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CoronARe: A Coronary Artery Reconstruction
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Abstract. CoronARe ranks state-of-the-art methods in symbolic and
tomographic coronary artery reconstruction from interventional C-arm
rotational angiography. Specifically, we benchmark the performance of
the methods using accurately pre-processed data, and study the effects
of imperfect pre-processing conditions (segmentation and background
subtraction errors). In this first iteration of the challenge, evaluation is
performed in a controlled environment using digital phantom images,
where accurate 3D ground truth is known.
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1 Introduction

Coronary artery disease (CAD) is a serious illness, which is responsible for ap-
proximately 20% of the deaths in Europe [1] and in the US [2]. Currently, clinical
decision regarding the presence and the extent of CAD is taken by the help of
several diagnostic and interventional medical imaging modalities. Among those,
invasive (catheter-based) X-ray coronary angiography is still the most common
choice for the assessment of CAD. Owing to its high spatial/temporal resolution
and its availability, it is still considered as the gold standard in clinical decision
making and therapy guidance [3].
The X-ray angiography systems evolved continuously since their first introduc-
tion almost five decades ago. However, X-ray coronary angiography is known to
be fundamentally limited due to the projective 2D representation of the coro-
nary artery trees with complex anatomy and motion. Misinterpretation of lesion
lengths, eccentricity, angles of bifurcations and vessel tortuosity due to the 2D
nature of the X-ray angiography could lead to over/under estimation of lesion
severity and incorrect selection of stent size [4, 5]. Methods computing recon-
structions of coronary arteries from X-ray angiography aim to overcome this
shortcoming by providing 3D information of the coronary arteries. Due to the
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complexity of this task, the topic of reconstruction from X-ray coronary angiog-
raphy remains as a challenging and active research area.
Public benchmarks contribute to drive forward this area as they allow for ob-
jective comparison of coronary artery reconstruction algorithms from rotational
angiography. A previous effort, CAVAREV [6] laid the foundation for public
benchmarks in this field but is limited to tomographic reconstruction algorithms.
Within the CoronARe challenge, we seek to continue the CAVAREV incentive
by providing a public benchmark for both tomographic and symbolic reconstruc-
tion algorithms. In this first iteration of the challenge, we study current state-
of-the-art reconstruction algorithms in a highly controlled setup on numerical
phantom data, where accurate 3D and 2D data is available.

2 Material and Methods

2.1 Scope and Specific Goals

The literature is divided into symbolic (i. e. model-based) and tomographic meth-
ods [7]. Symbolic reconstruction algorithms try to recover a binary representation
of the topology of the arterial tree while tomographic reconstruction methods
directly reconstruct the 3D volume of attenuation coefficients. Irrespective of
their categorization as symbolic or tomographic, most currently known coronary
artery reconstruction algorithms from rotational angiography rely on projection
domain vessel segmentation or centerline extraction algorithms to either per-
form background suppression or obtain sparse data. Much work has considered
automatic vessel segmentation [7–9] both in an analytic, model-based but also
in a machine learning context. While results are promising when a static imag-
ing geometry can be assumed (e. g. as in traditional angiography), satisfactory
segmentation quality cannot yet be reliably achieved in rotational angiography
because of substantial changes in vessel visibility in successive views due to over-
lap with high contrast structures, such as the spine.
Consequently, automatic segmentation algorithms inevitably lead to projection
domain mis-segmentations and inconsistencies (which we will refer to as cor-
ruption) that have to be addressed during reconstruction. Within the challenge
described here, we investigate how different methods cope with imperfect pre-
processing of the projection images, i. e. errors in centerline segmentation and
single-frame background subtraction based on vessel segmentation and inpaint-
ing. The setup of the challenge is described in greater detail in the remainder of
this manuscript.

2.2 Data

Numerical Phantom To create the controlled setup for benchmarking the
reconstruction algorithms, we decided to use the 4D XCAT Phantom [10]. This
phantom defines detailed and anatomically correct cardiac vasculature using
non-uniform rational B-splines (NURBS). It also allows for the simulation of
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cardiac motion.
The left coronary artery (LCA) geometry of the XCAT phantom is used to
generate the projection data for both symbolic and tomographic reconstruction
parts of this challenge. A sequence of 133 NURBS descriptions of the LCA is
simulated for the whole acquisition duration, where we set the heart rate to 80
beats per minute.
For the symbolic reconstruction, 3D ground truth is obtained by sampling the
spline defining the centerlines at regular arc length intervals of 0.3mm. For each
projection in the sequence, the 3D spline is projected onto the corresponding
image plane. Similar to 3D, points defining the uncorrupted centerline segmen-
tations are sampled from these splines at regular arc length intervals of 2.0mm.
In addition, the sequence of NURBS files are voxelized with an isotropic image
spacing of 0.3mm, and the values of the voxels corresponding to artery loca-
tions set to one, whereas remaining voxels are set to zero. A subvolume of size
512 × 512 × 360 centered at the barycenter of the 3D ground truth points of
the end-diastolic phase defines the ground truth for each time step in the se-
quence. The CT Projector [10] is used to simulate the projection images, which
is capable of computing the sum of attenuation values analytically from NURBS
definitions given the imaging geometry.

Imaging Geometry The 4D numerical phantom is forward projected using
the geometric calibration of a real scanner taken from CAVAREV [6] describ-
ing a standard rotational angiography protocol. In particular, 133 images are
acquired during a single 5.3 s sweep on a circular source trajectory covering
200◦. The projection images have a size of 960 × 960 pixels in horizontal and
vertical direction, respectively, with an isotropic size of 0.32mm. The source-to-
isocenter and source-to-detector distances nominally are 800mm and 1200mm,
respectively.

Artificial Corruption: Imperfect Preprocessing Within this challenge,
corruption of the acquisition will be random but with increasing severity. Partic-
ularly, for both the symbolic and tomographic data sets we use the uncorrupted
acquisitions as the baseline and add excessive structure such that the corruption
amounts to 10%, 20%, and 30% of the true information [11].

Symbolic Reconstruction It is well known that the reconstruction problem in ro-
tational angiography is ill-posed due to high frequency cardiac motion. Symbolic
reconstruction algorithms exploit sparsity of the vessel centerlines to overcome
this challenge suggesting that reconstruction results heavily depend on the qual-
ity of the centerlines.
To realistically simulate vessel extraction errors, points were sampled from ran-
dom curves, and added to the true segmentation points following [11]. Specif-
ically, random trajectories of particles were generated using Brownian motion,
and smoothed by fitting cubic Hermite splines. The points corresponding to the
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vessel extraction errors were sampled from these splines at 2.0mm, which is the
same rate used for generating the true centerline segmentation.

Tomographic Reconstruction Background subtraction or -suppression proved
highly beneficial for reconstruction quality when considering both analytic and
algebraic reconstruction algorithms [7], as it promotes sparsity and corrects for
truncation [12]. This preprocessing step usually relies on binary masks of the
target vessels to identify the contrasted lumen and, subsequently, virtually re-
move the background.
We simulate errors in the suppression process by generating a corruption image
for each projection in the sequence, and adding it to the corresponding uncor-
rupted image. The same random points generated for symbolic reconstruction
were employed in this process. To this end, these random points were first con-
verted into a binary image. This image was smoothed by a Gaussian filter, and
the intensity values were rescaled so that the maximum intensity value equals
to the mean of the non-zero pixels in the corresponding uncorrupted image.

Examples of background subtracted projection images and corresponding
centerline segmentations at varying levels of corruption were shown in Figure 1.

Fig. 1. Examples of the projection images at different corruption levels and from dif-
ferent views. (a)-(d) Projection images at 0%, 10%, 20%, and 30% corruption levels,
respectively. (e)-(h) The centerline segmentations provided for the symbolic reconstruc-
tion were overlaid on the corresponding projection images.

Public Challenge Input Data Finally, after generation of the projection
domain data (i. e. images and centerline points) and artificial corruption thereof
we provide the following data set as designated input to candidate reconstruction
algorithms:
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– Background-subtracted projection images: We provide background
subtracted line-integral data of the contrasted coronary arteries at vary-
ing levels of corruption. The data is stored as meta-image [13] with detached
headers. For analytic, FDK-type [14] reconstruction algorithms, we provide
pre-processed versions of the line-integral images in the same format.

– Densely sampled projection domain centerline points: Projection
domain centerlines at the four corruption levels are provided in separate text
files, where the horizontal and vertical detector coordinates of a particular
centerline point are whitespace separated and occupy one row each.

– Cardiac phase data: The relative cardiac phases are stored in a simple text
file. The phases are periodic and in the interval [0, 1[, where 0 ≡ 1 represents
a phase at the end of ventricular diastole.

– Projection matrices: We provide projection matrices P i ∈ R
3×4 that

encode the imaging geometry [15] and map from 3D world to 2D image
coordinates. The matrix entries are stored as floats in a single binary file
containing the 133 matrices in row-major order.

For a more detailed description of the provided data kindly refer to the particular
section of this manuscript or the CoronARe challenge homepage3, where we also
link to exemplary code that provides guidance on how to handle the data.

2.3 Evaluation Protocol and Ranking

Tomographic Reconstruction Scoring of tomographic reconstructions relies
on 3D volumetric overlap.
The input volume arising from tomographic reconstruction is repeatedly bina-
rized using a sweeping threshold within the interval [0, 255] [6]. The binary vol-
ume is then compared to the segmentation mask of the ground-truth morphology
using the Dice similarity coefficient [16], a common two-sided measure for the
overlap of two binary images ranging from zero (no overlap) to one (perfect
match). As the final score, it selects the best value over all thresholds.

Fig. 2. Schematic illustration of the 3D reconstruction overlap curve computation. 3D
points of the test and ground truth centerlines are labeled as true and false positives
or negatives depending on the sweeping test distance tO.

3 Visit https://www5.cs.fau.de/research/software/coronare/.
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Symbolic Reconstruction Scoring of symbolic centerline reconstructions re-
lies on 3D reconstruction overlap curves.
For a particular combination of ground truth and test centerline points, PG and
PS , respectively, the procedure is as follows.
To assess the overlap of a input reconstruction with the 3D ground truth we
use a sweeping distance threshold tO ∈ [tmin, tmax] rather than the vessel diam-
eter. Given a distance tO, every point of the ground truth p ∈ PG is marked
as belonging to the set TPR(tO) of true positives of the reference if there is at
least one point u ∈ PS satisfying d(p,u) < tO and to the set FN(tO) of false
negatives otherwise. Points of the reconstruction u are labeled as belonging to
the set TPM(tO) of true positives of the tested method if there is at least one
ground truth point p satisfying d(u,p) < tO and to the set FP(tO) of false pos-
itives otherwise. An schematic of the labeling process is provided in Figure 2.
The overlap for a certain distance can then be computed as

O(tO) =
|TPM(tO)|+ |TPR(tO)|

|TPM(tO)|+ |TPR(tO)|+ |FN(tO)|+ |FP(tO)|
. (1)

Similar to the Dice score, the overlap measure ranges from zero (no overlap) to
one (perfect match). With increasing distance thresholds the measure increases
monotonically. A simple score that reflects the overall quality of a reconstruction
is the area under the overlap curve

Õ =
1

tmax − tmin

∫ tmax

tmin

O(t) dt (2)

that, again, ranges from zero to one indicating no to perfect overlap, respectively.
A reasonable choice may be (tmin, tmax) = (0mm, 1mm).

2.4 Ranking

Our challenge design accommodates symbolic (i. e. centerline only) and tomo-
graphic coronary artery reconstruction. As the output of algorithms from both
categories is substantially different, we perform a separate ranking of symbolic
and tomographic algorithms.
Particularly, we select the best tomographic and symbolic methods with respect
to overall reconstruction performance (averaged over all input data corruption
levels) and with respect to clean data reconstruction performance.
Currently, there is no separate category for methods that incorporate external
information, e. g. by using learning-based algorithms. The organizers emphasize
that, in such cases, the XCAT anatomy must be excluded from the training and
validation set.

2.5 Submission Guidelines and Formats

Partial participation (e. g. tomographic reconstruction, clean data only) is pos-
sible.
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Although we provide full rotational angiography data, we highly encourage the
participation of algorithms that do not operate on the complete data set, such as
reconstruction from bi-plane data that is artificially created from the provided
sequence.
The winners of the first phase of CoronARe were announced during an oral ses-
sion at the Reconstruction of Moving Body Organs (RAMBO)4 workshop that
was held in conjunction with the 20th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI) 2017 5. Evaluation
within CoronARe is fully automated as it hosted using Kitware’s Covalic [17].
Consequently, data download, result submission, and ranking remains possible
even after the official completion of the first phase.
Submission formats for tomographic and symbolic reconstructions are held as
simple as possible. For tomographic data we rely on the previously established
CAVAREV format. For symbolic reconstruction we use a simple text file format
where the coordinates of every 3D centerline point are whitespace separated and
occupy one row each.
For a more detailed description of the submission file formats including exam-
ple code for the tomographic format kindly refer to the CoronARe challenge
homepage6.

3 Discussion and Outlook

We are aware and convinced of the fact that ranking of coronary artery recon-
struction methods ultimately is most meaningful on clinical patient data, as such
data imposes difficulties that are not sufficiently captured by in silico phantoms,
such as anatomical variations (i.e. generalization). However, there is no joint
benchmark for tomographic and symbolic reconstruction, even in a simple, con-
trolled experimental setup. Moreover, the effects of corrupted projection domain
data onto the reconstruction quality are not yet sufficiently understood. This
challenge is meant to overcome these shortcomings, and to have a better un-
derstanding of the problem for future challenges that should be carried out on
clinical data.
In conclusion, this challenge constitutes yet another effort in providing data and
means of objective comparison. We hope to publish our findings of this first sub-
mission phase in a comprehensive journal article, ranking methods of the current
state-of-the-art. In tomographic reconstruction, we would be particularly inter-
ested in understanding how motion compensation strategies compare to algebraic
methods that exploit prior knowledge on image appearance. When considering
symbolic reconstruction methods, we believe that a comparison between bi-plane
and multi-view reconstruction algorithms is of substantial interest.
Both data and submission will remain available even after closure of the ini-
tial submission phase. We hope this data to be helpful in future publications of

4 Visit https://sites.google.com/view/miccai-rambo2017/home.
5 Visit http://www.miccai2017.org/.
6 Visit https://www5.cs.fau.de/research/software/coronare/.
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peers, ideally, as a highly competitive benchmark of tomographic and symbolic
coronary artery reconstruction algorithms.
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