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Abstract. In this report, we propose an automatic method for segmen-
tation of the pelvis from 3D CT images. The method is based on a 3D
U-net which takes both the 3D CT image and estimated volumetric shape
models of the targeted structures as input and outputs the probability
maps of each structure. During training, the 3D U-net is initially trained
using blank shape context inputs to generate the segmentation masks,
i.e. relying only on the image channel of the input. The preliminary seg-
mentation results are used to estimate a new shape model, which is then
fed to the same network again, with the input images. With the addi-
tional shape context information, the U-net is trained again to generate
better segmentation results. During the testing phase, the input image
is fed through the same 3D U-net multiple times, first with blank shape
context channels and then with iteratively re-estimated shape models.
Preliminary results show that the proposed multi-pass U-net with itera-
tive shape estimation outperforms both 2D and 3D conventional U-nets
without the shape model.

Keywords: deep learning, multi-pass U-net, pelvis segmentation, shape
context, statistic shape model

1 Introduction

Improving resolution of computed tomography (CT) scanners and recent ad-
vances in 3D printing technology make image-guided personalized treatment
planning and implant design more feasible than ever before. However, how to
accurately extract anatomical structure models from 3D high-resolution medical
images promptly remains a non-negligible challenge that limits the clinical ap-
plicability of new approaches in therapy planning. As a crucial step in surgery
planning, radiotherapy planning and quantitative disease evaluation, pelvis seg-
mentation is often done manually in clinical practice. It can take half an hour to
several hours for a trained radiologist to segment the complete pelvis, which is
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not acceptable in most public hospitals [1]. A large variety of automated or semi-
automated segmentation methods have been developed to address this problem.
The methods range from thresholding-based approaches, over clustering-based
approaches to deformable-model-based approaches [1–3]. However, most exist-
ing methods have achieved moderate success only on a few cases. In this study,
we tried to evaluate a new deep-learning-based pelvis segmentation method on a
relatively large dataset of 90 patients. In recent years, deep-learning-based meth-
ods have gained more and more attention due to their superior performance in
several image segmentation challenges [4, 5]. The deep neural networks are often
trained on a large number of training samples in a more or less black-box man-
ner. It learns task-specific image features and rules by minimizing the objective
function often correlated with the segmentation error. However, these learned
features and rules are difficult to interpret. One can only imagine that the clas-
sification decision is based on local appearance and global shapes represented
by a stack of convolution kernels and mixed through weighted non-linear rules.
The consensus from existing literature is that shape prior knowledge is crucial
for accurate and robust pelvis segmentation [1]. The most promising conven-
tional pelvis segmentation methods are based on either statistical shape models
or multi-atlas registration [2, 3, 6]. How to enforce shape prior in a deep learning
framework and whether that helps to improve segmentation performance re-
mains an open question. In a previous study [7], Wang et al. proposed a method
where statistical shape models were combined with 2.5D U-net to segment mul-
tiple structures of the heart in 3D MRI and CT images. In their setup, three
2D U-nets were first trained to segment the multiple heart structures in three
orthogonal views, and then the probability maps were combined and used to
estimate 3D shape models of the heart and ventricles. The estimated shapes
combined with input images are fed to a second set of 2D U-nets to deliver a
refined segmentation result. In this study, we adapt a similar strategy and train
a 3D U-net that takes both the 3D CT image and estimated volumetric shape
models of the targeted structures as input to generate the segmentation results.
However, instead of training two U-nets, we retrain the same 3D U-net multiple
times, first with blank images as shape context channels, and then with volu-
metric shape representation estimated on the preliminary segmentation results.
During the testing phase, the input image is passed through the trained 3D
U-net several times, with iteratively re-estimated shape context information. In
our preliminary experiments, the proposed method delivered better segmenta-
tion results than the conventional methods using 2D or 3D U-net or statistical
shape model methods.

2 Methods

The proposed framework, with a multi-pass 3D U-net with iterative shape model
estimation, is summarized in Fig. 1. The core module of this framework is a 3D
U-net that takes 3 channels as input: one for the input 3D CT image, two for
shape context images. The network outputs 6 channels representing the proba-
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bility maps of the background, left femur, right femur, left hip bone, right hip
bone and sacrum, respectively. The U-net architecture was initially proposed by
Ronneberger et al. [5]. In this study we simply extend it to process 3D images
instead of 2D images. Our 3D U-net consists of 3 max pooling layers and 3
up-sampling layers, and two convolutional layers with kernel size of 3 × 3 × 3
located between max pooling or/and up-sampling layers. Due to limited GPU
memory, the input volume size to the U-net is set to 128 × 128 × 72. Original
CT data are down-sampled to 3mm isotropic resolution before being split into
overlapping 3D patches of required size. The outputs of the U-net are passed
on to a level-set-based volumetric statistical shape estimation module where the
shapes of the whole pelvis (including hip bones and sacrum as a whole) and
the sacrum bone are estimated. The volumetric shape images are then added
to the corresponding input channels and trigger the 3D U-net to re-run. The
segmentation and shape estimation loop can be repeated several times until no
significant changes occur.

Fig. 1. Overview of the proposed multi-pass 3D U-net with iterative shape model
estimation

2.1 Data set and ground truth generation

From the publicly available image database (cancerimagingarchive.net [8]), we
consecutively selected 90 abdominal CT from two studies (50 from the CT
colonography study [9], 40 from the lymph node study [10]). Imaging protocols
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for these studies are available at [9] and [10] respectively. For the sake of pelvis
segmentation, we only selected scans that cover the full pelvis, i.e. all hip bones
are contained in the scan range without being partially cut off. Ground-truth
segmentation masks were created by an experienced radiologist, using an inter-
active segmentation tool based on fuzzy connectedness and the level set method
[11]. Besides the interactive segmentation, all segmentation masks were carefully
inspected and manually fixed by the radiologist using the manual segmentation
tool in ITKSnap [12]. On average, the radiologist spent 30-50 minutes on each
case during the interactive segmentation and manual mask curation procedure.

2.2 Statistical shape model creation

The so-called shape context, or shape image, is a volumetric representation of the
subjects shape, which is a signed distance map from the surface of the segmented
object. However, instead of performing distance transform on the segmentation
result directly, we fit a statistical shape model to it to eliminate irregularity that
may present in the segmentation results. A statistical model is created by averag-
ing of the signed distance maps of several segmented subjects (training subjects)
and computing the main variations using Principal Component Analysis (PCA)
[13]. In this study, the shape model is created using 20 randomly selected train-
ing subjects, in which the top 10 principal components are computed via PCA.
As suggested by Leventon et al., the shape model M that matches the current
segmentation is estimated by solving a level set function

∂φ

∂t
= αF (x) + βM(T (x)) + γκ(x) |∇φ| (1)

where F is the image force related to the probability output by the U-net,
M is the statistical model as a weighted sum of the mean shape and PCA
components, T is the global transformation and κ is the mean curvature. The
transformation T and the weighting factors of PCA components are updated
iteratively by minimizing the squared distance between the model and the level
set function, which is also a signed distance map. α, β and γ are weighting factors
that can be determined empirically.

2.3 Training phase

In the proposed framework, the statistical shape model training is performed
only once, but the multi-pass 3D U-net must be trained in two steps. The first
step is to train the net by feeding the 3D CT volumes and blank shape context
volumes (all voxels are set to zero) to the 3D U-net, which will force the network
to learn the segmentation using only CT images. In the second step, the pre-
trained U-net is retrained with the 3D CT volumes and the real shape context
volumes generated from fitting the statistical shape models to the output of the
pre-trained 3D U-net. As the weights of the network are already initialized to
recognize anatomical structures from the CT channel, the U-net is expected to
learn gradually to use the context information where it helps to improve the
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segmentation results, instead of heavily relying on the context layer. For the
U-net training, we used categorical cross entropy as the loss function, stochastic
gradient descent was used as optimizer and the training rate is set to 0.01. The
network was first trained for 100 epochs in the first-step training and 40 epochs in
the second-step training (Fig. 2). Sample augmentation was used, where random
translating, rotating and scaling are added when creating the training images.

2.4 Testing phase

During testing, the input images were first sent to the trained 3D U-net with
blank shape context layers, and then patient-specific shape models were created
by fitting the statistical shape model to the preliminary segmentation results.
The shape models were added as context layers to the 3D U-net to re-generate
the segmentations. The process can be repeated several times. Besides image
resampling and intensity normalization, no pre-processing steps are required for
the proposed multi-pass U-net segmentation.

Fig. 2. the Dice coefficient of the right femur (A), right hip bone (B) and sacrum bone
(C) during the two-step training (first step: 0-100 epochs, second step: 100-140 epochs).
Thick line: Dice coefficient on the training set. Thin line: Dice coefficient on the testing
set.

3 Results

To test the performance of the proposed method, we ran a 5-fold cross vali-
dation using the 90 cases. In each fold, 72 subjects are used for training and
18 subjects are used for testing. Both the 3D U-net and the statistical shape
models are retrained in every fold. To make comparison, we also implemented
a hierarchical statistical shape model based segmentation method reported in
[14], and plain 2D and 3D U-nets and trained them on the same dataset. The
average segmentation accuracy of 5 bone structures of the pelvis from the 90
subjects is summarized in Table 1. On average, running a 2-pass 3D U-net de-
livers better results than a 3D U-net. The performance gain is more visible on
the sacrum than on other bone structures. Fig. 3 shows several example cases
where adding shape context helps to improve the segmentation results. Running
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the multi-pass U-net for the third time will slightly improve the segmentation
accuracy, but no significant improvement is observed when run over 3 iterations.
For each fold, the training took 60 hours on a NVIDIA GTX 1080ti GPU. For
testing, the U-net prediction takes 20-30 seconds to process a 3D volume, and
the shape model estimation takes 2-3 minutes for each pass.

Fig. 3. Sample cases comparing the results from the first-pass segmentation (upper
row) and the second-pass segmentation (lower row). Arrows indicate segmentation
errors.

Table 1. Segmentation accuracy measured as Dice coefficient of the proposed method
and alternative methods

Methods Statistical
shape
model

2D U-net
axial view

3D U-net 1st-pass 3D
U-net with

blank
context

2nd-pass
3D U-net
with shape
context

3rd-pass 3D
U-net with

shape
context

Left femur - 0.925± 0.178 0.949± 0.039 0.937± 0.047 0.958± 0.032 0.958± 0.031
Right femur - 0.939± 0.122 0.953± 0.019 0.942± 0.026 0.961± 0.018 0.962± 0.018
Left hip 0.915± 0.065 0.940± 0.079 0.947± 0.016 0.947± 0.020 0.957± 0.012 0.958± 0.013
Right hip 0.908± 0.059 0.943± 0.054 0.947± 0.016 0.944± 0.021 0.957± 0.011 0.957± 0.011
Sacrum 0.850± 0.082 0.894± 0.056 0.905± 0.032 0.909± 0.029 0.921± 0.028 0.924± 0.027

4 Discussion and conclusion

The results suggest that adding shape context information to a deep neural
network seems to improve the segmentation accuracy, especially for relatively
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challenging anatomical structures like the sacrum. Wang et al. reported similar
findings when they added shape context to 2D U-net [7]. Moving to 3D U-net
is important, since even though the previous study showed that shape context
helped to improve the segmentation accuracy, it is unclear whether that is due
to the 3D shape model providing 3D information that is not accessible to 2D
U-nets, or to it providing useful context information that will help segmentation.
Another contribution of the proposed method is to replace the two sets of U-nets
with a single U-net that can take blank shape context channels. This not only
reduces the file size for deploying the trained net, saving the time of loading and
switching network into computer memory, but also makes it possible to run the
shape model estimation and shape-context-based segmentation multiple times
in an iterative manner. This will hopefully further improve the segmentation
accuracy. (However, the benefit of running over 2 passes was not very evident
in our experiments.) Wang et al. reported overfitting on certain structures when
applying their 2.5 U-net with shape context to the heart segmentation, i.e. the
segmentation accuracy drops when the shape context is added [7]. The design
of trying to use a single 3D U-net to handle cases with and without shape con-
text will force the network to not rely on the shape context too much, avoiding
overfitting. We tried several strategies to make sure that, after the second-round
training, the single 3D U-net can perform well on samples with only the in-
put CT image (with blank shape context channels) and samples with both CT
image and shape context channels. These strategies include mixing the train-
ing samples with and without shape context, alternating training between two
types of training samples, and complete retraining while gradually adding one
group into another. However, we found that simply continuing to train the U-net
with samples with shape context works best. As shown in Table 1, the segmen-
tation accuracy of 1st pass on the retrained 3D U-net is only slightly inferior
to the results of the 3D U-net trained on samples without shape context. One
limitation of this study is there are no diseased cases in the image database.
The performance must be evaluated where fracture or other abnormality ex-
ists. Another limitation is that the input images must be down-sampled for the
segmentation operation which introduce additional errors. Finally, the ground-
truth segmentation was generated by a single doctor, no inter-observer variation
information is available. Future research activities have been planned to address
these limitations.

In conclusion, we proposed a multi-pass 3D U-net framework with iteratively
estimated shape models as context information. Preliminary results show that
the proposed method outperforms both 2D and 3D conventional U-nets in 3D
pelvis segmentation.
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14. Wang, C., Smedby, Ö.: Automatic multi-organ segmentation in non-enhanced CT
datasets using hierarchical shape priors. In: Proceedings of the 22th International
Conference on Pattern Recognition (ICPR). IEEE (2014)


