This is a repository copy of *Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145423/

Version: Published Version

Article:
Cortesia, C., Vilchèze, C., Bernut, A. orcid.org/0000-0002-1928-8329 et al. (6 more authors) (2014) *Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant*. mBio, 5 (2). e00013-14. ISSN 2150-7511

https://doi.org/10.1128/mbio.00013-14

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, as long as you credit the authors and license your new creations under the identical terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant

Claudia Cortesia, Catherine Vilchèze, Audrey Bernut, Whendy Contreras, Keyla Gómez, Jacobus de Waard, William R. Jacobs, Jr., Laurent Kremer, Howard Takiff

ABSTRACT Effective and economical mycobactericidal disinfectants are needed to kill both Mycobacterium tuberculosis and non-M. tuberculosis mycobacteria. We found that acetic acid (vinegar) efficiently kills M. tuberculosis after 30 min of exposure to a 6% acetic acid solution. The activity is not due to pH alone, and propionic acid also appears to be bactericidal. M. boletii and M. massiliense nontuberculosis mycobacteria were more resistant, although a 30-min exposure to 10% acetic acid resulted in at least a 6-log₁₀ reduction of viable bacteria. Acetic acid (vinegar) is an effective mycobactericidal disinfectant that should also be active against the most other bacteria. These findings are consistent with and extend the results of studies performed in the early and mid-20th century on the disinfectant capacity of organic acids.

IMPORTANCE Mycobacteria are important agents of human infections. While the most well-known infections are tuberculosis and leprosy, infections with nontuberculosis mycobacteria are an increasing problem after surgical or cosmetic procedures or in the lungs of cystic fibrosis and immunosuppressed patients. Killing mycobacteria is important because Mycobacterium tuberculosis strains can be multidrug resistant and therefore potentially fatal biohazards, and environmental mycobacteria must be thoroughly eliminated from surgical implements and respiratory equipment. Currently used mycobactericidal disinfectants can be toxic, unstable, and expensive. We fortuitously found that acetic acid kills mycobacteria and then showed that it is an effective mycobactericidal agent, even against the very resistant, clinically important Mycobacterium abscessus complex. Vinegar has been used for thousands of years as a common disinfectant, and if it can kill mycobacteria, the most disinfectant-resistant bacteria, it may prove to be a broadly effective, economical biocide with potential usefulness in health care settings and laboratories, especially in resource-poor countries.
Acetic acid was reduced by only approximately 1 log acid and found that after a couple of days, the number of viable bacteria was reduced by approximately to the pH of 5% acetic acid. No bactericidal effect was seen (data not shown). Other studies have looked at the effect of pH on mycobacterial growth by reducing the pH in the culture media to as low as pH 3 with HCl or pH 5 with citric acid and found that after a couple of days, the number of viable bacteria was reduced by only approximately 1 log (14, 15).

We also tested acetic acid on the notoriously resistant Mycobacterium abscessus complex bacteria (17). Although M. abscessus sensu stricto was efficiently killed by exposure to 6% acetic acid for 30 min, Mycobacterium bolletii and Mycobacterium massiliense were more resistant. The levels of reduction in viable bacteria differed somewhat in different experiments, but exposure to 10% acetic acid for 30 min achieved a minimum of a 6-log reduction in the colony counts of these two species, with M. massiliense appearing to be slightly more resistant than M. bolletii. Finally, we demonstrated that the mycobacterial activity remained even under “dirty” conditions that were meant to simulate contamination with organic material in clinical samples, with the acetic acid solution containing 2 to 3.5% bovine serum albumin and 2 to 3.5% red blood cells (Table 1).

The results described above suggest that acetic acid can be an effective, economical bactericidal agent for M. tuberculosis and other mycobacteria.
nontuberculous mycobacteria, although the 20- to 30-min exposure time required to obtain optimal killing is longer than the 5 min recommended for some commercial bactericides. Exposure to 6% acetic acid for 30 min resulted in an 8-log reduction of viable M. tuberculosis bacteria, including XDR and MDR strains. In tests with the M. abscessus complex, which are emerging as the most pathogenic of the nontuberculous mycobacteria (17), the same conditions produced 8 log of killing only with M. abscessus sensu stricto, while M. massiliense and M. bolletti were more resistant in some assays. However, the generally accepted definition of an effective mycobactericide is one that has the ability to reduce viable bacteria by 4 to 5 log, whereas the 6-log reduction of both these bacteria achieved with 10% acetic acid for 30 min would be classified as high-level mycobactericidal activity (19). In some assays in which 10% M. smegmatis bacteria were exposed to 6% acetic acid for 20 min and 3 × 10% M. massiliense bacteria were exposed to 10% acetic acid for 30 min, there were no survivors. Although we did not attempt carrier tests, the effective mycobactericidal activity was maintained even under “dirty” conditions that simulate contamination with organic material. While this level of killing may not be adequate for all critical uses, such as sterilizing surgical instruments, it is likely that higher levels of killing of these highly resistant strains could be achieved with higher concentrations of acetic acid and/or longer exposure times than the ones tested here. Preliminary studies, however, suggest that 10% acetic acid for 30 min does not kill Bacillus subtilis spores (data not shown), so it cannot be classified as a high-level general disinfectant (20). We have not assessed the activity of acetic acid against viruses and fungi.

Although the disinfectant properties of organic acids such as acetic acid, propionic acid, and butyric acid—a component of sweat (21)—are well known, they are not usually included in reviews of bactericides (4). However, in the early part of the 20th century, they were fairly extensively studied for disinfectant properties, as reviewed by Reid in 1932 (22), and their tuberculocidal activity was evaluated by Barker in 1964 (23). It was found that they had broad bactericidal activity that increased with increasing carbon chain length through caprylic acid (C = 8), although the longer-chain acids were less soluble. Bactericidal activity was also found to increase with decreasing surface tension of the organic acid solutions and appeared to be due to the undissociated acid rather than the hydrogen ion concentration. It was therefore suggested that the bactericidal effect might be related to the ability of the acids to pass through the bacterial membrane (23).

Acetic acid is not very toxic, although prolonged exposure will produce corrosive effects, both on skin and metals. In reports from nearly 100 years ago, it was found that the topical application of a 1% acetic acid solution in saline cured Pseudomonas aeruginosa (Bacillus pyocyaneus) wound infections (24, 25). It might be worthwhile to test its effectiveness as a topical agent on mycobacterial ulcers (26, 27).

Acetic acid is relatively inexpensive—2.5 liters of 99% acetic acid costs less than US$100 and could effectively disinfect up to 20 liters of M. tuberculosis cultures or sputa. Commercial vinegar bought in supermarkets was used wherever possible in the experiments described here, but the concentrations vary from country to country. Commercial vinegar could be used at effective concentrations for M. smegmatis or M. tuberculosis in France, where it is sold as 8% acetic acid, but not in the United States or Venezuela, where vinegar is sold as 5% acetic acid. While longer-chain organic acids may have better bactericidal activity, acetic acid (vinegar) is relatively nontoxic, inexpensive, and available, which could make it an effective, economical biocide for disinfecting M. tuberculosis from clinical specimens, cultures, and laboratory surfaces, and it would be particularly useful in low-income countries. The high-level capacity of acetic acid in killing mycobacteria, regarded as the most disinfectant-resistant bacteria due to the structure of their lipid-rich cell walls (4), suggests that perhaps it should be revived as a broadly effective bactericide that can be used as a general sanitizer.

ACKNOWLEDGMENTS

This work was funded by FONACIT project G2005000393 to H.T., LOCTI project “Nuevos fármacos contra la tuberculosis” to H.T., “Vaincre La Mucroviscidose” grant RF2011 06000446 to A.B., the visiting investigator program of the Université Montpellier 2 to H.T., and NIH AI26170 and Center for AIDS Research award A151519 to W.R.J., Jr. We declare no conflicts of interest.

REFERENCES

March/April 2014 Volume 5 Issue 2 e00013-14

Downloaded from http://mbio.asm.org on April 29, 2019 by guest

