k = 1 as long as suicient runs are per-
formed to evaluate the performance of parameter conigurations.

We prove this efect for the extreme value κ = 1 for which n3/2

runs suice to always identify the better coniguration w.o.p. Note

that n3/2 runs lasting one generation each are still considerably
smaller than the time required for any coniguration to identify the
optimum of Ridge*. Concerning OneMax, instead, for cutof times
smaller than κ = 0.03n we proved that ParamRLS-F identiies that
k = 1 is not the best parameter, as desired (i.e., RLS3 will produce
better solutions than RLS1 if the time budget is small).

The impact of the cutof time on ParamRLS-T, instead, is very big.
The conigurator cannot optimise the single parameter of RLSk ap-
plied to any function, even functions with up to exponentially many
optima, if the cutof time is smaller than κ = (n lnn)/2 indepen-
dent of the number of runs per coniguration evaluation. For small
cutof times, even if the tuner happens to set the active parameter
to the optimal value, it will not be identiied as optimal, making it
unlikely that it stays there for the remainder of the tuning process.
For the unimodal Ridge* function at least a quadratic cutof time is
required.

Acknowledgements. This work was supported by the EPSRC un-
der grant EP/M004252/1.

REFERENCES
[1] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-

heuristics with classical learning mechanisms. In 2014 IEEE congress on evolu-
tionary computation (CEC), pages 2515ś2523. IEEE, 2014.

[2] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based ge-
netic algorithm for the automatic coniguration of algorithms. In International
Conference on Principles and Practice of Constraint Programming, pages 142ś157.
Springer, 2009.

[3] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics.
World Scientiic, 2011.

[4] Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuß. The sequential
parameter optimization toolbox. In Experimental methods for the analysis of
optimization algorithms, pages 337ś362. Springer, 2010.

[5] Thomas Bartz-Beielstein, Christian WG Lasarczyk, and Mike Preuß. Sequen-
tial parameter optimization. In Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 1, pages 773ś780. IEEE, 2005.

[6] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing
algorithm for coniguring metaheuristics. In Proceedings of the 4th Annual Confer-
ence on Genetic and Evolutionary Computation, pages 11ś18. Morgan Kaufmann
Publishers Inc., 2002.

[7] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of
the art. Journal of the Operational Research Society, 64(12):1695ś1724, 2013.

8

[8] Benjamin Doerr. Analyzing randomized search heuristics: Tools from probabil-
ity theory. In Theory of Randomized Search Heuristics: Foundations and Recent
Developments, pages 1ś20. World Scientiic, 2011.

[9] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The right mutation strength
for multi-valued decision variables. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016 (GECCO ’16), pages 1115ś1122. ACM, 2016.

[10] Benjamin Doerr, Carola Doerr, and Jing Yang. k -bit mutation with self-adjusting
k outperforms standard bit mutation. In Proc. of the International Conference
on Parallel Problem Solving from Nature, LNCS 9921, PPSN ’16, pages 824ś834.
Springer International Publishing, 2016.

[11] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via
precise black-box analysis. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016 (GECCO ’16), pages 1123ś1130, New York, NY, USA, 2016.
ACM.

[12] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via
precise black-box analysis. arXiv preprint arXiv:1807.03403, 2018.

[13] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges. A method
to derive ixed budget results from expected optimisation times. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation (GECCO ’13),
pages 1581ś1588. ACM, 2013.

[14] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.
On the runtime analysis of selection hyper-heuristics with adaptive learning
periods. In Proceedings of the Genetic and Evolutionary Computation Conference
2018 (GECCO ’18). ACM, 2018.

[15] Stefan Droste, Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener. A new
framework for the valuation of algorithms for black-box optimization. In Pro-
ceedings of Foundations of Genetic Algorithms III (FOGA 2002), pages 253ś270,
2002.

[16] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+ 1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):51ś81, 2002.

[17] Aguston Eiben, Robert Hinterding, and ZbigniewMichalewicz. Parameter control
in evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
3(2):124ś141, 1999.

[18] William Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, 3rd edition, 1968.

[19] William Feller. An Introduction to Probability Theory and Its Applications, volume 2.
Wiley, 2nd edition, 1971.

[20] Alex S. Fukunaga. Automated discovery of local search heuristics for satisiability
testing. Evolutionary Computation, 16(1):31ś61, 2008.

[21] Jonathan Gratch and Gerald DeJong. An analysis of learning to plan as a search
problem. In Machine Learning Proceedings 1992, pages 179ś188. Elsevier, 1992.

[22] John J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Transactions on systems, man, and cybernetics, 16(1):122ś128, 1986.

[23] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. On the impact of the
cutof time on the performance of algorithm conigurators. arXiv preprint
arXiv:1904.06230, 2019.

[24] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. ParamILS: an automatic
algorithm coniguration framework. Journal of Artiicial Intelligence Research,
36(1):267ś306, 2009.

[25] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm coniguration. In International Conference on
Learning and Intelligent Optimization, pages 507ś523. Springer, 2011.

[26] Thomas Jansen and Christine Zarges. Fixed budget computations: A diferent
perspective on run time analysis. In Proceedings of the 14th annual conference on
Genetic and evolutionary computation, pages 1325ś1332. ACM, 2012.

[27] Thomas Jansen and Christine Zarges. Performance analysis of randomised search
heuristics operating with a ixed budget. Theoretical Computer Science, 545:39ś58,

2014.
[28] Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown.

SATenstein: Automatically building local search SAT solvers from components.
Artiicial Intelligence, 232:20ś42, 2016.

[29] Per Kristian Lehre and Ender Özcan. A runtime analysis of simple hyper-
heuristics: To mix or not to mix operators. In Foundations of Genetic Algorithms,
FOGA ‘13, pages 97ś104, New York, NY, USA, 2013. ACM.

[30] Per Kristian Lehre and Dirk Sudholt. Parallel black-box complexity with tail
bounds. arXiv preprint arXiv:1902.00107, 2019.

[31] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation.
Algorithmica, 64(4):623ś642, 2012.

[32] Johannes Lengler and Nicholas Spooner. Fixed budget performance of the (1+1)
EA on linear functions. In Proceedings of the 2015 ACM Conference on Foundations
of Genetic Algorithms XIII, pages 52ś61. ACM, 2015.

[33] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime
analysis of generalised selection hyper-heuristics for pseudo-boolean optimi-
sation. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 849ś856. ACM, 2017.

[34] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. Simple hyper-
heuristics optimise leadingones in the best runtime achievable using randomised
local search low-level heuristics. arXiv preprint arXiv:1801.07546, 2018.

[35] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time
complexity of algorithm selection hyper-heuristics for multimodal optimisation.
AAAI ‘19, 2019. To appear.

[36] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. The irace package: Iterated racing for automatic
algorithm coniguration. Operations Research Perspectives, 3:43ś58, 2016.

[37] Oded Maron and Andrew W. Moore. Hoefding races: Accelerating model selec-
tion search for classiication and function approximation. In Advances in neural
information processing systems, pages 59ś66, 1994.

[38] Steven Minton. Integrating heuristics for constraint satisfaction problems: A
case study. In AAAI 1993, pages 120ś126, 1993.

[39] Samadhi Nallaperuma, Frank Neumann, and Dirk Sudholt. Expected itness
gains of randomized search heuristics for the traveling salesperson problem.
Evolutionary Computation, 25(4):673ś705, 2017. PMID: 27893278.

[40] Pietro S. Oliveto and Carsten Witt. Simpliied drift analysis for proving lower
bounds in evolutionary computation. Algorithmica, 59(3):369ś386, 2011.

[41] Pietro S. Oliveto and Carsten Witt. Erratum: Simpliied drift analysis for proving
lower bounds in evolutionary computation. arXiv preprint arXiv:1211.7184, 2012.

[42] Chao Qian, Ke Tang, and Zhi-Hua Zhou. Selection hyper-heuristics can provably
be helpful in evolutionary multi-objective optimization. In Proceedings of the
International Conference on Parallel Problem Solving from Nature, PPSN ’16, pages
835ś846. Springer, 2016.

[43] Maria-Cristina Rif and Elizabeth Montero. A new algorithm for reducing meta-
heuristic design efort. In Evolutionary Computation (CEC), 2013 IEEE Congress
on, pages 3283ś3290. IEEE, 2013.

[44] Jonathan E. Rowe and Dirk Sudholt. The choice of the ofspring population size
in the (1,λ) evolutionary algorithm. Theoretical Computer Science, 545:20ś38,
2014.

[45] Christian Scheideler. Probabilistic Methods for Coordination Problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn, 2000. Habilitation Thesis,
available at http://www14.in.tum.de/personen/scheideler/index.html.en.

[46] Thomas Stützle and Manuel López-Ibáñez. Automated Design of Metaheuristic
Algorithms, pages 541ś579. Springer International Publishing, 2019.

9

http://www14.in.tum.de/personen/scheideler/index.html.en

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Algorithm Configuration Problem
	2.2 The Configurator: ParamRLS
	2.3 The Target Algorithm: RLSnormalnormalk
	2.4 The Function Classes Ridge* and OneMax
	2.5 A General Result for ParamRLS-T

	3 ParamRLS for RLSnormalnormalk and Ridge*
	3.1 Analysis of RLSnormalnormalk on Ridge*
	3.2 ParamRLS-F Performance Analysis
	3.3 ParamRLS-T Performance Analysis

	4 ParamRLS for RLSnormalnormalk and OneMax
	4.1 normalnormalk=1 is Optimal for Large Cutoff Times
	4.2 normalnormalk>1 is Optimal for Small Cutoff Times

	5 Conclusions
	References

