UNIVERSITYW

This is a repository copy of Implementing atomic actions in Ada 95.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/1454/

Article:

Wellings, A orcid.org/0000-0002-3338-0623 and Burns, A orcid.org/0000-0001-5621-8816
(1997) Implementing atomic actions in Ada 95. IEEE Transactions on Software
Engineering. pp. 107-123. ISSN 0098-5589

https://doi.org/10.1109/32.585500

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997 107

Implementing Atomic Actions in Ada 95

Andy Wellings and Alan Burns, Member, IEEE Computer Society

Abstract—Atomic actions are an important dynamic structuring technique that aid the construction of fault-tolerant concurrent
systems. Although they were developed some years ago, none of the well-known commercially-available programming languages
directly support their use. This paper summarizes software fault tolerance techniques for concurrent systems, evaluates the Ada 95
programming language from the perspective of its support for software fault tolerance, and shows how Ada 95 can be used to
implement software fault tolerance techniques. In particular, it shows how packages, protected objects, requeue, exceptions,
asynchronous transfer of control, tagged types, and controlled types can be used as building blocks from which to construct atomic
actions with forward and backward error recovery, which are resilient to deserter tasks and task abortion.

Index Terms—Software fault tolerance, atomic actions, Ada 95, exception handling, recovery blocks, conversations.

1 INTRODUCTION

T ECHNIQUES for tolerating software faults are often clas-
sified according to whether they are static (masking) or
dynamic. With static redundancy, several versions of a
software component are written and each version executes
in response to all requests; voting is performed on the out-
put to determine which result to use. It is static because
each version of the software has a fixed relationship with
every other version and the voter; and because it operates
whether or not faults have occurred. With dynamic redun-
dancy, the redundant components only come into operation
when an error has been detected.
Dynamic fault tolerance has four constituent phases [1].

1) Error detection. Faults of significance will eventually
manifest themselves in the form of errors; no fault tol-
erance schemes can be utilized until errors are detected.

2) Damage confinement and assessment. When an error has
been detected, a decision must be made on the extent
to which the system has been corrupted; the delay
between a fault occurring and the manifestation of the
associated error means that erroneous information
could have spread throughout the system.

3) Error recovery. Error recovery techniques aim to trans-
form a corrupted system into a state from which it can
continue its normal operation (perhaps with de-
graded functionality).

4) Fault treatment and continued service. An error is a
symptom of a fault; although the damage may have
been repaired, the fault may still exist and, therefore,
the error may recur unless some form of maintenance
is undertaken.

This paper is primarily concerned with dynamic redun-
dancy techniques and, in particular, damage confinement
and error recovery. For sequential systems, damage con-

» A. Wellings and A. Burns are with the Real-Time Systems Research
Group, Department of Computer Science, University of York, Heslington,
York YO1 5DD UK. E-mail: {andy, burns j@minster.york.ac.uk.

Manuscript received Dec. 6, 1996; revised Feb. 12, 1997.

Recommended for acceptance by].C. Knight.

For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95104.

finement is well understood; techniques such as modular
programming and object-oriented encapsulation (within
the context of a strongly typed programming language)
enable faults to be confined. Judicious placement of accep-
tance tests or assertions allow errors to be detected before
damage can be propagated. Similarly, techniques such as
exception handling [2] (forward error recovery) and recov-
ery blocks [3] (backward error recover) allow error recovery
to be performed according to whether the fault was antici-
pated or not.

For concurrent systems, the position is not so clear cut.
Although techniques such as conversations [4] and atomic
actions [5] were developed some time ago, few of the main-
stream languages or operating systems provide direct sup-
port [6]. Instead, languages such as Concurrent Pascal have
been used as the basis for experimentation [7], or a set of
procedural extensions or object extensions have been pro-
duced. For example, Arjuna uses the latter approach to
provide a transaction-based toolkit for C++ [8].

Arguably, high-level support is not needed and the re-
quired functionality can be programmed with lower-level
primitives. For example, some attempts have been made to
program conversations in Ada 83 [9], [10], [11]; however,
these were severely hampered by the lack of suitable lan-
guage support. For instance, Romanovsky and Strigini [11]
only allow parallelism to exist inside a conversation; the ap-
proach is not appropriate if a collection of pre-existing tasks
wish to participate collectively in a conversation. None of
these attempts address how to structure atomic actions with
both forward and backward error recovery in Ada 95.

The goals of this paper are to:

* summarize software fault tolerance techniques for
concurrent systems

* evaluate the Ada 95 programming language [12]
from the perspective of its support for software fault
tolerance

* show how Ada 95 can be used to implement software
fault tolerance techniques.

Section 2 reviews the requirements for atomic action and
Section 3 briefly describes how forward and backward er-
ror recovery can be undertaken. Section 4 describes the new

0098-5589/97/$10.00 © 1997 IEEE

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

features of Ada 95 that are required to implement atomic
actions. Section 5 then shows how these features can be
used to program: simple actions, actions with backward
error recovery, actions with forward error recovery, actions
which are resilient to deserters, nested actions, and reusable
actions. Section 6 gives a simple example, while Conclu-
sions are presented in Section 7.

2 ATowmic ACTIONS

One of the main motivations for introducing concurrent
processes into a system is that they enable parallelism in the
real world to be reflected in application programs. This en-
ables such programs to be expressed in a more natural way
and leads to the production of more reliable and maintain-
able systems. However, concurrent processes create many
new problems which do not exist in the purely sequential
program. In particular, consideration has to be given to the
way in which groups of cooperating concurrent processes
should be structured in order to coordinate their activities.
For example, withdrawal from a bank account may involve
a ledger process and a payment process in a sequence of
communications to authenticate the drawer, check the bal-
ance and pay the money. Furthermore, it may be necessary
for more than two processes to interact in this way to per-
form the required action. In all such situations, it is impera-
tive that the processes involved see a consistent system
state. With concurrent processes, it is all too easy for groups
of processes to interfere with one another.

An atomic action has been proposed as a dynamic
mechanism for controlling the joint execution of a group of
processes such that their combined operation appears as an
indivisible action.

There are several almost equivalent ways of expressing
the properties of an atomic action [5], [13].

1) An action is atomic if the processes performing it are
not aware of the existence of any other active process,
and no other active process is aware of the activity of
the processes during the time the processes are per-
forming the action.

2) An action is atomic if the processes performing it do
not communicate with other processes while the ac-
tion is being performed.

3) An action is atomic if the processes performing it can
detect no state change except those performed by
themselves, and if they do not reveal their state
changes until the action is complete.

4) Actions are atomic if they can be considered, so far as
other processes are concerned, to be indivisible and
instantaneous, such that the effects on the system are
as if they were interleaved as opposed to concurrent.

Although an atomic action is viewed as being indivisible,
it can have an internal structure. To allow modular de-
composition of atomic actions, the notion of a nested
atomic action is introduced. The processes involved in a
nested action must be a subset of those involved in the
outer level of the action. If this were not the case, a nested
action could smuggle information concerning the outer-
level action to an external process. The outer-level action
would then no longer be indivisible.

2.1 Requirements for Atomic Actions

The implementation requirements for atomic actions are
independent of the notion of a process and the form of in-
terprocess communication provided by a language [14].
They are:

1) Well-defined boundaries. Each atomic action should
have a start, end and a side boundary. The start
boundary is the location in each process involved in
the atomic action where the action is deemed to start.
The end boundary is the location in each process in-
volved in the atomic action where the action is
deemed to end. The side boundary separates those
processes involved in the atomic action from those in
the rest of the system.

2) Indivisibility. An atomic action must not allow the ex-
change of any information between the processes ac-
tive inside the action and those outside (resource
managers excluded). If two atomic actions do share
data then the value of that data after the atomic ac-
tions is determined by the strict sequencing of the two
actions in some order.

There is no implied synchronization at the start of
an atomic action. Processes can enter at different
times. However, there is an implied synchronization
at the end of an atomic action; processes are not al-
lowed to leave the atomic action until all processes
are willing and able to leave.

3) Nesting. Atomic actions may be nested as long as they
do not overlap with other atomic actions. Conse-
quently only strict nesting is allowed.

4) Concurrency. It should be possible to execute different
atomic actions concurrently. One way to enforce indi-
visibility is to run atomic actions sequentially. How-
ever, this could seriously impair the performance of
the overall system and therefore should be avoided.
Nevertheless, the overall effect of running a collection
of atomic actions concurrently must be the same as
that which would be obtained from serializing their
executions.

5) Recovery. As it is the intention that atomic actions
should form the basis of damage confinement, they
must allow recovery procedures to be programmed.

Executing an atomic action requires the participating proc-
esses to coordinate their activities. The imposed synchroni-
zation on the action is as follows. Processes entering the
action are not blocked. A process is only blocked inside the
action if it has to wait for a resource to be allocated, or if it
attempts to communicate with another process inside the
action and that process is either: active in the action but not
in a position to accept the communication, or is not, as yet,
active in the action.

Processes may leave the action only when all processes
active in the action wish to leave. Hence, it is possible for a
subset of the named processes to enter the action and subse-
quently leave (without recourse to any interactions with the
missing processes). This facility is deemed to be essential in a
real-time system where deadlines are important. It solves the
deserter problem where all processes are held in an action
because one process has not arrived. This will be considered
along with error recovery in the next two sections.

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

3 RECOVERABLE ATOMIC ACTIONS

This section considers atomic actions with either backward
or forward error recovery. Backward error recovery relies
on restoring the system to a safe state previous to that in
which the error occurred. In contrast, forward error recov-
ery attempts to continue from an erroneous state by making
selective corrections to the system state.

3.1 Atomic Actions and Backward Error Recovery

When backward error recovery is applied to groups of com-
municating processes, it is possible for all the processes to be
rolled back to the start of their execution. This is the so called
domino effect. The problem occurs if there is no consistent set
of recovery points or a recovery line. An atomic action pro-
vides that recovery line automatically. If an error occurs in-
side an atomic action then the processes involved can be
rolled back to the start of the action and alternative algo-
rithms executed; the atomic action ensures that processes
have not passed any erroneous values through communica-
tion with processes outside the action. When atomic actions
are used in this way they are called conversations [15].

With conversations, each action statement contains a re-
covery block. For example, the following illustrates a com-
ponent of a three process conversation. This component
will be executed by process P;; P, and P, will execute simi-
lar structures:
action A with (P, P,) do

ensure <acceptance test>
by

—— primary module
else by

-— alternative module
else by
-— alternative module
else error

end A;

The basic semantics of a conversation can be summarized
as follows:

* On entry to the conversation, the state of a process is
saved. The set of entry points forms the recovery line.

* While inside the conversation, a process is only al-
lowed to communicate with other processes active in
the conversation and general resource managers. As
conversations are built from atomic actions, this
property is inherited.

* In order to leave the conversation, all processes active
in the conversation must have passed their acceptance
test. If this is the case then the conversation is finished
and all recovery points are discarded.

o If any process fails its acceptance test, all processes have
their state restored to that saved at the start of the conver-
sation and they execute their alternative modules. It is,
therefore, assumed that any error recovery to be per-
formed inside a conversation must be performed by
all processes taking part in the conversation.

» Conversations can be nested, but only strict nesting is
allowed.

+ If all alternatives in the conversation fail then recov-
ery must be performed at a higher level.

109

It should be noted that in conversations, as defined by
Randell [15], all processes taking part in the conversation
must have entered the conversation before any of the other
processes can leave. This differs from the semantics de-
scribed here. If a process does not enter into a conversation,
either because of tardiness or because it has failed, then as
long as the other processes active in the conversation do not
wish to communicate with it then the conversation can
complete successfully. If a process does attempt to commu-
nicate with a missing process then it can either block and
wait for the process to arrive or it can wait for a defined
time interval and then continue. Adopting this approach
has two benefits [16]:

1) It allows conversations to be specified where partici-
pation is not compulsory.

2) It allows processes with deadlines to leave the con-
versation, continue, and if necessary take some alter-
native action.

Conversations have been discussed by Kim [7] in the
context of extensions to Concurrent Pascal and Tyrrell and
Holding [17], and Jalote and Campbell [18], [19] in the con-
text of CSP.

Although conversations allow groups of processes to co-
ordinate their recovery, they have been criticized. One im-
portant point is that when a conversation fails, all the proc-
esses are restored and all enter their alternative modules.
This forces the same processes to communicate again to
achieve the desired effect; a process cannot break out of the
conversation. This may not be what is required. Gregory
and Knight [16] point out that in practice when one process
fails to achieve its goal in a primary module through com-
munication with one group of processes, it may wish to
communicate with a completely new group of processes in
its secondary module. Furthermore, the acceptance test for
this secondary module may be quite different. There is no
way to express these requirements using conversations. To
overcome some of the problems associated with conversa-
tions, Gregory and Knight [16] have proposed an alterna-
tive approach to backward error recovery with concurrent
processes.

3.2 Atomic Actions and Forward Error Recovery

Although backward error recovery enables recovery from
unanticipated errors, it is difficult to undo any operation
that may have been performed in the environment in which
the system operates. Consequently, forward error recovery
and exception handling must also be considered. In this
section, exception handling between the concurrent proc-
esses involved in an atomic action is discussed.

With backward error recovery, when an error occurs all
processes involved in the atomic action participate in re-
covery. The same is true with exception handling and for-
ward error recovery. If an exception occurs in one of the
processes active in an atomic action then that exception is
raised in all processes active in the action. The exception is
said to be asynchronous as it originates from another proc-
ess. The following is a possible Ada-like syntax for an
atomic action supporting exception handling. As with con-
versations this is executed by process P, with processes P,
and P, executing similar structures.

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

action A with (P, P,) do
—-—the action
exception
when exception_Y =>
—-— sequence of statements
when exception_Z =>
—— sequence of statements
when others =>
raise atomic_action_failure;
end A;

With the termination model of exception handling, if all
processes active in the action have a handler and all handle
the exception without raising any further exception, then
the atomic action completes normally. If a resumption
model is used, once the exception has been handled, the
processes active in the atomic action resume their execution
at the point where the exception was raised.

With either model, if there is no exception handler in any
one of the processes active in the action or one of the handlers
fails then the atomic action fails with a standard exception
atomic_action_failure. This exception is raised in all the in-
volved processes.

There are two issues which must be considered when
exception handling is added to atomic actions: resolution of
concurrently raised exceptions and exceptions in nested
actions [4]. These are now briefly reviewed.

3.2.1 Resolution of Concurrently Raised Exceptions

It is possible for more than one process active in an atomic
action to raise different exceptions at the same time. As
Campbell and Randell [4] point out, this event is likely if
the errors resulting from some fault cannot be uniquely
identified by the error detection facility provided by each
component of the atomic action. If two exceptions are si-
multaneously raised in an atomic action then there may be
two separate exception handlers in each process. It may be
difficult to decide which one should be chosen. Further-
more, the two exceptions in conjunction constitute a third
exception which is the exception which indicates that both
the other two exceptional conditions have occurred.

In order to resolve concurrently raised exceptions,
Campbell and Randell propose the use of an exception tree.
If several exceptions are raised concurrently then the ex-
ception used to identify the handler is that at the root of the
smallest subtree that contains all the exceptions (although it
is not clear how to combine any parameters associated with
this exception). Each atomic action component can declare
its own exception tree; the different processes involved in
an atomic action may well have different exception trees.

3.2.2 Exceptions and Internal Atomic Actions

Where atomic actions are nested, it is possible for one proc-
ess active in an action to raise an exception when other
processes in the same action are involved in a nested action.
Fig. 1 illustrates the problem.

When the exception is raised, all processes involved
must participate in the recovery action. Unfortunately, the
internal action, by definition, is indivisible. To raise the ex-
ception in that action would potentially compromise that
indivisibility. Furthermore, the internal action may have no
knowledge of the possible exception that can be raised.

P1 P2 P3 P4 P5 P6

Action A

Excgption
raisqd here

1
1
1
1
1
1
1
1
1
1
1
1
1
1
Y VvV oy
Fig. 1. An exception in a nested atomic actions.

Campbell and Randell [4] have discussed two possible
solutions to this problem. The first solution is to hold back
the raising of the exception until the internal action has fin-
ished. This they reject because:

* In a real-time system the exception being raised may
be associated with the missing of a deadline. To hold
back the recovery procedure may seriously place in
jeopardy the action’s timely response.

* The error condition detected may indicate that the
internal action may never terminate because some
deadlock condition has arisen.

For these reasons, Campbell and Randell allow internal
actions to have a predefined abortion exception. This ex-
ception is raised to indicate to the action that an exception
has been raised in a surrounding action and that the pre-
conditions under which the action was invoked are no
longer valid. If such an exception is raised, the internal ac-
tion should invoke fault-tolerance measures to abort itself.
Once the action has been aborted, the containing action can
handle the original exception.

If the internal action cannot abort itself then it must sig-
nal an atomic action failure exception. This may then be
combined with the outstanding exception so as to affect the
choice of recovery to be performed by the surrounding ac-
tion. If no abortion exception is defined, the surrounding
action must wait for the internal action to complete. Alter-
natively, a default handler could be provided which would
raise the atomic action failure exception.

4 ApDA95

Ada 83, along with most concurrent programming lan-
guages, was unable to support the full functionality of
atomic actions [9] in a usable manner. Ada 95 does not
support atomic actions directly but does provide a rich
supply of language primitives which potentially can be
used to implement the same functionality. In particular:
packages. Provide encapsulation and information hiding.
exceptions. Provide a basic termination model of exception
handling.
protected objects. Provide a monitor-like communication
mechanism.
asynchronous transfer of controls (ATC). Provides a mecha-
nism by which one task can asynchronously obtain the
attention of another.

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

tagged types. Provide the framework from within which ob-
ject-oriented programming can be performed.

controlled types. Provide the mechanism by which finaliza-
tion code can be associated with objects.

Packages and exceptions were available in Ada 83 and,
therefore, will not be discussed further. However, protected
objects, ATC, tagged types and controlled types are new
and will be briefly described. For a full discussion on these
aspects of Ada 95, see Burns and Wellings [20].

4.1 Protected Objects

A protected object in Ada 95 is similar in concept to a con-
ditional critical region [21], [22] and a monitor [23], [24].
Data which is to be accessed with mutual exclusion is en-
capsulated in a protected object. This data can only be ac-
cessed by subprograms and entries also declared in the
protected object. Execution of a procedure or an entry re-
quires mutual exclusive access over the object. As with
tasks in Ada, protected objects may be declared as instances
of a type, or a single one-off protected object (of an anony-
mous type). For example, the following protected object is a
single instance of an anonymous protected type which al-
lows mutually exclusive access to shared data.

protected Shared_Data is

—— operations on the shared data
procedure Write (D Data) ;
procedure Read (D: out Data);

private
The_Data Data := Some_Initial_Value;
—— the encapsulated data

end Shared_Data;

protected body Shared_Data is

procedure Write (D Data) is
begin
The_Data := D;

end Write;

procedure Read (D
begin
D := The_Data;
end Read;
end Shared_Data;

out Data) is

The difference between a procedure and an entry in a pro-
tected object is as follows. A procedure simply provides
mutual exclusive access to the data. If there is no other task
active in the protected object, a call on the procedure will
gain immediate access to the data. An entry has an associ-
ated guard (called a barrier). A call to a guarded entry will
only be allowed if the guard evaluates to true and there is
no other task active in the protected object. If the guard is
false, the task will be placed on a queue associated with the
entry. The following shows the above reader/writer exam-
ple when a write must initialize the data before it is read.

protected Shared_Data is

procedure Write (D Data) ;
entry Read(D: out Data);

private
The_Data Data;

Data_Available Boolean :=

False;

111

end Shared_Data;
protected body Shared_Data is

procedure Write (D Data) is
begin
The_Data := D;
Data_Available := True;
—— indicate that the data is available

end Write;

entry Read (D : out Data) when Data_Available is

begin
D := The_Data;
end Read;

end Shared_Data;

Inside a protected entry, the call can be requeued back onto
the same entry or another entry of the same (or different)
protected object.

4.2 ATC

The Ada 83 selective entry call facility is extended in Ada
95 to allow a task to execute a section of code whilst it is
waiting for the entry (or timeout) to occur. If the code fin-
ishes before the entry call is accepted (or the timeout ex-
pires) then the call (or timeout) is cancelled. If the call is
accepted (or timeout expires) before the section of code fin-
ishes then the execution of the code is aborted.

The following illustrates the syntax:
select

Trigger.Event; —- trigger is a protected object

—— optional sequence of statements to be

—— executed after the event has been received
then abort

—-— abortable sequence of statements
end select;

4.3 Tagged Types and Object-Oriented

Programming
Ada supports object-oriented programming through two
complimentary mechanisms which provide type extensions
and dynamic polymorphism: tagged types and class-wide
types.

In Ada, a new type can be created from an old type and
some of the properties of the type changed using derived
types. For example, the following declares a new type
called setting which has the same properties as the Inte-
ger type but a restricted range. Setting and Integer are
distinct and cannot be interchanged:

type Setting is new Integer range 1 100;

New operations manipulating Setting can be defined;
however no new components can be added. Tagged types
remove this restriction and allow extra components to be
added to a type. Any type that might potentially be ex-
tended in this way must be declared as a tagged type. Be-
cause extending the type inevitably leads to the type be-
coming a record, only record types (or private types which
are implemented as records) can be tagged.

Tagged types provide the mechanism by which types
can be extended incrementally. The result is that a pro-
grammer can create a hierarchy of related types. Other
parts of the program may now wish to manipulate that hi-

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

erarchy for their own purposes without being too con-
cerned which member of the hierarchy it is processing at
any one time. Ada is a strongly typed language and, there-
fore, a mechanism is needed by which an object from any
member of the hierarchy can be passed as a parameter.

Class-wide programming is the technique which enables
programs to be written which manipulate families of types.
Associated with each tagged type, T, there is a type
T'Class which comprises all the types which are in the
family of types starting at T. If an operation is called with a
parameter whose type is class-wide, then run-time dis-
patching occurs to the appropriate operation for the associ-
ated actual type.

An object is typically defined by means of a package
containing a tagged type and its primitive operations.

package Objects is
type Obj_Type is tagged limited private;

procedure Opl (O
procedure Op2 (O

in out Obij_Type);
in out Obj_Type);

procedure Class_Wide_Op (O : in Obj_Type’Class);

private

type Obj_Type is tagged limited
record

ené.éecord;
end Objects;
The object can be extended (possibly by a child library
package—which allows access to the private part in the
parent’s declaration).

package Objects.Extended is
type Extended Type is new Obj_Type with private;

in out Extended_Type);
in out Extended_Type);

procedure Opl (O
procedure Op2 (O

private
type Extended_Type is new Obj_Type with
record

end record;
end Objects.Extended;

4.4 Controlled Types

Further support for object-oriented programming is pro-
vided by controlled types. With these types it is possible to
define subprograms that are called (automatically) when
objects of the type:

* are created—initialize;
* cease to exist—finalize;
* are assigned a new value—adjust.

To gain access to these features, the type must be de-
rived from Controlled, a predefined type declared in the
library package Ada.Finalization; that is, it must be part
of the controlled class hierarchy. The package
Ada.Finalization defines procedures for Initialize,
Finalize, and Adjust. When a type is derived from con-
trolled these procedure may be overridden. As objects
typically cease to exist when they go out of scope, the exit-
ing of a block may involve a number of calls of Finalize.
A more restricted type Limited_Controlled provides
initialization and finalization only.

5 REPRESENTING RECOVERABLE ATOMIC ACTIONS
IN ADA 95

In Section 2.1, the requirements for atomic actions were
defined. These are now briefly reviewed to evaluate Ada 95
as a potential language for implementing software fault
tolerance techniques.

1) Well-defined boundaries. Each atomic action can be en-
capsulated in one or more Ada packages and hence
the side boundaries of each action are well-defined.
Subprograms (procedures and functions) in the pack-
age interfaces can be used to provide the start and
end points for each task.

2) Indivisibility. Protected objects provide the mecha-
nisms with which the indivisibility property of an ac-
tion can be implemented. Protected entries can be
used to provide the required synchronization on exit
from the action.

3) Nesting. Nested actions can be supported by imple-
menting the actions as abstract data types.

4) Concurrency. Concurrency between the execution of
atomic actions is provided by the concurrency be-
tween tasks. Groups of tasks which do not share an
action will automatically execute concurrently.

5) Recovery. Backward and forward recovery can be pro-
grammed using a combination of protected objects,
ATC, and exceptions.

The above points suggest that Ada 95 does have the appro-
priate mechanisms to facilitate the implementation of soft-
ware fault tolerance techniques. The remainder of this sec-
tion explores in detail how these mechanisms can be used.
The overall approach is illustrated in Fig. 2.

Atomic Action Package

[Task1

Action Procedure for Task 1

Controller Protected Object

Controller Entry/Procedures

Action Procedure for Task 2

‘Task 3

Action Procedure for Task 3

Ilﬁ

Fig. 2. An Ada 95 framework for implementing atomic actions.

5.1 Simple Actions

To show how atomic actions can be programmed in Ada,
consider first a simple non-nested action with no recovery
between, say, three tasks. The action is encapsulated in a
package with three visible procedures, each of which is
called by the appropriate task. It is assumed that no tasks
are aborted and that there are no deserter tasks.

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

package Simple_Action is

procedure T1 (Params Param); —-- called by
-— Task 1

procedure T2 (Params Param); —-- called by
—— Task 2

procedure T3 (Params Param); -- called by
-— Task 3

end Simple_Action;

The body of the package automatically provides the well-
defined boundary, so all that is required is to provide the
indivisibility. A protected object, Action_controller, can
be used for this purpose (it provides a similar function to
the Coordinated Atomic Action manager introduced by
Randell et al. [25], [26]). The package’s visible procedures
call the appropriate entries in the protected object. Four
entries are sufficient. Each component of the action calls its
own individual entry to indicate that it has arrived. On fin-
ishing its component, it calls the Finished entry.

package body Simple_Action is

protected Action_Controller is

entry First; -- called by T1

entry Second; —- called by T2

entry Third; -- called by T3

entry Finished; -- called by all tasks
private

First_Here Boolean := False;

Second_Here Boolean := False;

Third_Here Boolean := False;

Release Boolean := False;

end Action_Controller;

—— definition of local protected objects for
—-— controlling resources
protected body Action_Controller is separate;

procedure T1 (Params) is

begin
Action_Controller.First;
—-— acquire resources
—-— the action itself,
—-— executing T2
—-— and T3 via resources
Action_Controller.Finished;
—-— release resources

end T1;

communicates with tasks

—— similar for second and third task
begin

—-— any initialization of local resources
end Simple_Action;

The implementation of Action_Controller is given
below.

separate (Simple_Action)
protected body Action_Controller is
entry First when not First_Here is
begin
First_Here :=
end First;

True;

entry Second when not Second_Here is
begin

Second_Here :=
end Second;

True;

entry Third when not Third_Here is
begin

113

Third_Here := True;
end Third;
entry Finished when Release or Finished’Count
= 3 is
begin
if Finished’Count = 0 then
Release := False;
First_Here := False;
Second_Here := False;
Third_Here := False;
else
Release := True;
end if;

end Finished;
end Action_Controller;

The barriers of the entries First, Second, and Third
ensure that only three tasks can be active in the action at
any one time. Only when all three tasks have called the
Finished entry is the barrier lowered and all tasks re-
leased. The Boolean Release is used to program the re-
quired release conditions on Finished. The first two calls
on Finished will be blocked as both parts of the barrier
expression are false. When the third call comes, the Count
attribute will become three; the barrier comes down and
one task will execute the entry body. The Release variable
ensures that the other two tasks are both released. The last
task to exit must ensure that the barrier is raised again.

Note that Ada’s task identifiers can be used if it is neces-
sary to validate the identity of each task performing the
action components.

In the following sections, it will be assumed that only
those tasks participating in the action use the package im-
plementing the action and that each task will only call its
associated operation (and no other).

5.2 Backward Error Recovery

In this section, the Ada ATC facility and exception handling
are used to implement backward error recovery. Any
scheme based on backward error recovery requires the use
of some form of recovery cache. This section assumes the
existence of the following generic package for saving and
restoring a task’s variables. It is assumed that the underly-
ing Ada implementation and run-time are fault free, and
therefore the strong typing provided by Ada will ensure
that the Ada program itself remains viable.
generic

type Data is private;
package Recovery_Cache is

procedure Save (D in Data);

procedure Restore (D out Data);
end Recovery_Cache;

Consider three Ada tasks which wish to enter into a recov-
erable atomic action. Each will call their appropriate proce-
dure in the package given below.

package Conversation is

procedure T1 (Params Param); -- called by
-— task 1

procedure T2 (Params Param); —-—- called by
-— task 2

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

procedure T3 (Params Param); —- called by

-— task 3

Atomic_Action_Failure exception;

end Conversation;

The body of the package encapsulates the action and en-
sures that only communication between the three tasks is
allowed during the conversation.' The Controller pro-
tected object is responsible for propagating any error con-
dition noticed in one task to all tasks, saving and restoring
any persistent data in the recovery cache, and ensuring that
all tasks leave the action at the same time. It contains three
protected entries and a protected procedure.

* The Wait_Abort entry represents the asynchronous
event on which the tasks will wait whilst performing
their part of the action (the first call, indicates the start
of a new action and ensures that the Controller
saves any persistent data in the recovery cache—the
requeue facility is used to place the first task back on
the queue). The entry is also responsible for restoring
any persistent data (defined within the package
body).

» Each task calls Done if it has finished its component of
the action without error. Only when all three tasks
have called Done will they be allowed to leave.

* Similarly, each task calls Cleanup if it has had to per-
form any recovery.

» If any task recognizes an error condition (either be-
cause of a raised exception or the failure of the ac-
ceptance test), it will call signal_abort. This will set
the flag Killed to true, indicating that the tasks must
be recovered.

Note, that as backward error recovery will be performed,
the tasks are not concerned with the actual cause of the er-
ror. When RKilled becomes true, all tasks in the action re-
ceive the asynchronous event. Once the event has been
handled, all task must wait on the Cleanup entry so that
they all can terminate the conversation module together.

with Recovery_Cache;
package body Conversation is

Primary_Failure, Secondary_Failure,
Tertiary_Failure: exception;
type Module is (Primary, Secondary, Tertiary);

package Persistent_Cache is new Recovery_Cache
(o) 7

—-— for any persistent data to be retained

—— between conversations

protected Controller is
entry Wait_Abort;
entry Done;
entry Cleanup;
procedure Signal_Abort;

private
Killed Boolean := False;
Releasing_Done Boolean := False;

1. In practice, this might be difficult to ensure because of Ada’s scope
rules. One way of increasing the security would be to require that the Con-
versation package is at the library level and its body only references
pure (state free) packages.

Releasing_Cleanup Boolean := False;
Informed Integer := 0;
New_Conversation Boolean := True;

end Controller;

—— any local protected objects for communication
-— between actions
protected body Controller is
entry Wait_Abort when Killed or New_Conversation
is
begin
if New_Conversation then
—— save any persistent data in the recovery
—— cache
Persistent_Cache.Save(...);
New_Conversation := False;
requeue Wait_Abort with abort;
--no return to here

end if;
—-— only executed when Killed = True
Informed := Informed + 1;
if Informed = 3 then
Killed := False;
Informed := 0;
Persistent_Cache.Restore(...);
—-— restore any persistent data
end if;
end Wait_Abort;
procedure Signal_Abort is
begin
Killed := True;
end Signal_Abort;
entry Done when Done’Count = 3 or
Releasing_Done is
begin
if Done’Count > 0 then
Releasing_Done := True;
else
Releasing_Done := False;
New_Conversation := True;
end if;
end Done;
entry Cleanup when Cleanup’Count = 3 or
Releasing_Cleanup is
begin
if Cleanup’Count > 0 then
Releasing_Cleanup := True;
else
Releasing_Cleanup := False;
New_Conversation := True;
end if;
end Cleanup;
end Controller;
procedure T1 (Params Param) is separate;
procedure T2 (Params Param) is separate;
procedure T3 (Params Param) is separate;

end Conversation;

The code for each task is contained within a single pro-
cedure: e.g., T1. Within such a procedure, three attempts
are made to perform the action. If all attempts fail, the ex-
ception Atomic_Action_Failure is raised. Each attempt
is surrounded by a call that saves the state and restores the

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

state (if the attempt fails). Each attempt is encapsulated in a
separate local procedure (T1_Primary, etc.), which con-
tains a single ‘select and then abort’ statement to perform
the required protocol with the controller. The recovery
cache is used by each task to save its local data.

separate Conversation)

procedure T1 (Params Param) is
procedure TlPrimary is

begin
select
Controller.Wait_Abort; -- triggering event
Controller.Cleanup; —— wait for all to finish

raise Primary_Failure;
then abort
begin
—— code to implement atomic action,
—— the acceptance test might raise
—-— an exception
if Accept_Test = Failed then
Controller.Signal_Abort;
else
Controller.Done; —— signal completion
end if;
exception
when others =>
Controller.Signal_Abort;
end;
end select;
end Tl _Primary;

procedure Tl_Secondary is ... ;
procedure T1l_Tertiary is ... ;

package My_Cache is new Recovery_Cache(..);
—— for local data
begin
My_Cache.Save (..);
for Try in Module loop
begin
case Try is
when Primary => Tl_Primary; exit;
when Secondary => T1l_Secondary; exit;
when Tertiary => T1l_Tertiary;
end case;
exception
when Primary_Failure =>
My_Cache.Restore(..);
when Secondary_Failure =>
My_Cache.Restore(..);
when Tertiary Failure =>
My_Cache.Restore(..);
raise Atomic_Action_Failure;
when others =>
My_Cache.Restore(..);
raise Atomic_Action_Failure;
end;
end loop;
end T1;

—— similarly for T2 and T3

Fig. 3. illustrates a simple state transition diagram for a
participating task in an Ada 95-based conversation.

115

Enter Action

Executing and

waiting for an abort

— |

Abort triggered and

\

Action component

Signal abort
Raising an exception done

|

Exception handled

|

Waiting cleanup

Exit Action Normally

Exit Action Failed

Fig. 3. Simple state transition diagram for a conversation.

5.3 Forward Error Recovery

Ada’s ATC facility can be used with exceptions to implement
atomic actions with forward error recovery between concur-
rently executing tasks. Consider again the following package
for implementing an atomic action between three tasks.

package Action is

procedure T1 (Params Param); —-- called by
-— task 1
procedure T2 (Params Param); —-- called by
-— task 2
procedure T3 (Params Param); —-—- called by
-— task 3
Atomic_Action_Failure exception;

end Action;

As with backward error recover, the body of the package
encapsulates the action and ensures that only communica-
tions between the three tasks are allowed. The controller
protected object is responsible for propagating any excep-
tion raised in one task to all tasks, and for ensuring that all
leave the action at the same time.

with Ada.Exceptions;
use Ada.Exceptions;
package body Action is

type Vote_T is(Commit, Aborted);
protected Controller is
entry Wait_Abort (E: out Exception_Id);
entry Done;
entry Cleanup (Vote:
out Vote_T);
procedure Signal_Abort (E:

private

Vote_T; Result

Exception_1Id);

entry Wait_Cleanup (Vote: Vote_T; Result
out Vote_T);

Killed Boolean := False;

Releasing_Cleanup Boolean := False;

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

Releasing_Done Boolean := False;
Reason Exception_Id;
Final_Result Vote_T := Commit;
Informed Integer := 0;

end Controller;

—— any local protected objects for
—— communication between actions
protected body Controller is
entry Wait_Abort (E: out Exception_Id) when

Killed is
begin

E := Reason;

Informed := Informed + 1;

if Informed = 3 then
Killed := False;
Informed := 0;

end if;

end Wait_Abort;

entry Done when done’Count = 3 or
Releasing_Done is
begin
if Done’Count > 0 then
Releasing_Done := True;
else
Releasing_Done := False;
end if;
end Done;

entry Cleanup (Vote: Vote_T; Result:
out Vote_T) when True is

begin
if Vote = Aborted then
Final_Result := Aborted;
end if;

requeue Wait_Cleanup with abort;
end Cleanup;

procedure Signal_Abort (E: Exception_Id) is

begin
Killed := True;
Reason := E;

end Signal_Abort;

entry Wait_Cleanup (Vote: Vote_T; Result:
out Vote_T)
when Wait_Cleanup’Count = 3 or
Releasing_Cleanup is

begin

Result := Final_Result;

if Wait_Cleanup’Count > 0 then
Releasing_Cleanup := True;

else
Releasing_Cleanup := False;
Final_Result := Commit;

end if;

end Wait_Cleanup;
end Controller;
procedure Tl (Params: Param) is
X : Exception_Id;
Decision Vote_T;
begin
select
Controller.Wait_Abort (X);
-— triggering event
Raise_Exception (X);
—— raise common exception

then abort

begin
—— code to implement atomic action
Controller.Done; —-- signal completion
exception

when E: others =>
Controller.Signal_Abort
(Exception_TIdentity(E));
end;
end select;
exception
—-— 1f any exception is raised during the
-— action
—— all tasks must participate in the recovery
when E: others =>
—— Exception_Identity(E) has been raised
-— in all tasks

—-— handle exception
if Handled_Ok then

Controller.Cleanup (Commit, Decision);
else

Controller.Cleanup (Aborted, Decision);
end if;
if Decision = Aborted then

raise Atomic_Action_Failure;

end if;
end T1;
procedure T2 (Params Param) is ...;
procedure T3 (Params Param) is ...;

end Action;

Each component of the action (T1, T2, and T3) has
identical structure. The component executes a select state-
ment with an abortable part. The triggering event is sig-
naled by the controller protected object if any compo-
nent indicates that an exception has been raised and not
handled locally in one of the components. The abortable
part contains the actual code of the component. If this code
executes without incident, the controller is informed that
this component is ready to commit the action. If any excep-
tions are raised during the abortable part, the Controller
is informed and the identity of the exception passed. Note
that, unlike backward error recovery (given in the previous
section), here the cause of the error must be communicated.

If the controller has received notification of an un-
handled exception, it releases all tasks waiting on the
Wait_Abort triggering event (any task late in arriving will
receive the event immediately it tries to enter into its select
statement). The tasks have their abortable parts aborted (if
started), and the exception is raised in each task by the
statement after the entry call to the controller. If the excep-
tion is successfully handled by the component, the task in-
dicates that it is prepared to commit the action. If not, then
it indicates that the action must be aborted. If any task indi-
cates that the action is to be aborted, then all tasks will raise
the exception Atomic_Action_Failure. Fig. 4 shows the
approach using a simply state transition diagram.

Fig. 4 illustrates that it is possible to program atomic ac-
tions with forward error recovery in Ada. However, only
the first exception to be passed to the controller will be
raised in all tasks. It is not possible to get concurrent raising

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

of exceptions, as any further exception raised in an abort-
able part is lost when it is aborted.

Executing and also

awaiting for an abort

fail acceptance test pass acceptance test

aborted l

Abort triggered

|

‘Waiting for cleanup

|

Raising exception for

Signal abort action Waiting on done

Exit conversation normally

module failure

Restore state and
try alternative module

Fig. 4. Simple state transition diagram illustrating forward error recovery.

5.4 The Deserter Problem and Task Aborts

So far, it has been assumed that all expected tasks arrive
and leave the action. If a task fails to arrive, all tasks will be
blocked trying to leave. To solve the deserter problem, it is
necessary to know how many tasks have entered the action.
When all the tasks that have entered are ready to leave, the
action can complete. A simple modification to the action
controller protected object allows for this:

protected Controller is
entry Wait_Abort (E: out Exception_Id);
entry Done;
entry Cleanup (Vote:
out Vote_T);
procedure Signal_Abort (E:
private
entry Entered(E:
entry Wait_Cleanup (Vote:
out Vote_T);

Vote_T; Result
Exception_1Id);

out Exception_Id);
Vote_T; Result

Killed Boolean := False;
Releasing_Done Boolean := False;
Releasing_Cleanup Boolean := False;
Reason Exception_Id;

Final_ Result Vote_T := Commit;
Active Integer := 0;

end Controller;

A new private entry is provided called Entered and a
count, Active, of the number of tasks active in the action.
When a task calls the wait_aAbort entry as part of the ATC
statement, the call is immediately accepted. The count in-
cremented, and the call requeued on the Entered entry.

Entry Wait_Abort (E:
True is

out Exception_Id) when

begin
Active := Active + 1;
requeue Entered with abort;

117

end Wait_Abort;

entry Entered(E: out Exception_Id) when Killed is
begin

E := Reason;
end Entered;

The guards on the Done and Wait_Cleanup entry are now
simply changed to include Active, which is reset to zero
when all tasks have finally finished the action:

entry Done when Done’Count = Active or

Releasing_Done is

begin
if Done’Count > 0 then
Releasing_Done := True;
else
Releasing_Done := False;
Active := 0;
end if ;
end Done;
entry Wait_Cleanup (Vote: Vote_T;

Result :out Vote_T)
when Wait_Cleanup’Count =
Releasing_Cleanup is

Active or

begin

Result := Final_Result;

if Wait_Cleanup’Count > 0 then
Releasing_Cleanup := True;

else
Releasing_Cleanup := False;
Final Result := Commit;
Active := 0;
Killed := False;

end if ;

end Wait_Cleanup;

All that is now required is for the Action itself to contain
timeouts on any synchronous communication which might
block if a cooperating task is absent. If the communication
was essential to the action, then an exception can be raised
if the timeout expires.

One final problem to address is what happens if a task
executing an atomic action is aborted by another task out-
side the action. To facilitate recovery in the action, it is nec-
essary to use another Ada 95 facility called Controlled
types. Objects of a controlled type can have (amongst other
things) finalization routines defined. Hence, each action
procedure has the following extra components:

type Abort_Recovery is new
Finalization.Limited_Controlled with
null record;
procedure Finalize;

Where, finalization is used to signal to the action controller
that the action is to be finalized:

procedure Finalize is

begin
Controller.Deregister;

end Finalize;

procedure T1 is

Ar : Abort_Recovery;
begin

end T1;

118

If the caller of T1 is aborted, the Ar controlled variable
goes out of scope. However, before this can happen, the
finalization procedure is called. Note that the Finalize
routine is called every time the variable goes out of scope —
irrespective of whether the action was aborted or not!
Hence, the controller itself must recognize when the
action is being finalized prematurely:

protected body Controller is

procedure Deregister is

begin
if Active /= 0 then —— premature finalization
Killed := True;

True;
True;

Releasing_Done :=
Releasing_Cleanup :=

Reason := Atomic_Action_Failure’Identity;
Final_Result := Aborted;
end if;

end Deregister;

end Controller;

If controlled types are used, it is possible to optimize the
solution to the deserter problem by defining an Initial-
ize procedure which calls the controller to register its
arrival. Furthermore, it is possible to use the Deregister
procedure to establish the correct post conditions and hence
simplify Done and wait_Cleanup. This approach is illus-
trated in Section 5.6;

5.5 Nested Actions
Implementing nested actions in Ada 95 requires extensions
to the above algorithms. The first is to convert the basic
approach so that each atomic action is a type and, therefore,
more than one instance can be created. This can easily be
achieved by introducing the notion of an action identifier.
For example, consider the implementation of actions with
forward error recovery given in the previous section. The
package specification now becomes:
package Action is

type Action_Id is private;

function New_Action return Action_Id;
Other Params

procedure T1 (A Action_1Id,

Param) ;

procedure T2 (A Action_Id, Other Params
Param) ;

procedure T3 (A Action_Id, OtherParams
Param) ;

Atomic_Action_Failure exception;

private

type Action T;

type Action_Id is access Action T;
end Action;

As Action_Id is private, assignment and comparison are
available. The implementation of the Action_T type is a
record containing an instance of the Controller (which
becomes a protected type) and instances of any persistent
data and their controlling access protocols:
type Action_T is

record

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

C : Controller;

end record;

The function New_Action creates a new instance of the
Action_T and hence creates a new Controller.

The interface procedures use the Action_1Id to generate
the call to the correct controller. For example, if A is of type
Action_Id:

A.C.Wait_Abort;

Once action types have been introduced then nested ac-
tion can be called within the body of an action. This will pro-
duce the following Ada structure (where Nested_Action is
a package implementing another atomic action and, there-
fore, contains its own Action_Id):

with Nested_Action;

package body Action
N : Nested_Action.Action_Id :=
Nested_Action.New_Action;

procedure T1 (A: Action_Id, OtherParams
Param) is
X : Exception_Id;
Decision Vote_T;
begin
select
A.C.Wait_Abort (X);
RaiseException (X);
then abort
begin
—-— code to implement atomic action
—— including
Nested_Action.T1(N,...);
-— nested action call
A.C.Done; —- completion of outer action
exception
when E: others =>
A.C.Signal_Abort (Exception_TIdentity (E));
end;
end select;
exception
when E: others =>
Exception_TIdentity (E) has been raised
in all tasks

handle exception
Handled_Ok then
A.C.Cleanup (Commit,
else
A.C.Cleanup (Aborted,
end if;
if Decision = Aborted then
raise Atomic_Action_Failure;
end if;
end T1;

Decision);

Decision);

end Action;
If this code is expanded (to remove the explicit procedure
Nested_Action.T1), then the following equivalent struc-
ture is obtained:
select

A.C.Wait_Abort(...);

Raise_Exception(...);
then abort

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

begin
—-— code to implement atomic action
—— including
select
N.C.Wait_Abort(..);
Raise_Exception(..);
then abort
begin
—— code to implement inner atomic action
N.C.Done; —-- signal completion
exception
when E: others =>
N.C.Signal_Abort (Exception_Identity
(E));
end;
end select;
A.C.Done; —-— signal completion
exception
when E: others =>

A.C.Signal_Abort (Exception_Identity
(E));
end;
end select;

When the outer action has an exception signalled, the
outer ‘then abort’ sequence of code is aborted. This in turn
will cause the inner action to be aborted and the finalization
recovery (introduced in the previous section) will be in-
voked. Of course, a parameter needs to be added to the
Abort_Recovery type to allow the correct controller to be
called:

type Abort_Recovery (N Action_Id) is new
Finalization.Limited Controlled with
null record;
procedure Finalize (Ar in out Abort Recovery) is
begin
Ar.N.C.Deregister;
end Finalize;

5.6 Object-Oriented Programming and Reusability
The action systems developed so far can easily be rewritten
to make them extensible. Once written and debugged, they
can be used in new systems.

For example, consider a basic package which provides
only the action controller supporting forward error recov-
ery. If the controller protected type is placed in the pri-
vate part of the package, the child packages can be written
which will implement atomic actions for particular systems.
The code is, therefore, reused.
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Finalization; use Ada.Finalization;
package Atomic_Action_Support is

type Action_T is abstract tagged limited

private;
Atomic_Action_Failure exception;
private
type Vote_T is (Commit, Aborted);

protected type Controller is
entry Wait_Abort (E: out Exception_Id);
entry Done;
entry Cleanup (Vote:
out Vote_T);

Vote_T; Result

119

procedure Signal_Abort (E:

entry Register;

procedure Deregister;
private

Exception_1Id);

entry Wait_Cleanup (Vote: Vote_T; Result
out Vote_T);

Killed Boolean := False;

Releasing_Cleanup Boolean := False;

Releasing_Done Boolean := False;

Reason Exception_Id;

Final_Result Vote_T := Commit;

Active Integer := 0;

New_Action Boolean := True;

Normal_Termination Boolean := False;

end Controller;

type Action_T is abstract tagged limited
record
C : Controller;
end record;
end Atomic_Action_Support;

Notice in this example, that the Action_T is now a tagged
type. This allows the type to be extended by the child pack-
ages.

The body of the package simply contains the body of the
Controller. Actions can now be created by extending the
Action_T type. An example of this is given in the next
Section. The full package is given as an appendix.

6 AN EXAMPLE ACTION SYSTEM

Consider an example of controlling the position of a three
axis robot. The software consists of several tasks including
a coordinate manager and three tasks controlling the robot
itself (one for each axis). The coordinate manager task in-
forms the other three tasks when a new position is required.
The act of moving from one position to another is an atomic
action; the rest of the system should only see the robot in
one position or another.

The action support for the robot is a child package of the
Atomic_Action_Support given in the previous section.
The Action_T is extended to include a protected type used
to communicate and synchronize between the four tasks.
Only when the coordinate manager task has written a new
position can the other tasks acquire it. The routines are
added for each task.

package Atomic_Action_Support.Robot is
type My_Action_T is new ActionT with private;

type Coordinate is range 0 180;
type Coordinates is record

X : Coordinate;

Y : Coordinate;

Z : Coordinate;

end record;

procedure Coord_Manager (A : access My Action_T;

New_Pos Coordinates) ;
procedure X_Coord (A access My_Action_T);
procedure Y_Coord (A access My_Action_T);
procedure Z_Coord(A access My_Action_T);

private

protected type Shared_Coord is

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

procedure Write_Coords (NewPos:
Coordinates) ;

entry Read_ X (X out Coordinate);

entry Read Y (Y out Coordinate);

entry Read_Z(Z out Coordinate);

private
Next_Pos Coordinates;
New_Value Boolean := False;
X_Got Boolean := False;
Y Got Boolean := False;
Z_Got Boolean := False;

end Shared_Coord;

type My_Action_T is new Action_T with
record
Sc : Shared_Coord
end record;

type Abort_Recovery (N
is new
Limited_Controlled with null record;

access My_Action_T)

procedure Finalize (Ar in out Abort_Recovery) ;
procedure Initialize (Ar :in out Abort_Recovery);

end Atomic_Action_Support.Robot;

Note, here Ada 95’s access parameters are used. This
avoids having to allocate the action’s data dynamically, and
allows run-time dispatching of operations to be used
should the action be further extended.

The body of the package is given below. The structure of
each interface procedure is similar to that given in previous
sections.

package body Atomic_ActionSupport.Robot is

procedure Finalize (Ar
begin

Ar.N.C.Deregister;
end Finalize;

in out Abort_Recovery) is

procedure Initialize(Ar : in out Abort_ Recovery) is
begin

Ar.N.C.Register;
end Initialize;

protected body Shared_Coord is separate;

procedure X_Coord (A
X : Exception_Id;
Decision Vote_T;
Next Coordinate;
Ar : Abort_Recovery (A);

begin
select

A.C.Wait_Abort (X);
RaiseException (X) ;
then abort
begin
—-— code to implement atomic action
—— including
A.Sc.Read_X (Next) ;
—-— move to new position

access My_Action_T) is

A.C.Done; --signal completion
exception
when E: others =>

A.C.Signal_Abort (Exception_TIdentity
(E));

end;
end select;
exception
when E: others =>

—-— move back to the origin

A.C.Cleanup (Aborted, Decision);

raise Atomic_Action_Failure;
end X_Coord;

—— similarly for Y_Coord and Z_Coord

procedure Coord_Manager (A
My_Action_T;
New_Pos Coordinates) is

X : Exception_Id;
Decision Vote_T;
Ar : Abort_Recovery (A);
begin
select
A.C.Wait_Abort (X);
Raise_Exception (X);
then abort
begin
—— code to implement atomic action
—— including
A.Sc.Write_Coords (New_Pos) ;
A.C.Done; —-- signal completion
exception
when E: others =>
A.C.Signal_Abort (Exception_Identity
(E));

access

end;
end select;
exception
when E: others =>
A.C.Cleanup (Aborted, Decision);
raise Atomic_Action_Failure
end Coord_Manager;
end Atomic_Action_Support.Robot;

The body of the Shared_coord protected object is

separate Atomic_Action_Support.Robot)
protected body Shared_Coord is

procedure Write_Coords (New_Pos: Coordinates)
is
begin
Next_Pos := New_Pos;
New_Value := True;

end Write_Coords;

entry Read_X (X when

New_Value is

out Coordinate)

begin

X := Next_Pos.X;

X_Got := True;

if Y Got and Z_Got then
X_Got := False;
Y_Got := False;
Z_Got := False;
New_Value := False;

end if;

end Read_X;

—-— similarly for Read_Y and Read_Z7
end Shared_Coord;

Finally the code for the four tasks can be given:

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

with Atomic_Action_Support.Robot;

use Atomic_Action_Support.Robot;

procedure Main is
Robot_Action : aliased My_Action_T;
—-— the action, all four tasks must enter
—-— before any can leave

type Dimension is(X, Y, Z);

task Control;
task type Axis (A : Dimension);

X_D : Axis(X); —-—- the three Axis controller
—-— tasks

Y D : Axis(Y);

Z_D : Axis(Z);

task body Control is

Start : Coordinates := (0,0,0);
Next : Coordinates;
begin
Coord_Manager (Robot_Action’Access, Start);
loop

—— determine next position
Coord_Manager (Robot_Action’Access, Next);
end loop;
exception
when Atomic_Action_Failure =>

end Control;

task body Axis is
begin
loop
case (A) is
when X => X_Coord (Robot_Action’Access);
when Y => Y_Coord(Robot_Action’Access);
when 7Z => Z_Coord (Robot_Action’Access);
end case;
—— perform any required operation at the
—-— new position
end loop;
exception{
when AtomicActionFailure =>

end Axis;
begin

null;
end Main;

One criticism of this approach is that the actions under-
taken by the clients involve a complex communication
protocol with the controller. This protocol can, however, be
abstracted out of the application code and put in the
Atomic_Action_Support package [27].

7 CONCLUSION

Atomic actions are a powerful dynamic structuring tech-
nique that allow software fault-tolerant systems to be im-
plemented. However, it is not clear how a programming
language or operating system should support their appli-
cation. No commercial programming language or operating
system provides direct support. The Ada 95 programming
language does, however, provide a rich set of mechanisms
to aid the programming of concurrent and real-time sys-

121

tems. This paper has shown how these facilities can be used
to implement all aspects of atomic actions.

The Ada facilities are impressive because each defines
support for particular functionality:

* encapsulation,

* communication and synchronization,
* exceptions,

* asynchronous transfer of control,

* object-oriented programming

* finalization.

These are the fundamental building blocks which allow
resuable atomic actions to be constructed. The ability to
program atomic actions in Ada should lead to their increase
use in the engineering of high integrity applications.

APPENDIX

In this appendix the full code for the final Atomic_Action_
Support package is given.

with Ada.Exceptions; use Ada.Exceptions;

with Ada.Finalization; use Ada.Finalization;
package Atomic_Action_Support is

type Action T is abstract tagged limited private;
Atomic_Action_Failure : exception;

private
type Vote_T is(Commit, Aborted);

protected type Controller is

entry Wait_Abort (E: out Exception_Id);

entry Done;

entry Cleanup (Vote: Vote_T; Result : out
Vote_T);

procedure Signal_Abort (E: Exception_Id);

entry Register;

procedure Deregister;

private

entry Wait_Cleanup (Vote: Vote_T; Result : out
Vote_T);

Killed : Boolean := False;
Releasing_Cleanup : Boolean := False;
Releasing_Done : Boolean := False;
Reason : Exception_Id;
Final_Result : Vote_T := Commit;
Active : Integer := 0;
New_Action : Boolean := True;
Normal_Termination : Boolean := False;

end Controller;

type Action_T is abstract tagged limited
record
C : Controller;

end record;

end Atomic_Action_Support;

with Ada.Exceptions;

use Ada.Exceptions;

package body Atomic_Action_Support is

—-— any local protected objects for
—— communication between actions

protected body Controller is

entry Wait_Abort (E: out Exception_Id)

122

when Killed is
begin
E := Reason;
end Wait_Abort;

entry Done when done’Count = Active or

Releasing_Done is

begin
Releasing_Done := True;
New_Action := False;
Normal_ Termination := True;

end Done;

entry Cleanup (Vote: Vote_T; Result:
out Vote_T) when True is
begin
if Vote = Aborted then
Final_Result := Aborted;

end if;

requeue Wait_Cleanup with abort;
end Cleanup;

procedure Signal_Abort (E: Exception_Id) is
begin

Killed := True;

Reason := E;

end Signal_Abort;

entry Wait_Cleanup (Vote: Vote_T; Result:
out Vote_T)
when Wait_Cleanup’Count =
or Releasing_Cleanup is

Active

begin
Result := Final_Result;
Releasing_Cleanup := True;
New_Action := False;
Normal_Termination :=
end Wait_Cleanup;

True;

procedure Deregister is
begin
Active := Active - 1;
if Active = 0 then- last one out
Killed := False;
Releasing_Done := False;
Releasing_Cleanup := False;
Final_Result := Commit;
New_Action := True;
Normal_Termination := False;
elsif not Normal_ Termination then
—-— premature finalization
Killed := True;
Releasing_Cleanup := True;
Reason := Atomic_Action_Failure’
Identity;
Final_Result := Aborted;
end if;
end Deregister;
entry Register when New_Action is
begin
Active := Active + 1;
end Register;

end Controller;

end Atomic_Action_Support;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

ACKNOWLEDGMENTS

The authors would like to thank Dr. Stuart Mitchell, Dr.
John Robinson, and Dr. Sascha Romanovsky for their com-
ments on an earlier draft of this paper. The research re-
ported in this paper has been partially sponsored by the
European-funded DeVa project.

REFERENCES

(1]

(2]

(31

(4]

(5]

(6]
(7]

(8]

Bl
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

T. Anderson and P.A. Lee, Fault Tolerance Principles and Practice,
second edition. Prentice Hall Int’l, 1990.

J.B. Goodenough, “Exception Handling: Issues and a Proposed
Notation,” Comm. ACM, vol. 18, no. 12, pp. 683-696, 1975.

J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B. Randell, “A
Program Structure for Error Detection and Recovery,” Lecture
Notes in Computer Science 16, E. Gelenbe and C. Kaiser, eds., pp.
171-187. Springer-Verlag, 1974.

R.H. Campbell and B. Randell, “Error Recovery in Asynchronous
Systems,” IEEE Trans. Software Eng., vol. 1, no. 8, pp. 811-826,
1986.

D.B. Lomet, “Process Structuring, Synchronisation and Recovery
Using Atomic Actions,” Proc. ACM Trans. Language Design for Re-
liable Software, SIGPLAN, pp. 128-137, 1977.

A. Burns and A]. Wellings, Real-Time Systems and Their Program-
ming Languages. Addison-Wesley, 1990.

K.H. Kim, “Approaches to Mechanization of the Conversation
Scheme Based on Monitors,” IEEE Trans. Software Eng., vol. 8, no.
3, pp. 189-197, 1982

S.K. Shrivastava, G.N. Dixon, and G.D. Parrington, “An Overview
of the Arjuna Distributed Programming System,” IEEE Software,
vol. 8, no. 1, pp. 66-73, 1991.

A. Burns and A.J. Wellings, “Programming Atomic Actions in
Ada,” Ada Letters, vol. 9, no. 6, pp. 67-79, 1989.

A. Clematis and V. Gianuzzi, “Structuring Conversations in Op-
eration/Procedure Oriented Programming Languages,” Computer
Languages, vol. 18, no. 3, pp. 153-168, 1993.

A. Romanovsky and L. Strigini, “Backward Error Recovery via
Conversations in Ada,” Software Eng. J., vol. 10, no. 6, pp. 219-232,
1995.

“Ada 95 Reference Manual,” ANSI/ISO/IEC-8652:1995, Intermet-
rics, 1995.

B. Randell, P.A. Lee, and P.C. Treleaven, “Reliability Issues in
Computing System Design,” ACM Computing Surveys, vol. 10, no.
2, pp. 123-165, 1978.

P. Jalote, “Atomic Actions in Concurrent Systems,” UIUCDCS-R-
85-1223, Dept. of Computer Science, Univ. of Illinois, 1985.

B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. Software Eng., vol. 1, no. 2, pp. 220232, 1975.

S.T. Gregory and J.C. Knight, “A New Linguistic Approach to
Backward Error Recovery,” Proc. 15th Ann. Int'l Symp. Fault-
Tolerant Computing Digest of Papers, pp. 404-409, 1985.

AM. Tyrrell and D.J. Holding, “Design of Reliable Software in
Distributed Systems Using the Conversation Scheme,” IEEE
Trans. Software Eng., vol. 12, no. 9, pp. 921-928, 1986.

P. Jalote and R.H. Campbell, “Fault Tolerance Using Communi-
cating Sequential Processes,” 14th Ann. Int'l Symp. Fault-Tolerant
Computing Digest of Papers, pp. 347-352, 1984.

P. Jalote and R.H. Campbell, “Atomic Actions for Fault-Tolerance
Using CSP,” IEEE Trans. Software Eng., vol. 12, no. 1, pp. 59-68,
1986.

A. Burns and A J. Wellings, Concurrency in Ada. Cambridge Univ.
Press, 1995.

C.AR. Hoare, “Towards a Theory of Parallel Programming,”
Operating Systems Techniques, pp. 61-71. Academic Press, 1972.

P. Brinch-Hansen, “Structured Multiprogramming,” Comm. ACM,
vol. 15, no. 7, pp. 574-578, 1972

C.AR. Hoare, “Monitors—An Operating System Structuring
Concept,” Comm. ACM, vol. 17, no. 10, pp. 549-557, 1974.

P. Brinch-Hansen, Operating System Principles. Englewood Cliffs,
N.J.: Prentice Hall, 1973.

B. Randell et al., “From Recovery Blocks to Concurrent Atomic
Actions,” Predictable Dependable Computing Systems, B. Randell et
al., eds. Springer-Verlag, 1995.

WELLINGS AND BURNS: IMPLEMENTING ATOMIC ACTIONS IN ADA 95

[26] Xu et al., “Fault Tolerance in Concurrent Object-Oriented Soft-
ware through Coordinated Error Recovery,” Digest of Papers, 25th
Int’l Symp. Fault-Tolerant Computing, pp. 499-508, 1995.

[27] A. Romanovsky, S. Mitchell, and A.J. Wellings, “On Program-
ming Atomic Actions in Ada 95,” Proc. Ada Europe Conf., Springer-
Verlag, 1997.

Andy Wellings is a professor of real-time sys-
tems in the Computer Science Department at the
University of York, UK. He is interested in all
aspects in the design and implementation of
real-time dependable computer systems, on
which he has authored/co-authored over 150
papers/reports. He is also the author of several
books including Concurrency in Ada and Real-
Time Systems and Programming Languages. He
is European editor-in-chief for the Computer
Science Journal, Software-Practice and Experi-
ence. Professor Wellings teaches courses in operating systems, real-
time systems, and network and distributed systems.

Alan Burns has a personal chair in the Com-
puter Science Department at the University of
York, UK. His research activities have covered a
number of aspects of real-time and safety critical
systems including: requirements for such sys-
tems, the specification of safety and timings
needs, systems architectures appropriate for the
design process, the assessment of languages for
use in the real-time safety critical domain, dis-
tributed operating systems, the formal specifica-
tion of scheduling algorithms and implementation
strategies, and the design of dependable user interfaces to safety criti-
cal applications. He has authored/co-authored over 200 papers/reports
and eight books. Most of these are in the Ada or real-time area. His
teaching activities include courses in operating systems, scheduling,
and real-time systems.

123

