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Abstract. Cardiac magnetic resonance (CMR) images play a growing
role in diagnostic imaging of cardiovascular diseases. Ensuring full cov-
erage of the Left Ventricle (LV) is a basic criteria of CMR image quality.
Complete LV coverage, from base to apex, precedes accurate cardiac vol-
ume and functional assessment. Incomplete coverage of the LV is iden-
tified through visual inspection, which is time-consuming and usually
done retrospectively in large imaging cohorts. In this paper, we pro-
pose a novel semi-supervised method to check the coverage of LV from
CMR images by using generative adversarial networks (GAN), we call
it Semi-Coupled-GANs (SCGANS). To identify missing basal and apical
slices in a CMR volume, a two-stage framework is proposed. First, the
SCGANSs generate adversarial examples and extract high-level features
from the CMR images; then these image attributes are used to detect
missing basal and apical slices. We constructed extensive experiments to
validate the proposed method on UK Biobank with more than 6000 inde-
pendent volumetric MR scans, which achieved high accuracy and robust
results for missing slice detection, comparable with those of state of the
art deep learning methods. The proposed method, in principle, can be
adapted to other CMR image data for LV coverage assessment.

1 Introduction

Left Ventricular (LV) cardiac anatomy and function are widely used for diagno-
sis and monitoring disease progression in cardiology and to assess the patient’s
response to cardiac surgery and interventional procedures. Cardiac ultrasound
(US) and cardiac magnetic resonance (CMR) imaging are arguably the most
wide-spread techniques for clinical diagnostic imaging of the heart. For popula-
tion imaging studies, however, CMR remains the modality of choice and provides
one-stop-shop access to cardiac anatomy and function non-invasively. The quan-
tification of LV anatomy and function from large population imaging studies or
patient cohorts from large clinical trials requires automatic image quality as-
sessment and image analysis tools. A basic criteria for cardiac image quality is
LV coverage and detection of missing apical and basal CMR slices [7]. Due to



rapid mechanical motion of the heart, breathing motion, and imperfect trigger-
ing, CMR can display incomplete LV coverage, which hampers quantitative LV
characterization and diagnostic accuracy [12]. For example, missing basal slices
has an important impact on LV volume calculation and several derived LV func-
tional measures like ejection fraction and cardiac output. Even if scout images
are acquired to center the LV in the field of view and minimize this problem,
incomplete coverage can result at any points throughout the cardiac cycle due
to patient breathing and cardiac motion. Automatic quality assessment is im-
portant in large-scale population imaging studies, where data is acquired across
different imaging sites, from subjects with diverse constitutions, and with strict
time constraints on scanner availability [4].

Few guidelines exist, clinical or otherwise, that objectively establish what
constitutes a good medical image and a good CMR study [6]. To ensure consis-
tent quantification of CMR data, automatic assessment of complete LV coverage
is a first step. LV coverage is still assessed by visual inspection of CMR im-
age sequences, which is subjective, repetitive, error prone, and time consuming
[2]. Automatic coverage assessment must intervene and correct data acquisition
soon, and/or discard promptly images with incomplete LV coverage whose anal-
ysis would otherwise impair any aggregated statistics over the cohort.

In medical imaging it is hard to have access to quality-labelled image databases
due to the diversity of image characteristics, and their artifacts, of diverse
anatomical locations and image modalities. Therefore, it is essential to devise
techniques that do not require manual labelling of visual image quality. Im-
age synthesis models provide a unique opportunity for performing unsupervised
learning. These models build a rich prior over natural image statistics that can
be leveraged by classifiers to improve predictions on datasets for which few labels
exist [11]. Among them, generative adversarial networks (GAN) can synthesize
adversarial examples, which increase the loss by a machine learning model [13].
Meanwhile, GAN can perform unsupervised learning by simply ignoring the
component of the loss arising from class labels when a label is unavailable for a
training image [5].

In this paper, we mainly focus on the analysis of short axis (SA) cine MRI.
We aim to identify missing apical slices (MAS) and/or basal slices (MBS) in
cardiac MRI volumes. In previous research, Le [14] used convolutional neural
network (CNN) constructed on single-slice images and processed them sequen-
tially. But this solution needs large amount of labelled data and lacks the abil-
ity to classify examples with perturbations correctly. In this paper, we exploit
semi-coupled-GANs (SCGANSs), a semi-supervised approach, for incomplete LV
coverage detection. To alleviate the lack of sufficient numbers of CMR datasets
with MBS or MAS, the proposed SCGANSs use two generative models to syn-
thesize adversarial examples. By learning adversarial examples, it improves not
only robustness to adversarial examples, but also generalization performance for
original examples. This work is the first work we know of to use adversarial
examples to improve the robustness of an attribute learning model.



2 Methodology

We present a novel technique of LV coverage assessment for CMRI by using SC-
GANSs. The motivation behind our proposed method is: In medical image quality
assessment problems, we are always faced with a lack of quality-labelled data,
especially images with artifacts. Several deep learning models cannot classify the
examples with perturbation correctly. Our semi-supervised SCGANSs is proposed
by using adversarial examples as the outlying observations for discriminative
model training. We generate adversarial samples by two generators separately,
which confuse the discriminator into mistaking them for genuine images. After
that, we obtain the robust attribute classifiers by learning both original data and
synthetic data. Our proposed SCGANSs represents a strategy to better handle
the typical LV coverage assessment problem.

2.1 Generative Adversarial Learning

Recently, GAN [5] was proposed as a novel way for adversarial learning. It con-
sists of a generative model and a discriminative model, both are realized as
multilayer perceptrons [9]. The aim of the discriminator is to correctly classify
the original examples and adversarial examples. By learning the adversarial ex-
amples, the network cannot only becomes robust to adversarial examples, but
also generalization improves for unmodified examples. GAN does not need the
label information when training the generator and then the discriminator can
estimates the probability that a sample came from the original data rather than
the generator.

We assume a probability distribution M, which is a black box relative to us.
To realize how the black box works, we construct two ‘adversarial’ models: a
generative model G that captures the data distribution, and a discriminative
model D that estimates the probability that a sample from the training data
rather than G. Both G and D could be a non-liner mapping function, such as a
multi-layer perceptron. Our objective is to learn feature representation to handle
a wide range of visual appearances in cardiac MRI and identify images with in-
complete LV coverage. We regard adversarial examples as outlying observations
regarding other samples in training data. The generative model constantly pro-
duce new adversarial samples and the discriminative model classify the positive
and negative samples by learning the new produced adversarial samples con-
stantly. Given a particular describable visual attribute - say ‘MBS’. An outlier
image is expected to be mapped to negative values, which indicates the absence
of basal slice. This can happen for two reasons: (1) the image does not belong to
the basal slice, (2) the image belongs to the adversarial examples. We consider
them all as the outliers.

2.2 Semi-Coupled GANs

Here we introduce our model based on the above discussion. Our model is il-
lustrated in Fig. 1 designed as a semi-coupled-GANs for attribute learning. It



consists of a pair of Generators— G1 and Go, which share a same discriminator.
Each generator synthesizes the adversarial samples Y; and Y5 for positive and
negative data, respectively.

Generator 1 (G1)

Fig. 1. The Proposed Semi-Coupled-GANs Framework.

Generative Models: We firstly feed the two generators (G; and G noise
data z, G; and G4 learn probability distribution from the original positive and
negative images respectively, and generate the corresponding adversarial sam-
ples. Then, we give the adversarial data to discriminator D. Denote the distri-
butions of G1(z) and G2(2) by pg, and pg,. Both G; and Ga are realized as
multilayer perceptions:

{G1<z> = &G (.GP (G (2)
( (1)

where ng') and Géi) are the ith layers of G; and G» and m, and mq are the
numbers of layers in G; and Gs. In our training process, m; and my need not
to be the same. In traditional discriminative deep neural network, the feature
information is extracted from low-level features in first layers to the high-level
features in last layers. While, through multi-layer perceptron operations, our two
generator models decode the information with an opposite flow direction from
abstract concepts to more material details.

Discriminative Models: Every generated sample has a corresponding class
label and the discriminator gives both a probability distribution over dataset and
a probability distribution over the class labels. We put both the original samples
and the adversarial samples into D for the discriminator training, D output
multiple output values between 0 and 1. In this process, if the training samples
x is the positive/or real data, the discriminant D ensures the output value is
similar with the trained corresponding value, which represents the input data
is the positive/or real, while output values close to 0 indicates the input data



is the negative/or fake. The discriminant D equals a classifier with supervision
situation, which returns to 1 or 0. Let D be the discriminative model given by:

D(z) = D™ (D" (.0 (DM (x)))) (2)

where D® is the ith layer of D and n is the number of layers. The discrim-
inator maps each input image to a probability score which indicates the input
is drawn from the positive data or the negative data. In this process, the first
layer of the discriminative model extracts low-level features, while the last layer
extracts high-level features.

Learning: The Semi-Coupled-GANs framework corresponds to a constrained
minimax game given by

max 5?71512 V(G1,G2, D) = Eyrp,,  [log D(z| y)] + Exnp. [log(1 — D(G1(2)))]
+ Eanp. [log(1 — D(G2(2)))]

(3)

There are two terms in (3), each term has an independent generator but share

a same discriminator. The two generative models synthesize a pair of adversarial

samples for confusing the discriminative models. The discriminator gives both

a probability distribution over image data and a probability distribution over

the class labels, D(x | y). Here, there are four kinds of samples for training

the discriminator: the positive and negative samples from original images and

their corresponding adversarial samples computed by two generators. The inputs

discriminative model is data and corresponding labels. Similar to GAN, our SC-

GANSs can be trained by back propagation with the alternating gradient update
steps.

2.3 Quality Estimation

For a given cardiac volume, a dissimilarity score is computed for each repre-
sentative visual attribute - MAS and MBS. Any visual attributes with a score
below an optimal threshold is classified as an artifact. After computing the visual
attributes, we could verify the cardiac MRI quality based on the corresponding
attributes scores. Let Ziarget = Prras(Xtarget) and Yiarget = Prrps(Xtarget) be
the outputs of the discriminator. If the quality of target cardiac volume Xiqrget
is good, the values Pras(Xiarger) and Parps(Xiarger) from the target cardiac
volume should be similar with the trained corresponding positive attribute val-
ues. We combine the output values so the verification classifier () can make sense
of the data. To address the problem, we use the concatenation of these tuples
for both MAS and MBS attribute classifier outputs form the input to the ver-
ification classifier @ [8]. Finally, putting both terms together yields the tuples

Q(Starget):

q(Starget) = Q(< Prmras, PMBS >) (4)



Training @) requires pairs of positive examples and negative examples. For
the classification function, we use SVM with an RBF kernel for X, trained using
libsvm [3] with the default parameters of C' =1 and v = 1/ndims, where ndims
is the dimensionality of < prras,pvBs >.

3 Experiment and Related Analysis

Data specifications: In the UK Biobank (UKBB) dataset, we have 3400 sub-
jects, each with 50 time points covering the heart from the base to apex. We use
the endocardial contour as the main characteristic to identify the apical, middle
and basal slices. For example, we can find the Left Ventricular Outflow Tract
(LVOT) in the basal slice. In other slices, LVOT is nonexistant. As for the apical
slice, we define it as the LV cavity is still visible at end-systole. Besides the basal
slice and apical slice, we can consider the rest slices as the middle slices. To
obtain the negative samples, we choose the middle slice as the negative samples
for each attribute learning.

Experimental set-up: All experiments used TensorFlow [1] on GPUs. With
all 50 time points consideration for each subject, we can obtain 17,0000 and re-
garded as the ground truth in our experiments. The architecture of the two
generators G; and G4 are consisted of several ‘deconvolution’ layers that trans-
form the noise z and class ¢ into an image [11]. We train the model architecture
for generating images at 120 x 120 spatial resolutions. The discriminator D
is a deep convolutional neural network with a Leaky ReLU nonlinearity [10].
In our experiment, 10-fold cross-validation method is used to evaluate the fi-
nal performance of our attribute classifiers. To evaluate the classification algo-
rithms, we use Accuracy, Precision Rate and Recall Rate defined as: Accuracy
= (TP+TN)/(TP+FP+TN+FN), Precision Rate = TP/(TP + FP) and Recall
Rate = TP/(TP + FN). Where TP, TN, FP, and FN are the numbers of the true
positive, true negative, false positive and false negative samples, respectively.

Performance and Discussion: We evaluate the quality of our semi-supervi-
sed representation learning algorithms by applying it as a feature extractor on
supervised datasets. Table 1 shows the test performance on UK Biobank Dataset
with the state-of-art deep learning methods. With supervised deep learning
methods, 2D CNN, it achieved accuracies with 77.5% and 74.9%. With adversar-
ial learning approach, traditional GAN, the results are much better with 90.4%
and 88.1% accuracies. Compared with the above two methods, our SCGANs
achieved performance with significant increase, 92.5% and 89.3% accuracies. This
is despite the state of the art models having no ability to discriminate the ad-
versarial samples, whereas our model requires to training the generative model
to produce the adversarial examples and can correctly classify both unmodified
and adversarial samples. It improves not only robustness to adversarial exam-
ples, but also generalization performance for original examples. Meanwhile, our
SCGANS also achieved a comparable result with the 3D CNN, which indicates
opportunity for future 3D image synthesis models.



Table 1. The accuracy, precision rate and recall rate between the state-of-art deep
learning approaches and our method.

Accuracy Precision Rate Recall Rate

Method MAS MBS MAS MBS MAS MBS

2D CNN  77.5£0.7% 74.9£0.6% 82.6£0.7% 74.9+£0.8% 87.7+£0.8% 87.8+0.9%
3D CNN  93.140.6% 91.8+0.7% 90.14+0.6% 87.3+0.7% 89.9+0.7% 93.3+0.8%
GAN 90.4£0.7% 88.1£0.6% 85.9£0.5% 88.5+£0.6% 89.1£0.4% 90.6+£0.6%
Our SC-GAN 92.5+0.5% 89.3+0.4% 87.6+0.4% 89.1+0.3% 90.5+0.5% 91.7+0.4%

Our attribute classifiers are trained using nine folds and then evaluated on
the remaining fold, cycling through all ten folds. Receiver Operating Charac-
teristic (ROC) curves are obtained by saving the classifier outputs for each test
pair in all ten folds and then sliding a threshold over all output values to ob-
tain different false positive/detection rates. In Fig.2, we demonstrate the ROC
curve to show that our adversarial training (SCGANs) method can achieve ideal
results. These results reinforce that adversarial examples are powerful samples
for attribute leaning. In Fig.2 we can see our proposed method can correctly
classify a few challenging samples (True Positive) and adversarial samples (False
Negative). Experimental results obtained confirm that adversarial training ap-
proach makes the model more robust to adversarial examples and generalization
performance for original examples. Although the results show that the accuracy
of the proposed method is slightly lower but comparable to that of 3D CNN,
our SCGAN can reduce the computation cost, which is especially important in
population imaging.

4 Conclusion

In this paper, we tackled the problem of defining missing apical and basal slices
in large imaging databases. We illustrated the concept by proposing a SCGANs
to CMR image studies from the UK Biobank pilot datasets. By training the
classifier with the adversarial examples, our model can achieve a significant im-
provement in attribute representation. A well-trained attribute classifiers are
performed on the candidates to corresponding categories. We also validated our
model by comparing with traditional deep learning methods and applying them
to UK Biobank data sets. The proposed model shows a high consistency with
human perception and becomes superior compared to the state-of-the-art meth-
ods, showing its high potential. Our proposed semi-couple-GANs can also be
easily applied and boost the results for other detection and segmentation tasks
in medical image analysis.
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