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Abstract—Energy efficiency and security are two important
metrics for the fifth generation (5G) wireless networks. Existing
constellation designs often consider spectral efficiency but neglect
energy efficiency and security. We define the concept of energy
efficiency of constellations and propose a multidimensional secure
constellation (MSC) design to improve the energy efficiency, secu-
rity, and bit error rate (BER) performance. A general closed-form
algorithm to construct the n-dimensional constellation mapping
codebook is proposed. A multi-dimensional rotation method is
proposed to enhance the security and prevent eavesdroppers
from recovering symbols. A closed-form expressions for the upper
bound on the BER for the proposed MSC is obtained. Simulation
results show that when the dimension reaches 255, MSC can
achieve a BER performance of the order of 10−4 at SNR = -8dB
without binary channel coding. For the same throughput, the
proposed method is shown to outperform polar coding (1-2 dB
SNR gain at BER=10−4).

Index Terms—Energy-efficient, constellation, communication
system, security, orthogonal frequency-division multiplexing
(OFDM)

I. INTRODUCTION

In 5G communication scenarios such as the internet of

things (IoT), low power consumption, high reliability, and

secure communication are challenging problems. For example,

some wireless sensor devices require more than 10 years of

working time, but the battery capacity is limited. There is

thus an urgent need for high energy efficient communication

technologies.

Constellation mapping, as a basic module in digital commu-

nications, converts a stream of bits into a stream of complex

vectors. The mapping plays an important role in determining

bit error rate (BER) performance and energy efficiency. Tra-

ditional methods, such as pulse-amplitude modulation (PAM),

phase shift keying (PSK), and quadrature amplitude modu-

lation (QAM), consider signal constellations in one or two-

dimensional signal space.

The multidimensional signal constellation proposed by [1]

maps binary symbols to vectors in the n-dimensional Eu-

clidean space (n > 2). Thanks to multidimensional diversity,

it can achieve BER gain over standard 2-D constellation. The

design of constellation mapping in high dimensional space

provides greater flexibility. A multi-dimensional hypercube

is built from QPSK constellation in a bit-interleaved coded

modulation (BICM) system [2]. A multidimensional subcarrier

mapping for bit-interleaved coded OFDM was proposed in [3];

the results show that multidimensional mapping can success-

fully exploit the multipath diversity and provide remarkable

coding gains.

However, the above works are still based on traditional 2-

D constellations such as PSK and QAM, where the design

flexibility and dimension diversity of the multidimensional

space are not fully utilized. In addition, the existing literature

on multidimensional constellation design does not consider the

energy efficiency and cannot be used in low signal-to-noise

ratio (SNR) scenarios. Indeed, energy efficiency is limited

in 2-D constellations; hence, to improve energy efficiency, it

is necessary to extend the constellation design to a higher

dimensional space.

Wireless communication is vulnerable to eavesdropping

because of its broadcast nature. There is a recent research

trend to enhance the wireless security using encryption at the

physical layer of the communication stack. This technique is

referred to as physical layer encryption (PLE), and can protect

data at the physical layer modulation stages, e.g., constellation

mapping, subcarrier obfuscation, etc [4], [5]. PLE methods

have been prototyped with many wireless systems, such as

OFDM systems [6], [7], massive MIMO systems [8]–[10],

untrusted relaying systems [11], IEEE 802.15.4 protocols [12],

rateless codes [13] and sparse code multiple access (SCMA)

[14]. However, the existing PLE methods also do not consider

energy efficiency and low SNR communication scenarios.

Designing a new constellation in a multidimensional space can

therefore not only improve energy efficiency but also achieve

secure communication.

Motivated by the above observations, this paper proposes

a novel multidimensional and secure constellation design to

achieve security and energy efficiency. We can use dimension

diversity to carry additional information, which can reduce

the required constellation energy consumption and achieve

greater energy efficiency. In addition, the Euclidean distance

between points of the multidimensional constellation is larger

than that in the 2-D constellation counterparts, so that better



Transmitter

Receiver

Fig. 1: The transmitter and receiver structure.

BER performance can be obtained. Therefore, in Euclidean

n-space, we need to design new constellations in order to get

better performance.

Our main contributions are as follows.

1) A multidimensional secure constellation (MSC) design

is proposed with a closed-form codebook generation

algorithm for arbitrary dimensions. A secure multidi-

mensional constellation rotation method based on polar

coordinate system rotation is proposed.

2) The upper bounds on the symbol error rate (SER) and

BER performance for the proposed MSC are derived. It

is shown that MSC has very good BER performance.

3) The concept of constellation energy efficiency is de-

fined. The energy efficiencies of different constellation

diagrams are compared for a given SER.

The rest of this paper is organized as follows. Section II

introduces the system model and proposed method. Perfor-

mance analysis and simulations of the proposed scheme are

presented in Section III and Section IV, respectively. Section

IV concludes the paper

Notation: We will use ‖·‖ to denote the L2 norm of a vector.

R
m×n represent the space of all m× n real-valued matrices.

II. SYSTEM MODEL AND PROPOSED METHOD

A. Overview

The system consists of a legitimate transmitter (Tx), Alice,

who wants to communicate securely with a legitimate receiver

(Rx), Bob, in the presence of an eavesdropper, Eve. An

OFDM-based transceiver structure is shown in Fig. 1.

The transmitter first divides the input message into groups,

each with l bits, i.e., x = {x1, x2, ..., xl}. The multidimention-

al mapper converts an l-bit binary vector into a real n-element

vector:

S = map(x) : x = {x1, x2, . . . , xl} → S = {S1, S2, . . . , Sn},
(1)

where S ∈ R
n×1 is the constellation signal in a multidimen-

sional space. The details of the design will be discussed in

Section II-B.

Block change module uses a phase vector to map a real

n-element vector into another real n-element vector:

T (S,Φ) : S = {S1, S2, . . . , Sn}
Φ→Y = {Y1, Y2, . . . , Yn},

(2)
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Fig. 2: Regular polyhedron in the n-dimensional space as

constellation points.

where Y ∈ R
n×1. The block change modules is designed to

rotate the constellation symbols in order to obtain an even

distribution, which will be discussed in Section II-C.

The steam of codewords are loaded onto the in-phase (I)

and quadrature (Q) channels of the data subcarriers. When the

number of available channel used in one OFDM frame (i.e.

the number of data subcarriers times the number of OFDM

symbol in one frame) is not a multiple of 2n, zero padding is

used, in order to decode the frames separately.

Demodulation at the receiver is the reverse of the above

process:

S
′ = D(Y′,Φ), (3)

where D is the decryption function, Y′ is the received signal

after the FFT module and S
′ is the recovered constellation

symbols. The demapper module at the receiver converts the

constellations into binary sequences as

X
′ = demap(S′). (4)

B. Multidimensional Initial Constellation Design

In order to achieve energy efficiency and good BER per-

formance, the multidimensional constellation design aims to

ensure that each constellation point has the same energy and

that the distance between any two constellation points is a

constant.

The vertices of a regular polyhedron in the n-dimensional

space are used as the initial constellation points, and the side

length is fixed to 1. Three examples of regular polyhedral

constellations are shown in Fig. 2. The distances between

each constellation point and the centre point are the same in

regular polyhedrons. In the n-dimensional space, we can only

construct n + 1 vertices/codewords that satisfy the following

conditions: i) the codewords have the same energy, and ii) the

distance between any two codewords is a constant. Orthogo-

nality of the codewords, which has been used in the literature

for other codebook constructions, is not a design criterion in

the proposed method.

The distance between these constellation points and the

centre point determines the energy of the constellation, which

is given in the next theorem.

Theorem 1. For a regular polyhedron with side length 1 in

an n-dimensional Euclidean space, the distance between the

centre point O and each vertex is given by

yn =

√

n

2(n+ 1)
, n = 1, 2, 3, ... (5)
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Fig. 3: Schematic diagram of the distance between the con-

stellation points and the centre of gravity in the n-dimensional

Euclidean space.

Proof: The proof is based on the mathematical induction.

Base case: Show that the statement holds for n = 1.

y1 = 1/2 =

√

n

2(n+ 1)
. (6)

Inductive step: Show that if the expression for yk holds true,

then that for yk+1 also holds true.

As shown in Fig. 3, m is the distance between O and bottom

surface of the regular polyhedron. According to Pythagorean

Theorem, we have that:

{

y2n +m2 = y2n+1

y2n + (yn+1 +m)
2
= 1.

(7)

Solving the equations, we get

yn+1 =

√

1

4(1− y2n)
. (8)

So

yk+1 =

√

1

4(1− y2k)
=

√

1

4(1− k
2(k+1) )

=

√

k + 1

2((k + 1) + 1)
. (9)

Thereby showing that the expression for yk+1 indeed holds

true.

As the base case and inductive step have been validated, by

mathematical induction the statement holds true for all natural

numbers n = 1, 2, 3, . The proof is completed.

Next, we need to generate an n-dimensional constellation

mapping codebook Cn = {Ci,j}, i = 1, 2, ..., n + 1; j =
1, 2...n, whose generation algorithm is given in Algorithm

1. The n elements of each row in {Ci,j} form the coordinates

of a constellation point in n-dimensional space. For example,

(0.5,−0.2886,−0.2041,−0.1581,−0.1291) in (10) is the co-

Algorithm 1 n-dimensional constellation codebook generation

algorithm.

Require:

Dimension, n;

Ensure:

Constellation codebook, {Ci,j}, i = 1, 2, ..., n + 1; j =
1, 2...n. ;

1: for k= 1 to n do

2: yk =
√

k
2(k+1) ; // the distance between the constellation

points and the centre point

3: end for

4: C1,1 = y1, C2,1 = −y1;

5: for k= 2 to n do

6: Ck+1,t = 0, (t = 1, 2, ..., k − 1);

7: Ct,k = −
√

y2k − y2k−1, (t = 1, 2, ..., k);

8: Ck+1,k = yk;
9: end for

10: return {Ci,j}, i = 1, 2, ..., n+ 1; j = 1, 2...n.

ordinate of the first point in the 5-D space.

C5 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.5 -0.2886 -0.2041 -0.1581 -0.1291

-0.5 -0.2886 -0.2041 -0.1581 -0.1291

0 0.5773 -0.2041 -0.1581 -0.1291

0 0 0.6123 -0.1581 -0.1291

0 0 0 0.6324 -0.1291

0 0 0 0 0.645

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(10)

After getting the codebook, the next step is mapping. There

are n+1 rows in the codebook, and the i-th row is marked as

ci = {Ci,1, Ci,2, ..., Ci,n} . The length of the corresponding

input message x is l = log2(n+1). Since the distances between

any two codewords are equal to each other and the codewords

have the same energy, the mapping relationship between the

message and the codeword does not affect the performance.

Therefore, we can choose a mapping relationship arbitrarily.

For example, we redefine (1) as

S = c[x], (11)

where [x] represents the row index corresponding to the binary

vector x in the codebook.

C. Multidimensional Rotation Design

We can see that the codewords in (10) are not evenly

distributed, which results in a high peak-to-average power ratio

of the output signal (after the IFFT operation). We hence rotate

the constellation to spread the energy of each constellation

more evenly across the n dimensions. This rotation can also

serve as an encryption method. The knowledge of the phase

vector, Φ, is required to recover the transmitted message,

without undermining SER performance. The required n-D

rotation is different from the existing 2-D rotation in [9]. The

proposed design consists of the following steps.

• The same phase vector

Φ = {φ1, φ2, ..., φn−1} , φi ∈ [0, 2π) (12)



is generated at both transmitter and receiver through

channel reciprocity. The phase vectors generation method

can be found in our previous work [9]. When there is an

inconsistency in the phase vectors between transmitter

and receiver, it is necessary to eliminate the inconsistency

through error correction or negotiation. The information

reconciliation technique in key generation can be adopted

for this purpose [15].

• Alice and Bob transform the constellation symbols S and

S′ based on the phase vector Φ, respectively.

In order to ensure that the distance of the constellation point

does not change, we operate in the polar coordinate space

by only changing the phase of the constellation, and does

not change the amplitude of the constellation. The conversion

method between Cartesian coordinates and polar coordinates

is available in [16]. Assume that the polar coordinates of

the constellations S and S′ at Alice and Bob are (r,Θ) and

(r′,Θ′), respectively. We have that

r = r′; (13)

Θ = {θ1, θ2, θ3, ..., θn−1}; (14)

Θ
′ = {θ′1, θ′2, θ′3, ..., θ′n−1}. (15)

The encryption operation at Alice is

ΘY = {θ1 + φ1, θ2 + φ2, θ3 + φ3, ..., θn−1 + φn−1}. (16)

Then, we convert (r,ΘY ) to Cartesian coordinates, and gen-

erate the encrypted symbol Y for subsequent processing.

The reverse process is operated at the receiver, Bob. After

receiving the Cartesian coordinates Y′, they are converted

to polar coordinates (rY ,ΘY ′). Then, the following phase

conversion is performed to get the decrypted polar coordinates

Θ
′:

Θ
′ = {θY1

−φ1, θY2
−φ2, θY3

−φ3, ..., θYN−1
−φN−1}. (17)

Then convert the polar coordinates (r′,Θ′) back to Cartesian

coordinates S
′ for subsequent processing.

After the rotation, the codebook example in (10) is changed

to (18).

C′
5 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.0633 -0.3592 -0.4681 -0.0391 0.2509

0.5861 0.1225 0.2134 -0.0776 0.0814

-0.0429 -0.3345 0.1908 0.3363 -0.3917

-0.1289 0.1913 -0.1571 -0.4351 -0.3866

-0.3388 -0.0702 0.3842 -0.1811 0.3414

-0.1389 0.4501 -0.1632 0.3965 0.1046

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(18)

The codewords are now more evenly distributed across the n
dimensions.

III. PERFORMANCE ANALYSIS

We will evaluate the performance of the proposed constel-

lation from the perspectives of error rates, energy efficiency,

throughput, and security.

A. SER and BER

As the encryption and decryption rotations are isometric

transformations, they do not change the SER performance and

energy distribution of the constellation [5]. We thus only need

to consider the constellation before the encryption transforma-

tion when analyzing the SER and energy efficiency. Assum-

ing that the additive noise is isotropic in the n-dimensional

Euclidean space and follows the Gaussian distribution, the

maximum likelihood (ML) detector of the signal constellation

S′ is:

argmin
S∈C

∥

∥S′ − S
∥

∥ . (19)

When n = 1, it is a BPSK modulation, we have the SER

and BER as

Pe(1) = Q

(

dmin

2δ

)

, (20)

where dmin is the minimum distance of any pair of symbols

in the signal constellation, δ2 is the variance of the noise, and

the function Q(z) is defined as

Q(z) =

∫ ∞

z

1√
2π

e−x2/2dx. (21)

When n > 1, because the distance between any pair of

points in the signal constellation is equal, we can replace the

n-D detection algorithm with n binary decisions. We have the

upper bound of SER as

Pe(n) ≤ 1− (1− Pe(1))
n ≈ nPe(1) = nQ

(

dmin

2δ

)

. (22)

From (5), the SNR can be written as

γ =
y2n
nδ2

=
1

(2n+ 1)δ2
, (23)

where the power of the symbol is y2n and the power of noise

in a n-dimensional space is nδ2.

Because the positions of points in our constellation are

symmetrical, it is reasonable to assume that on average half

of the bits are wrong in each error symbol. The approximate

value of BER is

Pb(n) ≈ 1/2 · Pe(n) ≤ 1/2 · nQ(

√

n+ 1

2
γ). (24)

It can thus be concluded that the BER will decrease signifi-

cantly when n increases.

B. Energy Efficiency

In order to measure the energy efficiency of the constella-

tion, we define the following indicator.

Definition 2. For a constellation set C = {c1, c2, ...cτ} , ci ∈
R

n, dmin = min
i �=j

‖ci − cj‖, the energy efficiency of C is de-

fined as

EC =
log2τ

τ
∑

i=1

‖ci‖2/(τdmin2)
=

τd2minlog2τ
τ
∑

i=1

‖ci‖2
. (25)



The energy efficiency of the constellation indicates the

amount of information that can be transmitted per energy

unit under a given BER boundary (minimum distance of

constellation). The spectral efficiency indicates the amount of

information that can be transmitted per dimension.

For the proposed MSC in n-dimensional space, τ = n+ 1
and dmin = 1. From (6), we have that

EC,n =
log2(n+ 1)

‖yn‖2
=

2(n+ 1)log2(n+ 1)

n
. (26)

C. Throughput

In an OFDM system, the throughput is

ROFDM =
2Nd × log

2
τ

n

TOFDM

bit/s, (27)

where Nd is the number of data subcarriers and TOFDM is the

OFDM symbol duration. We can see that the throughput will

decrease as n increases and increase as τ increase.

D. Security Analysis

Assuming that Eve can carry out the synchronization, chan-

nel estimation and equalization correctly. The recovered signal

can be expressed as

Ye = Y + ne = SGt + ne, (28)

where Gt ∈ R
N×N is the equivalent encryption matrix, and

ne ∈ R
N×N is a noise matrix. Because Eve does knows

neither the noise ne nor Gt, it is extremely challenging for

her to recover S from Ye.

If Eve uses brute force attack, the size of the search space

for Gt is λN2

, where λ is the phase resolution. If Eve searches

for the phase vector Φ in (12), the size of the search space will

be λN−1. Take N = 128, λ = 256, as an example, and the size

of the search space reaches 2131072 for Gt and 21026 for Φ.

In addition, Eve cannot get the exact correspondence between

Ye and S due to noise interference. So brute force methods

are impossible to implement. In order to further increase the

difficulty of eavesdropping, we can change Gt over time t,

using channel reciprocity.

IV. NUMERICAL RESULTS

A. Simulation Setup

The simulation model is based on the physical layer struc-

ture of IEEE 802.16 OFDM protocol. The parameters are: DFT

size = 256; a cyclic prefix length = 64; the number of data sub-

carriers, Nd, is 192; 8 pilots at specific locations are inserted

for channel tracking; 56 edge subcarriers are not used (i.e. zero

padded); no binary channel coding is used; the bandwidth is

4 MHz; symbol time duration is 80 µs. The simulations are

based on 20000 frames and each frame contains 10 OFDM

symbol.
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Fig. 4: The constellation scatter plot of Y at the transmitter.

B. Results

We project two example signal constellations of the MSC

symbols Y onto the two-dimensional plane in Fig. 4. We can

see that the output symbols of the MSC are randomly dis-

tributed in the four quadrants thanks to the multi-dimensional

rotation.

The BER results of MSC (without binary channel coding)

is shown in Fig. 5. We can observe that as the dimension n

increases, the BER performance improves. When n = 255,

the system can still obtain 10−4 BER performance even when

SNR= -8 dB. We also compare the proposed method with

binary-channel-coded QPSK, where the coding rate is set to be

approximately equal to log2(n+1)/n in order to compare the

two methods at the same throughput. We chose polar codes,

which are known as capacity achieving codes over binary-input

discrete memoryless symmetric (BDMS) channels, with a list

successive cancellation (SC) decoder. In Fig. 5 polar (256,8)

indicates a polar code with code length = 256 and information

bits length = 8. Polar (256,8) has the same throughput as MSC

with n = 255; Polar (128,7) has the same throughput as MSC

with n=128; Polar (128,12) has the same throughput as MSC

with n = 63.

The results show that when the coding rate is the same, the

proposed method outperforms the polar codes (1-2 dB SNR

gain when BER=10−4). This may be because BPSK/QPSK

modulation converts the AWGN vector channel into BDMS

channels and there is a performance gap between BDMS chan-

nels and AWGN channels. Note that at very low SNRs, the

polarity code outperforms MSC. This is because all codeword

distances in the MSC are equal, and on average, half of the

bits will be wrong once the error occurs. The BER values in

the region where MSC is outperformed by polar codes are

however too large to be of interest in practice.

Fig. 6 shows the amount of information carried by one

OFDM symbol. We can see that as n increases, the throughput

will decrease. Indeed, in our system, the number of data

subcarrier is 192, and the number of available channel uses

per OFDM symbol is 384. The average amount of information

transmitted per OFDM symbol for MSC is thus:

Bn,MSC =
384

n
log2(n+ 1), (29)

For the system considered in this section, when n = 255
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Fig. 5: BER performance of multidimensional secure constel-

lation(without channel coding) and polar coding-QPSK in an

OFDM system (n=255, 127, 63).
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Fig. 6: The amount of information carried by one OFDM

symbol. The number of data subcarriers is 192.

and the bandwidth is 4 MHz, each MSC-OFDM symbol can

carry 12-bit messages, and the transmission data rate is 150

kbit/s.

As can be seen from the above results, when we increase the

dimension n, the BER performance and energy efficiency will

be improved significantly, but the throughput will decrease,

i.e., the spectrum efficiency will decrease. Therefore, the value

of n should be chosen according to the specific needs of the

application.

V. CONCLUSIONS

This paper shows that multidimensional constellations have

great advantages in terms of energy efficiency and BER perfor-

mance, especially in low SNR regions. A general and closed-

form algorithm to construct the n-dimensional constellation

mapping codebook is proposed. A multi-dimensional rotation

method is proposed to enhance the security and prevent

eavesdropping. A closed-form expression for the upper bound

on the BER is derived. A concept of energy efficiency of

constellations is proposed. Simulations results show that the

merits of the proposed method when compared with binary

channel coding such as polar coding.
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