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Probabilistic Interpolation of Uncertain Local

Activation Times on Human Atrial Manifolds
Sam Coveney, Cesare Corrado, Caroline H Roney, Richard D Wilkinson, Jeremy E Oakley, Finn Lindgren,

Steven E Williams, Mark D O’Neill, Steven A Niederer, and Richard H Clayton

Abstract—Objective: Local activation time (LAT) mapping
of the atria is important for targeted treatment of atrial
arrhythmias, but current methods do not interpolate on the
atrial manifold and neglect uncertainties associated with LAT
observations. In this paper we describe novel methods to (i)
quantify uncertainties in LAT arising from bipolar electro-
gram analysis and assignment of electrode recordings to the
anatomical mesh, (ii) interpolate uncertain LAT measurements
directly on left atrial manifolds to obtain complete probabilistic
activation maps, and (iii) interpolate LAT jointly across both
the manifold and different S1-S2 pacing protocols. Methods: A
modified center of mass approach was used to process bipolar
electrograms, yielding a LAT estimate and error distribution
from the electrogram morphology. An error distribution for
assigning measurements to the anatomical mesh was estimated.
Probabilistic LAT maps were produced by interpolating on a left
atrial manifold using Gaussian Markov random fields, taking into
account observation errors and characterizing LAT predictions
by their mean and standard deviation. This approach was
extended to interpolate across S1-S2 pacing protocols. Results:
We evaluated our approach using recordings from three patients
undergoing atrial ablation. Cross-validation showed consistent
and accurate prediction of LAT observations both at different
locations on the left atrium and for different S1-S2 intervals.
Significance: Interpolation of scalar and vector fields across
anatomical structures from point measurements is a challenging
problem in biomedical engineering, compounded by uncertainties
in measurements and meshes. New methods and approaches are
required, and in this paper we have demonstrated an effective
method for probabilistic interpolation of uncertain LAT.

Index Terms—Bipolar Electrogram, Local Activation Time,
Atrial Fibrillation, Uncertainty, Probabilistic Interpolation

I. INTRODUCTION

LOCAL activation time (LAT) measurements, which indi-

cate the onset of cardiac tissue depolarization, are part of

routine clinical care for the diagnosis and treatment of atrial

arrhythmias using radio frequency catheter ablation. LAT is

typically determined from unipolar or bipolar electrograms

recorded at different locations using an electro-anatomic map-

ping system, and this information is used to build a map of

LAT over the atrial surface [1], [2].
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Electrograms are recorded using a multipolar catheter which

records electrical activity on the endocardial surface at one

or more locations, sometimes for multiple pacing protocols

and catheter positions. LAT maps can be used to calculate

conduction velocity maps [3], and different pacing protocols

allow the dynamic response of the electro-anatomical substrate

to be inferred [4]. Although advances in catheter design

have increased the number of recordings that can be made

simultaneously, longer procedure times pose a risk to the

patient and a cost for the health care system, which places

limits on the spatial density of the mapping observations, as

well as how many pacing protocols and pacing locations can

be used. Data recording is therefore often sparse.

To create a LAT map, observations must be interpolated.

Current interpolation techniques are predominantly linear,

although a Radial Basis Function method [5] and a spline

method [6] have been proposed. However, current methods

do not interpolate directly on the atrial manifold, and to our

knowledge no methods have been proposed to interpolate be-

tween pacing protocols. Furthermore, current methods do not

properly account for observation uncertainty, nor for interpo-

lation uncertainty. Estimating the uncertainties in conduction

velocities, and therefore uncertainties in LAT maps, has been

identified as an important challenge [7].

There are many potential sources of uncertainty that could

influence the best estimate of LAT at a particular location.

These include uncertainties in the assignment of LAT to elec-

trograms, especially those with a complex morphology, and

mismatch between catheter electrode locations and anatom-

ical mesh for a particular recording. There have been few

attempts to assign confidences to LAT observations, with some

exceptions focusing on electrograms [8], [9] and uncertainty

based on catheter to surface distance [10]. Besides observation

uncertainty there is additional uncertainty arising from the

interpolation procedure, which should be quantified so that

all LAT predictions are assigned a confidence.

In this paper, we demonstrate a novel technique that ac-

counts for these different sources of uncertainty. Our approach

involves probabilistic global interpolation of heterogeneously

uncertain LATs over endocardial surfaces using Gaussian

Markov Random Fields (GMRFs) in a Bayesian hierarchical

framework. We assign uncertainties to LAT arising from

bipolar electrogram morphology by extending an existing

LAT assignment method. We then estimate the uncertainties

resulting from projection of measurement locations onto the

left atrial surface. Using the GMRF method we construct a

probabilistic LAT map over the entire left atrial surface, which

Copyright c© 2019 IEEE. Personal use of this material is permitted. However, permission to use this
material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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accounts for heterogeneous uncertainties in LAT observations

and quantifies uncertainty on LAT predictions. We extend this

method to also interpolate between different pacing protocols.

We apply our methods to recordings from 3 clinical cases, and

demonstrate good performance using cross-validation.

II. METHODS

A. Electrogram recordings

The recordings analyzed in this paper were part of a study

involving patients with paroxysmal atrial fibrillation and un-

dergoing first-time atrial fibrillation ablation, which is detailed

elsewhere [4]. We analyzed recordings from three patients.

Ethical approval was granted by the UK National Research

Ethics Service (10/H0802/77) and all patients gave written

informed consent for inclusion in the study. The research

conformed to the principles described in the Declaration of

Helsinki. None of the patients had ischemic heart disease,

cardiac surgery or structural heart disease. Following femoral

access and trans-septal puncture, two 8.5 French SR0 long

sheaths and a PentaRay mapping catheter (Biosense Webster,

CA, 1mm electrode size, 4-4-4mm spacing) were advanced

into the left atrium. Decapole (St Jude Medical, MN) and

pentapole (Bard Electrophysiology, MA) catheters were posi-

tioned in the coronary sinus (CS) and high right atrium (HRA),

respectively. Left atrial electrophysiology was investigated

using an S1-S2 programmed pacing protocol [11] consisting of

a 2-beat drivetrain with a cycle length S1=470 ms, followed by

a single premature extra stimulus S2<S1. The pacing protocol

was delivered using a custom-built, institutionally-approved

stimulator that reduced the S1-S2 interval continuously and

without operator interference from 343 ms to 200 ms (or loss

of capture) by reducing the current S1-S2 interval by 2% of

its value (rounded to nearest ms). All pacing stimuli were

delivered at a voltage of at least twice threshold and with a

pulse width of 2 ms, from either the coronary sinus or high

right atrium.

Bipolar electrograms (EGMs) were recorded at a sampling

rate of 4 kHz using the 10 electrodes of the PentaRay catheter

for each S1-S2 interval. The catheter was then moved to

another location on the left atrial endocardium, and the process

repeated for up to 15 locations (i.e. maximally 150 traces per

S1-S2 interval). For each S1-S2 interval, we discarded any

EGM traces not containing a discernible activation complex.

The maximum number of discernible traces across all patient

cases for any S1-S2 interval was 99.

B. Electrogram processing

A theoretical link exists between the maximal downslope

of unipolar electrograms and depolarization of cardiac cells

[12]. However, there is no theoretical link nor accepted best

method for assigning LAT for bipolar electrograms, which are

commonly used in clinical practice because they measure only

local activity. Several LAT assignment methods for bipolar

electrograms (BEGMs) have been reported that are sufficiently

accurate for using LAT as fiducial markers for conduction

velocity calculations [7]. However, the differences between

these methods may be relatively unimportant compared to the

intrinsic uncertainty in determining LAT for bipolar signals.

We model the relation between the true local activation time

(LATEGM ) and the LAT assignment (tobs) made from an

observed EGM (derived using a specific method), as:

tobs = LATEGM + ǫEGM

ǫEGM ∼ N (0, σ2

EGM )
(1)

where ǫEGM is an error assumed to have a normal distribution

with standard deviation σEGM for tractability.

We can be more confident of our LAT assignment for signals

with clean single deflections than for noisy multiple deflec-

tions, so the magnitude of σEGM should depend on the signal

morphology in a robust and consistent way. Furthermore, the

assessment of σEGM should be meaningfully related to the

measurement yielding tobs. For these reasons, in this paper we

determine tobs from bipolar electrograms using the ‘Center-

of-Mass’ (CoM) method [13], [14], because this has been

demonstrated to accurately assign LATs to bipolar signals

based on comparison with expert assignment of corresponding

unipolar electrograms. In the original publications, the begin-

ning and end of the signal were carefully defined, the signal

was filtered, differentiated and rectified, and LAT was defined

as t50: the time of 50% of the cumulative area under the

rectified differentiated signal between the signal beginning and

end. We extend this method in order to also give a consistent

definition of σEGM .

We summarize our modified Center-of-Mass method as four

stages below, illustrated in Figure 1, and refer the reader to

Supplementary Material for a schematic and more precise

details for step (b). Where the original method used a 4-state

machine algorithm to bracket the EGM activation complex

in a very particular way, we use an amplitude threshold

instead. This simplification is justified since t50 is only a noisy

observation; increasing the precision of this measurement does

not reduce the intrinsic uncertainty about how t50 differs from

LATEGM . Also, where the original method applied frequency

filters to smooth signals, we use either a sliding-window

average (step (b)) or a Gaussian Process (step (c)).

(a) Regularize signal (Figure 1(a)); subtract the mean and

normalize the amplitude of the signal V (t) to remove trends.

No modifications to smoothness or morphology are made:

Vraw(t) = (V (t)− V (t))/max(|V (t)− V (t)|), (2)

where V (t) is the average of V (t) calculated for a time

window of up to 350 ms following the pacing stimulus.

(b) Bracket activation complex (Figure 1(b)). We smooth

Vraw(t), then differentiate (central difference), rectify, and

normalize it, and then smooth again to obtain “smooth rect”,

which we used to bracket the complex by observing where

the amplitude falls to 2.5% of the maximum. We discard

Vraw(t) outside the brackets. If bracketing failed then we did

not proceed to (c) and no LAT observation was recorded.

(c) Smooth signal (Figure 1(c)). Before taking the rectified

difference for area calculation in part (d), the signal must

be smoothed. In one of three patients presented here, nearly

half of the EGMs were partly ‘clipped’ due to thresholding

by the recording equipment. Therefore we smoothed and
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Fig. 1. Assignment of Local Activation Time observations and standard
deviations to bipolar electrograms, using a modified Center-of-Mass method.
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(a) Regularize signal. Blue points show Vraw(t), the signal minus the
mean with normalized amplitude. Recording has clipped the peak.
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(b) Bracket activation complex. EGM is smoothed, rectified, and
smoothed again (black line/area). Vertical dashed lines are brackets.
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(c) Smooth the signal. Gaussian Process fit to Vraw(t), ignoring
censored data (red points), giving Vsmooth(t) (smoothed and recon-

structed).
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(d) Assign uncertain LAT. Rectified smoothed signal (green area). The
solid red line is t50, shaded area edges are t25 and t75.

reconstructed Vraw(t) to produce Vsmooth(t) using a Gaussian

Process (GP) instead of a simpler smoothing method. We

“censored” the clipped data and fitted a GP with Matérn 3/2

kernel (this choice prevents oscillatory artefacts in censored

region) with a fixed nugget 0.001 (for smoothing) using the

software GPy [15]. Since the clipping was not too severe, this

enabled all of the clipped EGMs to be used, and improved the

area calculation in (d). The effectiveness of the reconstruc-

tion was tested by artificially clipping complete signals; the

reconstructed signals were a good match to the original.

(d) Assign uncertain LAT (Figure 1(d)). We differentiated,

rectified and normalized the smoothed (and reconstructed)

signal from (c), and calculated the cumulative area under this

signal. For the observation of LAT, we define:

tobs = t50

σEGM = (t75 − t25)/4
(3)

This particular choice (t25 and 75) allows plausible features for

LATEGM to be within the ≈ 95% confidence interval implied

by the error distribution in Eq. (1). Mostly importantly, this

extension of the Centre-of-Mass method is motivated by our

aim to have self-consistent uncertainty quantification in EGMs,

such that the uncertainty is related to the EGM feature used

for the observation of Local Activation Time. We return to

this in the discussion (section IV).

C. Mesh processing

We obtained left atrial anatomies during the clinical proce-

dures using an electro-anatomical mapping system (St Jude

Velocity). To obtain a smoothed domain suitable for the

GMRF method described in section II-D, we proceeded as

follows. First, we smoothed each surface by applying a

Poisson filter implemented in the MESHLAB library, [16].

Next, we determined the center location of the ostium of

each pulmonary vein (PV) as the point presenting an abrupt

increase of the PV diameters; we then truncated each PV at

a distance of 3mm from the centre of the PV ostium. Finally,

we generated a uniform triangulation with a characteristic edge

length h = 2.3 mm. This procedure used the tools provided in

the VMTK library, [17]. Figure 2 shows a smoothed anatomy

obtained by applying this procedure.

Fig. 2. Smooth Left Atrial mesh, with the original mesh inset (small). MV:
mitral valve, L(R)PV: left (right) pulmonary veins, LAA: left atrial appendage.
The smoothed mesh (∼ 104 vertices) is suitable for the GMRF method.

The coordinates at which electrograms were recorded

(barycentres of the bipolar electrodes on the catheter) did not

lie perfectly on the original (non-smoothed) left atrial mesh.

Thus there was additional uncertainty in the location of LAT

observations on the mesh, which we modeled as:

LATEGM = LATmesh + ǫpos

ǫpos ∼ N (0, σ2

pos)
(4)

In order to register the electrode positions with the mesh,

we projected each measurement coordinate x onto the nearest

coordinate on the smoothed mesh x
∗ using a user-contributed

MATLAB routine called point2trimesh [18]. Figure 3

shows this projection.

In order to meaningfully relate the uncertainty quantification

to the measurement, we assume that larger projection distance

d = |x−x
∗| ought to correspond to larger σpos [10]. However,

since the activation wavefront travels over the manifold, we

need to relate uncertainty in time to a distance on the manifold.

Therefore, the signal measured by the electrode was assumed

to lie within an arc of length d× θ centered on x
∗ (see inset

of Figure 3), such that there is an associated LAT difference

∆t between the mesh and the catheter electrode given by:

∆t =
d× θ

conduction velocity
(5)
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where we assume a conduction velocity of 350mm/s and fairly

broad arc angle θ = 2π/10 in order not to underestimate σpos.

Assuming 95% confidence that LATEGM is within ±∆t/2 of

LATmesh, we can write:

2σd = ∆t/2. (6)

For the GMRF method discussed below, these measure-

ments were then assigned to the nearest mesh vertex x
∗∗, but

since this distance was small and usually already included

within the arc length defined above we did not include

additional uncertainty from this assignment.

Fig. 3. Projection from measurement location x (black) to the nearest
coordinate on the manifold x∗ (red). The inset shows the arc d× θ centered
on x∗ used to estimate the uncertainty arising from the projection.

Upon user inspection, the nearest-point projection resulted

in a few incorrect assignments on the mesh, mostly for obser-

vations with large projection distances. This happened when

measurements were from parts of the original mesh that had

been removed, or when a more accurate projection method was

needed to distinguish between two different mesh locations

of similar projection distance. Some immediately neighboring

electrode locations had completely inconsistent (but clear)

electrograms, demonstrating a problem with identifying the

catheter position in the procedure. We labeled these inaccurate

coordinates and ignored any corresponding LAT observations

in Section II-D (see Table I).

D. Gaussian Markov Random Field method

A popular technique for spatial interpolation is Kriging (e.g.

[19]), or (almost) equivalently Gaussian process regression

[20]. To use this method we need to specify a function to give

the covariance between LATs at any two vertices on the mesh.

A ‘standard’ Gaussian process regression approach would

define the covariance function to be a decreasing function

of Euclidean distance between input (vertex) locations. This

would not be appropriate here because Euclidean distance may

not reflect the actual distance traveled by an electrical wave

over the curved left atrial manifold.

To account for the mesh surface in our interpolation, we use

Gaussian Markov random fields, proposed in [21], which are

equivalent to Gaussian processes under some circumstances,

but which allow for more complex domains and more efficient

computation. We give an outline of the method here, and

refer the reader to [21] for the full details. We implement

this method in R [22], using the package R-INLA [23], [24].

This approach works by representing the Gaussian field on the

atrial domain, denoted g(·), by a decomposition defined on a

triangular domain/mesh:

g(x) =

n
∑

k=1

wkψk(x), (7)

where each basis function ψk is defined to be piecewise linear

for any location x in the domain, taking the value 1 at the

k-th vertex in the mesh, and 0 at any other vertex. The weight

wk gives the value of g at the k-th vertex. Uncertainty about

the field g is then described by uncertainty in the weights

w1, . . . , wn, which are assumed to have a multivariate normal

distribution.

We have noisy observations of a subset of the weights, i.e.,

LAT observations at a subset of mesh vertices. Conditional

on various parameters (to be described shortly), it is then

straightforward to estimate g at the remaining vertices con-

ditional upon the noisy observations using standard properties

of multivariate normal distributions. We now have to specify

a mean vector and variance matrix for the weights. We use a

constant prior expectation β for all weights. For the variance,

in [21] it is shown how to construct a (sparse) precision matrix

Q (the inverse of the variance matrix) for the weights, which is

parameterised in terms of an unknown length scale parameter

l, a smoothness parameter α (which we fix a priori), and

a standard deviation parameter ω. The construction ensures

a valid (positive-definite) precision matrix, with covariances

between weights a function of distances along the manifold.

Note that under this construction, unlike a ‘standard’ Gaussian

process model, we do not have a closed form expression

for the covariance between LAT at two different locations.

By representing the unknown LAT field using (7), with the

precision matrix Q, we can interpret this procedure as using

a finite element method to obtain an approximate solution to

a stochastic partial differential equation, whose exact solution

is a Gaussian process with a Matérn covariance function with

length scale l, smoothness parameter ν = α − d/2 (where d
is dimension i.e. 2), and variance parameter ω on the atrial

domain [21].

Our model linking the observations of LAT to the LAT field

on the manifold (LATmesh) is defined by equations (1) and

(4). Combining the errors from the electrograms and projection

(assuming independence) gives:

t50 = LATmesh + ǫ

ǫ ∼ N (0, σ2), σ2 = σ2

pos + σ2

EGM

(8)

If we define y1, . . . , yN to be the t50 values with associated

standard deviations σ1, . . . , σN , then in summary, we use the

following hierarchical model:

yi|µi, σi, τ ∼ N (yi|µi, σ
2

i /τ), i = 1, · · · , N (9)

µi = β + g(xi) (10)

g(·)|l, α, ω ∼ GF (0, Q−1) (11)

The linear predictor µ is the true LAT on the atrial manifold

(i.e. LAT ≡ LATmesh) that we want to calculate a distri-

bution for. The field g(·) has a Gaussian field distribution,

with precision matrix Q constructed given the mesh vertex
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locations and parameters l, α, ω. We fix α = 2, corresponding

to Markovian Matérn fields with smoothness ν = 1 and

length-scale parameter l. The parameter β is introduced as

an intercept, an average for the entire LAT field, so that g(·)
can be assumed to be zero mean). The parameter τ is a global

precision which acts to scale the observation precision σ−2

i .

Although τ could be fixed to 1, we estimate its value during

model fitting, so that our uncertainty assignments can be scaled

to achieve a better model fit and for generality.

We use two modeling regimes: (i) LAT spatial interpolation

for each S1-S2 interval independently, described in equations

(9)-(11) and denoted SpatialOnly; and (ii) LAT interpolation

over space and S1-S2 interval, denoted SpatialPacing. Regime

(ii) involves interpolation across different pacing protocols so

that the underlying random field becomes a function of both

position and S1-S2 interval. We extend the model used in

regime (i) to a separable space-time model, the autoregressive

process of order 1, AR(1), as described in [25], where S1-

S2 takes the place of time in order that the spatial fields at

different S1-S2 values are correlated. We can view this as

replacing equation (11) by

g(·, ·)|l, α, ω, ρ ∼ GF (0, Q−1

T ⊗Q−1) (12)

where QT is the precision matrix of an AR(1) process with

correlation parameter ρ; see [23], [25] for more detail. It is

important to note that this method is not simply interpolating

between observation data from different S1-S2 values, but is

correlating the underlying LAT field obtained for different S1-

S2 intervals. This is, as far as we are aware, the first instance

of interpolating across different pacing protocols.

Fitting the model refers to the training of the parameters,

and predicting refers to obtaining statistics for the linear

predictor µ, which is synonymous with LAT ≡ LATmesh.

For numerical reasons we scaled LAT units into deci-seconds,

and unscaled the results afterwards. Distances were measured

in millimeters. The uncertain parameters are l, τ , β, ω, and for

regime (ii) ρ. Penalized complexity priors [26] were chosen

for l, τ , ω and ρ: a 1% probability that l was less than 100;

a 1% probability that
√
τ is above 2; a 1% probability that

ω was above 10; a 80% probability of ρ being above 0.9. A

vague uniform prior was chosen for β. To marginalize over

the uncertain parameters l, τ , β, ω, we use the integrated

nested Laplace approximation [27] implemented in R-INLA.

Our procedure is outlined in Figure 4.

E. Cross Validation

We predicted a LAT map for each S1-S2 interval considered.

For the SpatialOnly model the data yi were observations from

only the considered S1-S2 interval. For the SpatialPacing

model the data yi were observations from ‘triplets’ of S1-S2

intervals; the central interval being the considered one.

For model validation, we used k-fold stratified cross-

validation implemented in the R package caret [28], such

that validation folds were optimized for average yi. For the

SpatialOnly model, the data (for each pacing) is split into k
folds (subsets), and the model is trained on all data except one

fold and used to predict the left-out data. This is repeated for

Combine 
Variances

START

LAT 
Data

Spatial
Data

Spatial 
Pacing 
Model

Spatial 
Only 

Model

Predict LAT 
on mesh

END

S1-S2 
interval(s)

Fig. 4. Schematic of our LAT interpolation methodology. Various methods
for assigning LAT to electrograms (LAT data) and assigning measurements to
the (smoothed) anatomical mesh (spatial data), with associated uncertainties,
could be used in place of our methods. Data from different S1-S2 intervals
can be treated separately (SpatialOnly) or jointly (SpatialPacing).

all folds. We investigated the SpatialOnly model for k = 10,

k = 4, and k = 2 in order to determine how prediction was

affected by the available number of mapping points.

To validate the SpatialPacing model, we apply the exact

same k = 10 folds used for the SpatialOnly model to the

central interval in the triplet of S1-S2 intervals, such that the

validation observations are the same between both modeling

regimes e.g. for S1-S2 intervals 329 ms, 336 ms, 343 ms,

we perform cross validation for interval 336 ms using the

same k = 10 folds used for the SpatialOnly model for interval

336 ms. This allows a direct comparison of the two models.

Also with this cross-validation regime, we (i) vary the spacing

between the triplet of S1-S2 intervals; (ii) combine data from

triplets of S1-S2 intervals into the SpatialOnly model.

We present our cross-validation results as prediction versus

observation plots, and summarize them using the normalized

Root Mean Squared Error (RMSE) for all predictions versus

observations, calculated as:

RMSE =
100

range

√

√

√

√

1

N

N
∑

i=1

(E[µi]− yi)2 (13)

where range = max(y) − min(y) for data yi only for the

considered S1-S2 interval. A perfect match of predictions E[µ]
and noisy observations yi is not expected (or wanted), and

RMSE scores can be highly influenced by data with large

uncertainties for which the t50 is far from LATmesh. Therefore

we also calculate the Independent Standard Error (ISE):

ISEi = (E[µi]− yi)/
√

V[µi] + σ2

i (14)

Good predictions will have ≈ 95% of ISEs lie within the

interval ±2. Both the RMSE and ISE scores, for each S1-S2

interval value, are shown in the legends in Figures 7 - 8.

F. Comparison with alternative interpolation method

Our approach aims to propagate uncertainties in LAT ob-

servation to LAT predictions. A direct comparison with other

interpolation methods is difficult for two reasons; there is
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no ground truth LAT map, and currently used interpolation

methods do not incorporate uncertainties. We therefore com-

pared the SpatialOnly model against a 3D Gaussian process

with heteroscedastic observation variance because this method

allowed us to incorporate uncertain LAT observations. Details

are provided in Supplementary Material. Although the 3D

Gaussian process application itself is somewhat novel, it is

comparable with other LAT interpolation in that interpolation

is not performed directly on the manifold itself. GP interpola-

tion is very similar to Radial Basis Function interpolation [5]

(we used a GP with RBF kernel) and Spline interpolation [6]

(splines are special cases of Gaussian processes).

III. RESULTS

In what follows, we summarize the estimated LAT map

by the posterior mean and standard deviation of the linear

predictor µ ≡ LAT at each mesh vertex. The GMRF model

training and prediction was performed on a HP Elitedesk

desktop computer with Intel Core i5-7500 CPU (3.40GHz ×
4) and 8 GB RAM (running Ubuntu 18.04.1 LTS). For the

SpatialOnly model and SpatialPacing model respectively, op-

timizing with default parameter settings took around 60 s and

600 s, but with well-chosen starting values this reduced to 10 s

and 60 s (e.g. parameter values from fitting to all data were

used to initialize the optimization during cross validation). To

further speed up cross validation we used the empirical Bayes

approximation in R-INLA, and made predictions only for mesh

points corresponding to the validation data.

We considered S1-S2 intervals between 343 ms and 280 ms,

because data coverage became increasingly poor below 280 ms

(possibly related to refractory tissue). This also allowed the

same parameter priors to be used for all modeling. We present

results for three patient cases, for pacing from the coronary

sinus (CS). Data summaries are shown in Table I. Patients

A and C both had fairly good data coverage overall, but the

coverage varied with S1-S2 interval much more for Patient A.

Patient B had very low data coverage.

Figures 5 and 6 show E[µ] and
√

V [µ] respectively for

patient C for S1-S2 interval 336 ms. The LAT map E[µ] is

typical of our results: the field is smooth, and high precision

observations (smaller σi) influence and pin the LAT field more

than low precision observations (larger σi). The heterogeneous

observation uncertainty also influences the σ ≡
√

V [µ] map,

demonstrating lower prediction certainty in regions of low

precision observations. In the lower part of Figure 5, some

observations (yellow spheres) appear based on physical con-

siderations of the propagating wave to be poorly assigned to

the mesh, and should probably have been identified beforehand

and ignored. Nonetheless, the model mostly overlooks these

Patient Min Max Mean Std Ignored

A 42 99 71.9 16.3 1
B 6 48 26.6 18.3 2
C 65 72 70.3 2.65 0

TABLE I
SUMMARY OF OBSERVATIONS PER S1-S2 INTERVAL, AND NUMBER OF

COORDINATES FOR WHICH ALL OBSERVATIONS WERE IGNORED, FOR

THREE PATIENT CASES DISCUSSED BELOW.

problems due to influence from other more precise observa-

tions. The GMRF method is also able to smoothly extrapolate

beyond the data, although predictions too far beyond the data

locations should be treated with caution in general.

Fig. 5. LAT map mean E [µ] for patient C for SpatialOnly model with
observations yi for S1-S2 interval 336ms. The spheres show LAT observations
yi ≡ t50. Sphere sizes increase with observation variance. Higher precision
observations pin the LAT map more strongly. There appear to be some
observations that were poorly assigned to the mesh (lower figure, yellow
spheres), which should ideally be removed followed by refitting.

A. SpatialOnly model: single S1-S2 intervals

Figure 7 shows the k = 10 cross-validation results for the

SpatialOnly model, with the RMSE and ISE statistics shown

in the legends against the corresponding color for the S1-S2

colorbar. The RMSE statistics for k = 10, 4, 2 folds, for both

the GMRF model and GP model, are summarized for com-

parison as averages over S1-S2 intervals in Table II. Bar plots

showing the breakdown of these results against S1-S2 interval

are given in the Supplementary Material. Figure 7(a) shows

good prediction versus observation for all S1-S2 intervals in

one patient, whereas Figure 7(c) shows that the prediction

appears to get worse for low S1-S2 values in another patient.

The RMSE scores in Figure 7(a) are approximately half those

in Figure 7(c), and the goodness of fit is further suggested by

better ISE coverage in the ±2 range for the former.

The top three rows of Table II show that when the size of

the cross-validation folds increase, the RMSE scores increase

but the effect is very minor, demonstrating good robustness of

the spatial interpolation method to decreasing amounts of data.

However, for Patient B (the least data) both figure 7(b) and Ta-

ble II demonstrate that prediction is much more difficult with

sparse spatial coverage (although the ISE plots in Figure 7(b)

suggest that the poorer predictions are compensated for by a
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Fig. 6. LAT map standard deviation
√

V [µ] for patient C for SpatialOnly

model with observation standard deviations σi. Sphere sizes increase with
observation variance. Uncertainty increases with distance from observations,
and more precise observations generally reduce prediction uncertainty.

Model k-folds Patient A Patient B Patient C

10 5.98 18.3 10.9
GMRF 4 6.26 18.7 10.7

2 6.64 19.3 12.0

10 6.42 29.8 11.5
GP 4 6.84 106. 11.9

2 20.1 116. 13.4

TABLE II
k-FOLD CROSS-VALIDATION RESULTS FOR THE SpatialOnly MODEL

(GMRF) AND 3D GAUSSIAN PROCESS MODEL (GP): AVERAGE OF THE

RMSE SCORES OVER S1-S2 INTERVALS.

higher uncertainty). Interestingly, predictions with k = 2 folds

for Patients A and C are still much better than predictions for

k = 10 folds for Patient B, suggests that spatial coverage

overall is more important that the absolute number of data

points. This is because withholding validation data where the

data is already sparse may result in bad extrapolation.

The bottom three rows of Table II show the cross-validation

RMSE summaries for the simpler 3D Gaussian process model,

where the same folds from the GMRF spatial model cross-

validation were used. In all cases, our model performed better

than the 3D GP method, although the GP model performed

quite well overall when enough data was available. However,

the GP model performance decreased much faster as the

number of folds decreased, sometimes due to the inability to

fit the data set well. However, as shown in the Supplementary

Material, the predicted uncertainty in the GP model is not

sensible given the physical system that is being modelled.

This is because the interpolation can take no account of

the manifold, and low uncertainty can be achieved where

Fig. 7. 10-fold cross-validation results for SpatialOnly models. Legends show
normalized Root Mean Squared Error and percentage of Independent Standard
Errors within ±2 against corresponding S1-S2 interval color.
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(a) Patient A: good data coverage (quite variable with S1-S2),
with similar performance for all S1-S2 intervals.
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(b) Patient B cross-validation. Very low data coverage.
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(c) Patient C cross-validation. Good consistent data coverage,
better performance for higher S1-S2 intervals.

the distance to data ‘through the atrium’ is small, even

though the connecting distance ‘across the atrium’ is large.

Conduction velocity calculations (shown in Supplementary

Material) demonstrate that the GMRF method outperforms the

GP method substantially; the GP conduction velocity field is

riddled with problematic artefacts and unphysical prediction of
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Model Pacing data in triplet A B C

nearest 3.72 8.26 5.99
Spatial next nearest 4.01 10.2 6.03
Pacing next next nearest 3.39 7.62 6.73

next next next nearest 3.59 9.18 5.38

nearest 4.94 10.1 7.57
Spatial next nearest 5.61 11.9 8.70
Only next next nearest 6.35 12.7 9.60

next next next nearest 7.97 11.8 10.1

TABLE III
10-FOLD CROSS-VALIDATION RESULTS FOR THE SpatialPacing MODEL,

AND THE SpatialOnly MODEL WITH DATA FOR SEVERAL S1-S2
INTERVALS: AVERAGE OF THE RMSE SCORES OVER S1-S2 INTERVALS.

the electrical wave propagation, whereas the GMRF method

yields very sensible results due to the interpolation being

performed on the manifold itself.

B. SpatialPacing model: multiple S1-S2 intervals

Figure 8 shows the k = 10 cross-validation results for the

SpatialPacing (multiple S1-S2 interval) model, where for each

S1-S2 interval the exact same folds for the SpatialOnly model

were used. The top four rows of Table III show the average

RMSE results for the SpatialPacing model, where the triplet

of S1-S2 intervals used in the model were adjusted across the

four rows e.g. for predicting LAT for S1-S2 interval 310 ms,

the nearest S1-S2 intervals were 304, 310, and 316 ms, the

next nearest 298, 310, and 322 ms, and so on. Both Figure

8 and Table III demonstrate substantially better performance

than the SpatialOnly model in all cases. Figure 8(c) shows that

the decreasing performance with decreasing S1-S2 interval for

Patient C all but disappears. The breakdown of these results

by S1-S2 interval is given in the Supplementary Material.

For the SpatialPacing model, the predictions seem to be just

as good for S1-S2 intervals far apart as for S1-S2 intervals

very close together, and certainly we have shown that for S1-

S2 intervals of around 25 ms (a range of S1-S2 intervals of

50 ms) the SpatialPacing model works well and outperforms

the SpatialOnly model. This is due to the ability to borrow

information about the spatial activation pattern from other pac-

ing protocols, and combine it appropriately in the modelling.

This point is emphasized in the bottom four rows of Table

III, which show the average RMSE cross-validation results for

combining different pacing data into the SpatialOnly model.

In this case, the RMSE scores are higher and get worse as

the S1-S2 interval becomes longer (for Patient B, the result

for the next next next nearest neighbours is still significantly

better than for modeling using data from only one pacing, due

to the low amount of data in this case).

IV. DISCUSSION

A. Uncertainty in LAT observations

Our overall methodology is modular, so other methods for

electrogram analysis and data registration to the atrial mesh

could be used with our interpolation method. As with this

study, uncertainty quantification should be consistent with how

Local Activation Time and catheter position were observed.

We assumed a normal distribution to LAT in order to combine

Fig. 8. 10-fold cross-validation results for SpatialPacing models. Legends
show normalized Root Mean Squared Error and percentage of Independent
Standard Errors within ±2 against corresponding S1-S2 interval color.
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(a) Patient A.
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(b) Patient B.
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(c) Patient C.

uncertainties from electrograms and position, and for compu-

tational tractability; other choices may be better.

For LAT assignment to electrograms, we extended a

‘Center-of-Mass’ method [13], [14] that does not depend on

unreliable fiducial markers, such that uncertainty depended

on electrogram morphology consistently with how LAT was

assigned. Our uncertainty definition was based on experience

with the recordings used in this study, and the LAT distribution

embraced a range of plausible features for the ‘true’ LAT.

A more systematic calibration would optimize the relative

consistency of electrogram uncertainty from one recording to

another, and identify suitable timing thresholds.

In clinical data, electrograms can be highly fractionated

such that there are multiple activation complexes that need
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to be separated; see [29] and [30]. In these cases, there is

additional uncertainty associated with bracketing (separating)

the complexes in the signal. It will be important in these cases

not to overlook this ‘bracketing uncertainty’; LAT assignment

will depend heavily on how activation complexes are separated

in highly fractionated signals, and it would be better to define

large uncertainties than to be overconfident.

Mismatch between the electrode location provided by the

electro-anatomic mapping system and the atrial mesh is a

further source of uncertainty, which we have also included

in our study. Registration of electrode locations with the

anatomical mesh is a difficult problem because the anatomical

map is produced at a different time to the measurements. Our

method takes this uncertainty into account in meaningful way

by directly relating the error in the registration method and

the corresponding uncertainty in LAT that could likely occur.

However, more accurate and robust methods of registration,

such as [31] and [32], which deal both with improving the

accuracy of registration as well estimating errors, could be

used within our framework.

B. GMRF method for interpolation

The GMRF method can include uncertainty in LAT mea-

surements and yield probabilistic LAT maps. In this framework

the LAT observations are not taken to be the ground truth,

but rather are noisy observations from which the ground

truth must be inferred. Notably, interpolation is performed

directly on the atrial manifold. For this reason, in comparison

with a 3-dimensional Gaussian process interpolation (which is

qualitatively similar to previous methods), the GMRF method

performed better and made more plausible estimates of uncer-

tainty. GP interpolation did not take account of the manifold,

and so resulted in problematic artefacts in the conduction

velocity field. Mesh smoothing and adjustment may also affect

results in important ways, since the truncation of pulmonary

veins (and the left atrial appendage, if this is removed) changes

the connectivity of the mesh; it is potentially very important

that the actual geometry is properly taken into account as done

here.

Accurate assignments of measurements to the atrial mesh

is very important and will have large consequences for accu-

racy; inaccurate/incorrect assignments cannot necessarily be

compensated for by low precision. It is difficult to determine

a minimum number of mapping points required to use the

GMRF method; good predictions can be expected near to train-

ing data, but not necessarily in regions of far extrapolation.

However, predictive uncertainty increases far away from the

data, and so the true underlying LAT may still be captured by

the predictive distribution. Our results suggest that the method

is robust to decreasing the number of observations, and that an

even coverage of accurate LAT recordings is more important

than the absolute number of recording locations.

Our method should be applicable to more complex ac-

tivation patterns such as those which occur during atrial

arrhythmias. However, in order to accurately interpolate such

patterns, there will need to be sufficient spatial coverage and

measurements will need to have high precision, such that

a more complex pattern with lower uncertainty is a better

fit to the observations than a smoother pattern with higher

uncertainty. It may be necessary to investigate the effect

of assigning different hyperparameter priors, and to fix the

absolute value of the observation uncertainty in the modeling,

in order to fit more complex activation patterns. It should be

noted that there is no enforcement of monotonicity in the

predictions, so it is possible that our method could produce

implausible predictions in regions where data coverage is

extremely poor or in regions where the data has been poorly

assigned to the anatomical mesh.

The SpatialPacing model demonstrates the first case of in-

terpolation across different pacing protocols that we are aware

of. Our results demonstrate that information can be shared

between different pacing protocols in order to improve LAT

map predictions. This potentially allows for more efficient data

collection in procedures. For example, it will be possible to

use totally different spatial locations for each pacing protocol

in the procedure, or to collect data for only a subset of pacing

protocols for each placement of the recording catheter. This

could radically improve the spatial coverage of data obtained

during procedures with multiple protocols.

LAT maps are often patchy, but our results suggest that

non-smooth patterns resulting from overlooking uncertainties

should be treated with caution. The smoothness of the LAT

maps produced by our method is somewhat a result of the

observation uncertainties. From a physical point of view, the

activation pattern should be assumed to be smooth, unless the

data (with observation uncertainty included) strongly suggest

otherwise. For this reason, our method of interpolation could

be thought of as assuming a smooth prior for the activation

pattern, such that more complex activation patterns must be

enforced by the data. Probabilistic interpolation of uncertain

Local Activation Times should therefore be an important new

tool for constructing LAT maps for clinical purposes.

V. CONCLUSION

In this paper we have described and evaluated a novel

method to interpolate uncertain Local Activation Times di-

rectly on the left atrial manifold and between pacing protocols.

Our approach is to first quantify uncertainty in assigning

Local Activation Times (LAT) to bipolar electrograms, as well

as uncertainty in registration of catheter positions to patient

specific anatomical meshes, and then to explicitly incorpo-

rate this uncertainty in LAT into a probabilistic interpolation

scheme using Gaussian Markov Random Fields (GMRFs)

in a Bayesian hierarchical framework. Our methods yield

probabilistic LAT maps with predictive mean and standard

deviation which account for heterogeneous observation uncer-

tainty and interpolation uncertainty. We used cross-validation

to demonstrate performance, showing that our method out-

performs a 3D interpolation method which is comparable to

existing methodologies, and demonstrated that our method

can sensibly combine data from different pacing protocols

to improve predictive performance. This approach enables an

approach for building maps of LAT in individual patients that

is robust in the face of measurement uncertainties.
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