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Abstract. We review recent theoretical and experimental developments concerning

collective spin excitations in two-dimensional electron liquid (2DEL) systems, with

particular emphasis on the interplay between many-body and spin-orbit effects, as

well as the intrinsic dissipation due to the spin-Coulomb drag. Historically, the

experimental realization of 2DELs in silicon inversion layers in the 60s and 70s created

unprecedented opportunities to probe subtle quantum effects, culminating in the

discovery of the quantum Hall effect. In the following years, high quality 2DELs

were obtained in doped quantum wells made in typical semiconductors like GaAs or

CdTe. These systems became important test beds for quantum many-body effects

due to Coulomb interaction, spin dynamics, spin-orbit coupling, effects of applied

magnetic fields, as well as dissipation mechanisms. Here we focus on recent results

involving chiral effects and intrinsic dissipation of collective spin modes: these are not

only of fundamental interest but also important towards demonstrating new concepts

in spintronics. Moreover, new realizations of 2DELs are emerging beyond traditional

semiconductors, for instance in multilayer graphene, oxide interfaces, dichalcogenide

monolayers, and many more. The concepts discussed in this review will be relevant

also for these emerging systems.
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1. Introduction

Understanding and controlling the mecha-

nisms that create or dissipate collective spin

motion is, on the one hand, of fundamen-

tal interest. On the other hand, this topic

has also drawn considerable attention since

the spin degrees of freedom are expected

to overcome some of the well-known limita-

tions of charge-based electronics [1, 2]. The

spins of charged particles interact through the

Coulomb-exchange interaction and can precess

coherently in a collective motion in the form of

a spin wave [3, 4].

Spin waves propagate and can carry spin-

based information over a significant distance

that depends on the product of the propaga-

tion velocity (which grows with the strength of

the Coulomb exchange) and the lifetime (which

is inversely proportional to the strength of dis-

sipative mechanisms that destroy the coher-

ent motion). Understanding the intrinsic laws

which determine the balance between these op-

posite trends is a fundamental topic which has

been addressed in various condensed matter

systems, including insulating ferromagnets [5],

conducting ferromagnets [6, 7], bilayer systems

[8, 9, 10, 11], magnetic semiconductors [12],

and semiconductor quantum wells [13, 14].

In this review we focus on systems where

the spins are those of one species of itinerant

carriers. For these systems, we explore the

interplay between spin-coherence protecting

mechanisms—such as chirality and, to a

certain extent, spin-orbit coupling (SOC), see

below—and sources of dissipation; we also

emphasise the distinction between intrinsic

and extrinsic mechanisms. The general

framework will be that of two-dimensional

electron liquids (2DEL).

We will distinguish intrinsic mechanisms

of dissipation from extrinsic ones. We refer

to purely electronic phenomena as ‘intrinsic’,

while the other mechanism are referred to as

‘extrinsic’. These may include deviations from

a low-temperature perfect crystal or from a

desired device, such as disorder, impurities, or

interface roughness. We include dissipation

due to phonons in the extrinsic category:

in ideal samples extrinsic mechanisms can

be suppressed, or at least their impact

can be reduced by increasing the quality

of the material or device or by reducing

the temperature. Intrinsic mechanisms, by

contrast, are introduced directly through the

physical terms in the Hamiltonian needed to

form the spin waves, spin plasmons, or the

chiral spin waves. One of these mechanisms,

called the Spin Coulomb Drag (SCD) [15, 16],

is due to the Coulomb interaction between the

itinerant carriers.

In recent years, condensed-matter physics

has undergone a dramatic paradigm shift,

triggered by the discovery of topological

insulators [19, 20]. New and universal ways

of characterizing band electrons through their

topological properties have been recognized as

the key to understanding phenomena such as

the spin Hall effect. In particular, chirality has

emerged as a central protection mechanism for

spin transport [21, 22, 23] because it prevents

backscattering. Chirality appears in inversion

symmetry broken systems, such as electrons

confined in a quantum well plane subject to

a perpendicular electric field [24]. In such

situations, the spin is locked to the electron

momentum due to SOC. In addition to SOC,

Coulomb many-body effects are then needed

to form chiral spin waves [25]. But, as we will

discuss, SOC can also become the cause of an

intrinsic dissipation mechanism [26].

2DELs are particularly well suited to ex-

plore the interplay between Coulomb interac-

tions (direct and exchange), kinetic motion,
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material m∗ ǫr a∗B (nm) rs αkF/EF × 10−2

MoS2 0.37 6.5 0.930 19.19 -

Si 0.19 7.7 2.14 8.32 -

CdTe 0.105 10.0 5.04 3.54 0.4∗

GaAs 0.067 12.6 9.95 1.79 0.2∗

InSb 0.02 16.8 44.5 0.401 3.7∗

LaAlO3/SrTiO3 3 20000 353 0.0506 1.6†

Table 1. Band mass m∗, dielectric constant ǫr, Bohr radius a
∗
B
, Wigner-Seitz radius rs and spin-orbit strength

αkF/EF for a set of typical 2D electronic materials. The 2D electronic density is taken as n2D = 1.0× 1011 cm−2.

The Rashba spin-orbit constant α has been evaluated from Ref. [17] for (*) and from Ref. [18] for (†).

and SOC and their related intrinsic dissipa-

tive mechanisms. They were first studied in

Si inversion layers [27], then in high mobil-

ity III-V and II-VI quantum wells [28, 29],

and more recently at oxide interfaces such

as LaAlO3/SrTiO3 [30] or in monolayers like

Graphene [31, 32] or from the dichalcogenide

family like MoS2 [33, 34].

One can classify the systems listed

above by the relative strengths of three

protagonists: Coulomb interactions (both

direct and exchange), kinetic energy, and

SOC. The first important scaling parameter

is the Wigner-Seitz radius rs. It is defined

as the ratio of the average electron-electron

distance d̄ to the electron Bohr radius

a∗B = 4πǫ0~
2/(m∗e∗2), where m∗ and e∗

are the material-dependent effective mass and

screened effective charge, respectively. The

Wigner-Seitz radius estimates the ratio of the

average Coulomb energy to the kinetic energy.

Thus, high rs values correspond to Coulomb

dominated systems with a strong collective

behavior, while, on the other side, low rs values

correspond to nearly noninteracting electrons.

High rs can be reached by lowering the electron

density, by increasing m∗, or by weakening

the dielectric constant (which increases e∗).

The relative strength of SOC to kinetic energy

can be specified by the ratio αkF/EF, where

α is the typical Rashba constant (see Section

2.4), kF and EF are the Fermi wavevector and

energy. Table 1 summarizes typical values of

these parameters for various 2D systems for a

given electron sheet density n2D.

The table shows how the same density

of electrons can result in a system highly

correlated by Coulomb interactions (MoS2)

or may correspond to nearly free particles

(LaAlO3/SrTiO3). Si, CdTe or GaAs are

intermediate. We will limit our discussion

to these two last systems as they are well

understood and very clean. Prior studies

referenced throughout this review have shown

that the intrinsic mechanisms of dissipation

discussed above are clearly visible in these

systems.

This article is organised as follows: In Sec-

tion 2 we set the stage by reviewing several rel-

evant basic concepts such as exchange interac-

tions in 2DELs, the formation of various types

of spin collective modes, SCD, and SOC in

semiconductors; we also discuss the interplay

between SOC and SCD, and summarize the es-

sential theoretical and experimental techniques

to describe and probe the spin modes. In Sec-

tion 3 we discuss collective spin modes in not-

overall spin-polarized 2DELs that are influ-

enced by Rashba and Dresselhaus SOC. These

modes can take place between two subbands
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abbreviation meaning

2D two-dimensional

3D three-dimensional

2DEL two-dimensional electron liquid

ALDA adiabatic local-density approximation

CSR chiral spin resonance

DFT density-functional theory

DMI Dzyaloshinskii-Moriya interaction

DP D’yakonov-Perel’

EPR electron paramagnetic resonance

ERRS electron resonant Raman scattering

IRG impulsive Raman generation

LDA local-density approximation

LSDA local spin-density approximation

SCD spin Coulomb drag

SF-SPE spin flip single-particle excitation

SFW spin-flip wave

SOC spin-orbit coupling

SP2DEL spin-polarized two-dimensional electron liquid

TDDFT time-dependent density-functional theory

TSG transient spin grating

xc exchange-correlation

Table 2. List of abbreviations.

(intersubband plasmons) or within one sub-

band (chiral spin waves). In this section, we

also introduce the excitation linewidth due to

intrinsic dissipation and related formalism. In

Section 4 we then include effects of in-plane

magnetic fields, considering 2DELs with a par-

tially or fully polarized ground state and dis-

cussing spin-flip waves and their dispersions.

As a special case, we consider the spin-helix

Larmor mode, which occurs in a 2DEL with

equal-strength Rashba and Dresselhaus SOC,

and is an exact many-body result. Conclusions

and some perspectives on future work are given

in Section 5. Table 2 presents a list of abbre-

viations used in this article.

2. Important concepts and tools

2.1. Exchange in 2DELs

In a 2DEL, Coulomb-exchange results from

Pauli’s exclusion principle and the Coulomb

interaction between the electrons. The former

prevents two electrons with parallel spin to

be on top of each other. Thus, each

electron is surrounded by a hole, the so-

called “Pauli-hole” in the parallel-spin electron

density. As electrons with parallel spin are

repelled from each other, the Coulomb energy

for parallel spins is reduced by an amount

called the Coulomb-exchange, and this induces

a self-alignment of spins. To first order,

the ground-state Coulomb-exchange energy of

massive electrons in a 2DEL (with parabolic
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dispersion) is universal and given by

εx =
8
√
2

6πrs
R∗

y

[

(1 + ζ)3/2 + (1− ζ)3/2
]

, (1)

where R∗
y is the effective Rydberg energy and

ζ is the spin-polarization degree of the 2DEL,

ζ = (n↑ − n↓) / (n↑ + n↓). On the other hand,

the ground-state kinetic energy reads

εK =
1

2r2s
R∗

y

[

(1 + ζ)2 + (1− ζ)2
]

. (2)

We see immediatly that the ratio εx/εK ∝ rs.

It is important to note that one can-

not map the Coulomb-exchange of itinerant

electronic systems to the Heisenberg exchange

constant that is encountered for localized or-

bitals. In a 2DEL, the motion of the elec-

trons is a partner of the Pauli hole. However,

when inserting magnetic impurities in a 2DEL,

Heisenberg-type exchange occurs between the

itinerant electrons of the 2DEL and the elec-

trons localized on the sites of the magnetic

impurities. For example, in CdMnTe doped

quantum wells [35, 36, 37], the Zeeman energy

of conduction electrons has to be corrected by

the Overhauser shift, which is the mean-field

effect of this Heisenberg-type exchange. Thus,

the full Zeeman energy can be written as

Z (Bext) = ∆− |g∗|µBBext, (3)

where g∗ is the effective g-factor, µB is the Bohr

magneton, and

∆ = JsdγNMn|〈Îz〉 (Bext, T ) |. (4)

Here, γ is the probability to find the electron

in the quantum well, Jsd is the s-d exchange

integral, NMn is the density of Mn spins, and

〈Îz〉 (Bext, T ) is the average spin of a single Mn

atom at temperature T and applied magnetic

field Bext. Equation (3) underlines the

competition between the “Overhauser shift”

∆ and the “band” Zeeman (g∗) contribution,

which appear with opposite signs in CdMnTe.

2.2. Spin collective modes

To discuss collective spin modes, it is concep-

tually helpful to begin with the excitations of

a single electron in a two-level system, |1σ〉 →
|2σ′〉, where σ and σ′ are spin indices and 1,2

refer to orbital (subband) levels. Consider an

inter-orbital state. Its time-dependent wave

function is

Ψ(t) = ψ1ξ(σ)e
−iE1t + λψ2ξ(σ

′)e−iE2t , (5)

where λ ≪ 1, E1 and E2 are the energies of

the two levels, ψ1,2 are the spatial parts of the

wave functions (taken as real), and ξ are two-

component spinors. We assume the z-axis as

the direction of spin quantization. For now, we

ignore any effects due to SOC.

Let us calculate the first-order density and

magnetization responses, δn(t) and δm(t), by

substituting the wave function (5) into n =

tr{ΨΨ†} and m = tr{σΨΨ†}, where σ is

the vector of Pauli matrices, and gathering

contributions linear in λ. If the excitation

conserves spin, i.e., σ = σ′, then δmx(t) =

δmy(t) = 0 and

δn(t) = ±δmz(t) = 2λψ1ψ2 cos[(E2 − E1)t].(6)

The charge-magnetization dynamics is longi-

tudinal: it only involves components along the

spin quantization axis.

For spin-flip excitations, i.e., σ 6= σ′, we

find δn(t) = δmz(t) = 0 and

δmx(t) = 2λψ1ψ2 cos[(E2 − E1)t] (7)

δmy(t) = ± 2λψ1ψ2 sin[(E2 − E1)t] (8)

(the + and − signs in Eqs. (6) and (8) are

for σ′ =↑, ↓, respectively). The magnetization

dynamics is transverse, i.e., perpendicular to

the spin quantization (z-)axis.

The basic findings of this simple example

translate directly to the collective excitations

in interacting many-electron systems that are

the subject of this review. One can distinguish
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Figure 1. Left: intrasubband excitations in a non-spin-polarized 2DEL: particle-hole continuum and 2D plasmon

dispersion. Middle: intersubband excitations in a non-spin-polarized 2DEL: particle-hole continuum and charge

and spin plasmon dispersions. Right: spin-flip excitations in a spin-polarized 2DEL: particle-hole continuum and

spin wave. SOC is not included.

several scenarios (to keep things simple, we

do not include SOC here). Figure 1 gives

an overview of the single-particle transitions

and collective modes in a quasi-2DEL without

and with applied magnetic field. The general

rule is that a collective mode will be stable

and long-lived if its dispersion does not

overlap with the particle-hole continuum, since

then, in the absence of disorder scattering,

the mode cannot decay into single particle-

hole pairs without violating energy-momentum

conservation. Decay into multiple particle-hole

pairs is still possible, but much less effective.

Intrasubband transitions [27], see the left

panel of Fig. 1, occur within the same subband

and take a particle from an occupied level

(below the Fermi energy EF) to an unoccupied

level outside the Fermi surface. The associated

collective mode is the intrasubband (or 2D)

charge plasmon, whose dispersion ω(q) is

shown in the bottom left panel of Fig. 1.

There is no corresponding intrasubband spin

plasmon mode, where the spin-up and spin-

down components of the 2DEL oscillate out of

phase: its dispersion lies entirely within the

intrasubband particle-hole continuum and is

therefore extremely short-lived [38, 39].

In an intersubband transition, see the

middle panels of Fig. 1, the excitation occurs

from an occupied subband level to an unoc-

cupied level in a higher subband. As shown,

there is a charge plasmon whose dispersion lies

above the intersubband particle-hole contin-

uum, and a spin plasmon below the contin-

uum. The spin-conserving (longitudinal) and

spin-flip (transverse) intersubband spin plas-

mons have the same frequency dispersions.

Intersubband charge and spin plasmons

have been experimentally observed [40, 41,

42, 43, 44, 45] and theoretically investigated

[46, 47, 48, 49, 50] for three decades.

If the 2DEL is exposed to an in-plane mag-

netic field, then the spin-up and spin-down

subbands are split. The corresponding intra-

subband single-particle transitions are shown

in the right panel of Fig. 1. In contrast with

the non-spin-polarized intrasubband plasmon

case discussed above, a collective long-lived
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spin-wave mode now exists. The spin waves

in a 2DEL have been experimentally and the-

oretically investigated [36, 51, 52, 53, 54].

The physical reason for the existence of

the spin waves in the paramagnetic 2DEL

is that the associated collective precessional

motion of the electron spins in the long-wave

limit is protected by Larmor’s theorem, as we

will discuss in more detail below. For very low

densities, the 2DEL undergoes a spontaneous

ferromagnetic phase transition [55, 56]; in

that case, the spin waves (or magnons)

become the Goldstone modes associated with

the spontaneous breaking of spin rotational

symmetry.

2.3. Spin Coulomb Drag

In 2DELs, Coulomb interaction is at the origin

of the collective modes introduced above.

However, by giving rise to the SCD effect, it

can also be a source of intrinsic dissipation for

these modes. The SCD was proposed in 2000

[15] and observed experimentally for the first

time in a GaAs 2DEL in 2005 [57].

The spin-transresistivity [15] couples two

spin channels and is proportional, within

the Kubo formalism, to the response func-

tion between the corresponding spin current

components [15, 58]. These may be spin-

preserving ‘longitudinal’ components (e.g. ↑
and ↓ spin current components) and/or spin-

flipping ‘transverse’ components (often re-

ferred to as ‘+’ and ‘−’ components, de-

pending on their chirality). Accordingly, the

Coulomb-originated contribution to the spin-

transresistivity is divided into longitudinal

SCD [15, 58] and transverse SCD [59]. For the

sake of simplicity, in what follows, we will use

the acronym SCD to indicate longitudinal SCD

and we will specify transverse or longitudinal

only when necessary.

The left panel of Fig. 2 illustrates the mi-

croscopic mechanism of the SCD for the spe-

cial case of a one-dimensional, head-on scat-

tering event [60]: due to Coulomb interaction,

each electron in the pair experiences a con-

servation of its spin but a reversal of its mo-

mentum. This event does not alter the charge

current (total momentum of the pair) but it

reverses the spin current. Consider a spin-

polarized 2DEL where a charge current trav-

els together with a spin current: at the end,

only the charge current will survive, as seen

in the right-hand side of Fig. 2. The SCD

is a many-body effect which stems from the

non-conservation of the spin components of the

total momentum in an electron liquid. Differ-

ent spin populations will exchange momentum

through Coulomb scattering leading, in the ab-

sence of a spin-dependent momentum “pump”,

to equal average momentum spin components,

see Fig. 2.

Because of its Coulomb origin, the SCD

translates into an intrinsic dissipation source

for spin currents, which is the most effective for

temperatures close to the Fermi temperature

of the system, TF = EF/kB, with kB the

Boltzmann constant [61, 62]: for T ≪ TF
the momentum space volume available for

scattering decays quadratically, while at T ≫
TF the system behaves as noninteracting.

It follows that SCD will be negligible in

metals, due to their high TF, but may become

substantial in semiconductors, and especially

for structures with lower dimensionality and

TF [63, 64], where the spin-transresistivity ρ↑↓,

which measures the strength of the effect [15],

can become comparable or even higher than

the Drude resistivity [57, 65]. While Coulomb

interaction is key to the SCD, charge flow is

not essential, so that the SCD will affect also

pure spin currents (Fig. 2, right lower panel).

In 2006 it was proposed that the SCD



Chirality and intrinsic dissipation of spin modes in two-dimensional electron liquids 8

Figure 2. Left panel: schematic illustration of the SCD mechanism for ‘head-on’ scattering events. c©2005

Nature Publishing Group. Reprinted, with permission, from [60]. Upper right panel: in a system with both spin

and charge currents, the SCD will equilibrate the average momentum spin components leading to the persistence

of the sole charge current. Lower right panel: in the presence of pure spin currents and Coulomb interaction

between the two spin populations, both average momentum spin components will be damped, eventually to zero,

by the SCD. This is the situation in which the effect can be best measured experimentally.

All sketches in the left and right panels of the figure refer explicitly to the longitudinal SCD, where spin

populations are characterized by ↑ and ↓ spins; however similar momentum transfer processes (and hence spin

current decay) would apply to the case of transverse SCD, with populations now defined by the ‘+’ and ‘−’ spin

operators.

may contribute to the intrinsic linewidth of

collective spin excitations [66], and the low-

temperature frequency dependence of the spin

transresistivity was analysed. Results showed

that the SCD damping would be most effective

for excitation energies comparable to EF.

The intersubband longitudinal spin plasmon

of a parabolic quantum well was proposed

as a good candidate for observing the effect.

This excitation in fact corresponds to an

out-of-plane oscillation of the magnetization,

with opposite spin components moving with

opposite phases, as exemplified by Eq. (6).

In 2007 and 2008 the transverse SCD was

analysed and, together with the longitudinal

SCD, was proposed as one of the mechanisms

contributing to Gilbert damping in itinerant

electron ferromagnets [59, 67]. Later the

transverse SCD was explored as a source

of intrinsic damping for transverse (spin-flip)

spin waves [68] propagating in a high-mobility

2DEL. Here the SCD damping enters due

to the coupling between the damping of the

transverse spin current and the magnetization

dynamics and it will be zero for q → 0

(homogeneous limit). The electron liquid

was embedded in a Cd1−xMnxTe/Cd0.8Mn0.2Te

quantum well (x < 1%), where a highly

polarized paramagnetic conductor is generated

when a suitable magnetic field B parallel

to the quantum well surface is applied.

At finite B, this system supports a spin-

flip wave between spin-split subbands, whose

dispersion merges into the spin-flip single-

particle excitation continuum at small values

of the transferred momentum q (right panel

of Fig. 1). The system was analysed by

Raman spectroscopy, which gives access to
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both dispersion relations. The lowest order

inhomogeneous Gilbert damping contribution

to the spin-flip wave linewidth is proportional

to q2 [59, 68], and includes contributions

from both disorder and transverse SCD. While

the q2 damping rate behaviour was confirmed

by the experiments [59], its transverse-SCD

contribution was regarded to be too small to

be relevant for the spin-flip wave lifetime.

At variance with the transverse SCD, the

contribution of the longitudinal SCD to spin-

plasmon damping remains finite in the homo-

geneous limit, and calculations based on the

three-dimensional local density approximation

(3D-LDA) suggested [66] that it should provide

a sizable intrinsic contribution to the linewidth

of intersubband spin plasmons, which should

be measurable and dominant for clean quan-

tum well samples. Related experiments by in-

elastic light scattering were conducted a few

years later, using electron liquids embedded in

GaAs-based quantum well samples [69]. Re-

sults showed that 3D-LDA was providing an

overestimate of the spin-plasmon linewidth.

The SCD linewidth damping in spin plasmons

is due to the decay of spin currents in the

growth direction: the 3D-LDA overestimate

demonstrated the necessity of a better treat-

ment for both the 2D-3D crossover regime

which occurs in quantum wells, as well as for

inhomogeneous and non-local effects. These

corrections to the theoretical approach will be

discussed in Section 3.2.

Further open experimental challenges

with respect to the SCD will be discussed in

Section 5.

2.4. Spin-orbit coupling

Spin-orbit coupling is a relativistic effect:

electrons moving in a spatially varying electric

field experience a magnetic field in their own

reference frame, which then interacts with

the spin carried by the electrons [70]. Its

expression in vacuum arises from the Pauli-

Dirac equation:

Ĥvac
SO = − e

2m2
0c

2
Ŝ ·E× p̂, (9)

where m0 is the vacuum electron mass, E is

the local electric field, and Ŝ is the electron

spin operator. SOC is naturally present in

all materials, causing changes to the electronic

structure, in particular for heavier elements

and deep, strongly bound levels, regardless of

the crystalline symmetry of the system.

However, SOC can also have a strong

influence on the itinerant carriers in valence

and conduction bands, which will be important

for the collective spin modes that are of interest

here. These SOC effects depend on the crystal

lattice structure: specifically, they require a

breaking of inversion symmetry. Recall the

following important band-structure properties:

time-reversal symmetry (which is preserved

by SOC) leads to E↑(k) = E↓(−k), and

inversion symmetry causes E↑,↓(k) = E↑,↓(−k)

(here, k is the wavevector of the Bloch states).

Together, this gives rise to the spin degeneracy

E↑(k) = E↓(k).

In the absence of inversion symmetry, it

follows that the spin degeneracy of the bands

is lifted. A simple way of thinking about

the resulting spin splitting is to view it as

a consequence of an additional term in the

electronic Hamiltonian of the form ĤSO =

g∗µBBSO · Ŝ. Here, BSO(k) is an SOC-induced

crystal magnetic field which depends on the

wavevector of the Bloch state it is acting

on. Due to time-reversal symmetry we have

BSO(−k) = −BSO(k).

Inversion symmetry can be broken in

several ways: by the crystal structure itself,

which is known as the Dresselhaus effect [71];

through extrinsic electric fields which arise in
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structures such as gated or asymmetrically

doped quantum wells or inversion layers,

which is known as the Rashba effect [72, 24,

73, 74]; and at interfaces with asymmetric

bonds between non-common ions [75]. The

Dresselhaus and Rashba contributions tend to

dominate for the systems considered here, so

we will limit the discussion to these two effects.

For typical III-V and II-VI semiconduc-

tors, the associated crystal magnetic fields for

quasi-2D structures can be derived using stan-

dard perturbative techniques known as k ·p
theory [17]. There is a dependence on the crys-

tallographic direction of the 2D plane; we here

limit ourselves to zincblende quantum wells

grown along the [001] direction (the corre-

sponding expressions for other growth direc-

tions can be found in the review article by

Schliemann [76]). One finds the following form

for the Rashba crystal magnetic field:

BRashba
SO (k) =

2α

g∗µB

(

ky
−kx

)

, (10)

while the Dresselhaus crystal magnetic field is

BDressel
SO (k) =

2β

g∗µB

(

kx
−ky

)

. (11)

Here, the 2D in-plane wavevector has the

components (kx, ky), where the x and y axes

are aligned along the [100] and [010] directions,

respectively. The Rashba and Dresselhaus

coupling strengths, α and β, can be in principle

be calculated via k ·p theory [77, 78, 79,

80, 81, 82] (see Table 1 for some examples)

or using first-principles electronic structure

methods [83]. The outcomes, however, are

not always reliable, since many of the relevant

system characteristics (such as well geometry

or carrier concentration) are not very precisely

known; it is often better to treat α and β as

fitting parameters.

The Rashba and Dresselhaus magnetic

fields (10) and (11) are schematically illus-

trated in Figs. 3a and b, respectively. It can

be seen that the Rashba field has a vortex-like

structure, whereas the Dresselhaus field is anti-

vortex-like. The magnitudes of both fields,

BRashba
SO = 2αk/g∗µB and BDressel

SO = 2βk/g∗µB,

only depend on k =
√

k2x + k2y, not on the in-

plane angle ϕ = tan−1(ky/kx).

However, in systems where the Rashba

and Dresselhaus effects are both present, the

two crystal magnetic fields superimpose, as

shown in Fig. 3c for the case of β = 2α. In

this case, the total field becomes dependent on

the in-plane angle ϕ:

|BRashba
SO +BDressel

SO |

=
2k

|g∗|µB

√

α2 + β2 + 2αβ sin 2ϕ. (12)

The dependence on sin 2ϕ will turn out to be

very significant in our discussion of the spin

modes.

SOC increases Coulomb scattering be-

tween different spin populations, and, as such,

enhances dissipation due to SCD [84]. SOC-

enhanced longitudinal and transverse SCD is

a source of intrinsic Gilbert damping [67], and

may affect spin waves, including chiral spin

waves [85] (see also Section 3.3).

This damping will persist at q = 0 both in

the presence or in the absence of an external

magnetic field. In fact the external magnetic

field supports longitudinal spin-polarization,

and hence longitudinal SCD, which is non-zero

even at q = 0 and would persist in the weak

SOC limit. However, even in the absence of

a magnetic field, SOC couples the spin and

orbital motion, and therefore, even at q = 0

and in the absence of a magnetic field, spin

waves in the presence of SOC are never pure

spin excitations. Due to the coupling to orbital

motion, momentum exchange between ‘+’ and

‘−’ spin populations is enhanced, leading to

transverse SCD dissipation (see also Sections
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Figure 3. Spin-orbit effective magnetic fields in a 2DEL: (a) Rashba field, Eq. (10), (b) Dresselhaus field, Eq.

(11), (c) superposition of Rashba and Dresselhaus fields, with β = 2α.

3.3 and 5).

2.5. D’yakonov-Perel’ relaxation

When a number of carriers (electrons or

holes) with a distribution of wavevectors k

are prepared in a given spin state in the host

system (metal or semiconductor), for instance

as a “spin packet” via optical pumping [86]

or via spin injection [87], then the total spin

of this nonequilibrium population of carriers

will relax over time. Spin relaxation is

an unavoidable phenomenon, and plays an

important practical role in spintronics [2, 74].

Out of the various spin relaxation mech-

anisms that have been discussed in the litera-

ture [2], we here focus on the D’yakonov-Perel’

(DP) mechanism [26, 88], since it raises an im-

portant point regarding the nature of collective

spin modes in semiconductors with SOC.

DP spin relaxation occurs in materials

where SOC causes the appearance of a

wavector-dependent crystal magnetic field

BSO(k). The spins of individual carriers

precess in the crystal magnetic field, but

carriers with different k experience a different

BSO(k), and hence precess at different rates

and about different directions. This leads

to the dephasing of spin populations. The

associated spin relaxation time depends not

just on BSO(k), but also on momentum

scattering; paradoxically, the shorter the

momentum scattering time τp (related to

collisions with impurities, phonons, and other

electrons [89, 90, 91]), the less effective the

DP mechanism is. The reason for this is that

a higher rate of scattering events gives the

carriers less opportunity to precess between

scattering events (this is called motional

narrowing). The process is schematically

illustrated in Fig. 4.

Thus, the DP mechanism causes a rapid

dephasing of carrier spins—as long as the

spins behave independently of one another,

and simply evolve in the k-dependent SOC

crystal magnetic field they find themselves in

at a particular moment. As we will see below,

this situation changes dramatically if Coulomb

many-body interaction effects are included.

2.6. Theoretical techniques

2.6.1. Many-body Hamiltonian and single-

particle states The 2DEL is a very widely

studied model system, and a comprehensive

account of the theoretical techniques used to
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1
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k

Figure 4. Schematic illustration of DP spin

relaxation. Carrier spins precess about the spin-

obit magnetic field BSO(k) associated with their

instantaneous wavevector k. The precession changes

after each scattering event.

describe its properties would be beyond the

scope of this review [27, 55, 92]. Here, we

just summarize the basic theoretical tools we

need to describe collective spin modes in III-V

and II-VI based, n-doped quantum wells. In

these systems, the electronic states are close

to the bottom of the parabolic conduction

band, and are therefore well described within

the effective-mass approximation. Thus, we

consider the many-body Hamiltonian

Ĥ =
N
∑

i

p̂2
i

2m∗
+
1

2

N
∑

i 6=j

e∗2

|ri − rj|
+ĤSO+Ĥm.(13)

Here, the first and second terms on the right-

hand side are the kinetic and electron-electron

interaction Hamiltonians, respectively. The

third term is the spin-orbit Hamiltonian,

ĤSO = µB

N
∑

i

BSO(ki) · σ̂i , (14)

where σ̂i is the vector of Pauli matrices

associated with the spin of the ith electron,

and the SOC effective magnetic fields are due

to the Rashba and Dresselhaus effects, see

Section 2.4.

Ĥm accounts for the influence of magnetic

fields on the itinerant conduction electrons.

We only consider magnetic fields Bext that

are in the plane of the 2DEL; as long as the

magnetic length lm =
√

~/eBext exceeds the

quantum well width, the coupling of magnetic

fields to the orbital motion (leading to Landau

level quantization [93]) is suppressed and we

only need to include the Zeeman coupling of

the magnetic field to the electron spins.

In addition to externally applied magnetic

fields, Ĥm can also account for the s-d

exchange coupling between localized magnetic

impurities and itinerant conduction electrons,

see Section 2.1. For simplicity, we ignore these

contributions in the present Section.

The electronic ground-state properties of

the full many-body Hamiltonian (13) can be

obtained in various ways, for instance using

Landau Fermi liquid theory [94]. A concep-

tually and computationally simpler alternative

is density-functional theory (DFT) [95, 96, 97,

98]. In DFT, the properties of the interact-

ing electrons are calculated from a system of

fictitious noninteracting Fermions moving in

an effective self-consistent potential, including

exchange-correlation (xc) contributions. The

single-particle wave functions Ψnk(r) have a

two-component spinor form:

Ψnk(r) = eik · r ~ψnk(z) = eik · r
(

ψnk↑(z)

ψnk↓(z)

)

,(15)

where k is a wavevector in the plane of the

quantum well (assumed to be the x−y plane),

n is a subband index, and we include a z-

dependence to allow for finite-width effects of

the quantum well. Using atomic units (~ =

m∗ = e∗ = 1), the Kohn-Sham single-particle

equation for the system (13) is [99]

[ĥ0I + ĥSO,m · σ̂]~ψnk(z) = Enk
~ψnk(z), (16)
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Figure 5. Single-particle energies for a 2DEL with Rashba and Dresselhaus SOC (assuming α = β = 0.05 and

k along the [110] direction). (a) No magnetic field. (b) Finite in-plane magnetic field (Z∗ = 0.0381).

where I is the 2× 2 unit matrix,

ĥ0 =
k2

2
− 1

2

d2

dz2
+ vconf(z)+ vH(z)+ v+xc(z)(17)

and

ĥSO,m = µBBext + µBBSO(k) + v−xc(z)êBext
.(18)

Here, vconf(z) is the quantum well confining

potential (e.g., a square well), vH is the Hartree

potential, v±xc(z) = [vxc↑(z)±vxc↓(z)]/2 is the xc
potential, and êBext

is a unit vector along the

in-plane magnetic field Bext. The xc potential

is approximated using the standard local spin-

density approximation (LSDA) [56, 100].

The eigenstates of the Kohn-Sham equa-

tion (16) can be found analytically in the lim-

iting case where the z-dependence can be ne-

glected [99]. The energy eigenvalues are

E±k =
k2

2
+
ε↑ + ε↓

2
± k

[(

Z∗

2k
+ β cos 2ϕ

)2

+ (α + β sin 2ϕ)2
]1/2

, (19)

where ϕ is the angle between k and the x-axis.

In Eq. (19), ε↑ and ε↓ are the spin-up and spin-

down energy eigenvalues of the Kohn-Sham

system without SOC, and the renormalized

(“dressed”) Zeeman energy is given by

Z∗ = ε↑ − ε↓ = Z + vxc↑ − vxc↓ , (20)

where the “bare” Zeeman energy is Z =

g∗µBBext, and we assume that the sign of the

Bext is such that the ↑ states have higher

energy than the ↓ states.

Figure 5 illustrates this for two different

cases: (a) For Bext = 0 one obtains

two parabolic bands (+ and −) which are

horizontally displaced. (b) For Bext 6= 0, the

bands are also vertically displaced by Z∗. In

both cases, the states are filled up to the Fermi

level EF = πn2D − (α2 + β2).

In the absence of SOC, the two cases

shown in Fig. 5 reduce to the top left and

top right energy bands of Fig. 1, respectively.

2.6.2. Calculation of spin-wave dispersions

There are several theoretical methods for

describing the collective spin dynamics in a

2DEL. Going back to the work by Holstein and

Primakoff [101], one can define the spin-wave

operator (where σ̂+ = σ̂x + iσ̂y)

Ŝ+
q =

1

2

∑

i

σ̂+
i e

iq · ri , (21)

whose equation of motion is given by

i
d

dt
Ŝ+
q = [Ŝ+

q , Ĥ] . (22)

This formal relation provides the starting

point for a full account of the interplay
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between electronic many-body effects, SOC

and magnetic-field effects in the spin-wave

dynamics [36, 54, 99, 102, 103].

A connection to linear-response theory

can be made by defining the transverse (or

spin-flip) response function [55, 54]

χ↓↑,↓↑(q, ω) = 〈〈S+
q ;S

−
q 〉〉ω , (23)

where ω is the frequency, and 〈〈. . . ; . . .〉〉ω de-

notes a frequency-dependent response function

defined in the standard way [55]. Here, we con-

sider the time-dependent spin-density matrix

nσσ′(r, t) = 〈Ψ(t)|ψ̂†
σ′(r)ψ̂σ(r)|Ψ(t)〉 (24)

as basic variable, where Ψ(t) is the full

many-body wave function [associated with the

Hamiltonian Ĥ, Eq. (13), plus a perturbation],

and ψ̂σ(r) and ψ̂†
σ(r) are Fermionic field

operators for spin σ.

Within time-dependent density-functional

theory (TDDFT) [104], the linear response of

the spin-density matrix is given by

n
(1)
σσ′(q, ω) =

∑

ττ ′

χσσ′,ττ ′(q, ω)v
(1)eff
ττ ′ (q, ω) , (25)

where χσσ′,ττ ′(q, ω) is the response function of

the corresponding noninteracting 2DEL, and

the effective perturbation is

δv
(1)eff
ττ ′ (q, ω) = v

(1)
ττ ′(q, ω) (26)

+
∑

λλ′

[

2π

q
+ fxc

ττ ′,λλ′(q, ω)

]

n
(1)
λλ′(q, ω).

Here, fxc
ττ ′,λλ′(q, ω) is the xc kernel for the spin-

density matrix response of the 2DEL, which

can be calculated using the LSDA [105, 106],

in which case it becomes independent of q and

ω.

To obtain the full excitation spectrum of

the electronic system, one sets the external

perturbation v
(1)
ττ ′(q, ω) to zero, so that only the

self-consistent Hartree and xc perturbations

remain in Eq. (26). Solving the response equa-

tion (25) then yields the single-particle excita-

tions and collective modes. By expanding the

noninteracting response function χσσ′,ττ ′(q, ω)

in orders of q one can obtain analytic results

for the mode dispersions. We will come back

to this later, in Sections 4.3 and 4.4.

Instead of TDDFT, it is also possible

to calculate the transverse response function

(23), and the spin-wave properties following

from it (including dissipation), using Fermi-

liquid theory [107] or diagrammatic many-

body techniques [85, 108, 109, 110, 111].

Furthermore, more phenomenological de-

scriptions of the collective spin dynamics in a

2DEL can be obtained via Landau Fermi liq-

uid theory [25, 112] or via the Landau-Lifshitz-

Gilbert equations of motion [113].

2.7. Experimental techniques

Probing the spin degrees of freedom of a

2DEL can be done directly and similarly

to the nuclear magnetic resonance, where a

microwave cavity-mode magnetic field b(r, t)

oscillates with a frequency ω in the plane

perpendicular to the polarizing magnetic field

B0. The typical perturbing Hamiltonian

reads: ĥd = −g∗µBŜ
−
−qb(t)

+
q , where Ŝ−

−q is

the spin-wave operator introduced in (21),

and b(t)+q =
∫

(bx(r, t) + iby(r, t))e
iq · rdr is

the spatial-Fourier transform of the transverse

oscillating magnetic field. In general, the

typical variation length scale of b(r, t) is much

larger than the electron wavelength; thus, this

technique, called the electron paramagnetic

resonance (EPR), probes only the macroscopic

spin motion of S+
q=0. Because the frequencies

of the magnetic field match the discrete

cavity modes, the EPR response is given by

the absorption spectra obtained by sweeping

the amplitude and/or direction of the static

polarizing magnetic field B0. It is proportional

to the imaginary part of the transverse spin

susceptibility Imχ↓↑,↓↑(q = 0, ω) defined in Eq.



Chirality and intrinsic dissipation of spin modes in two-dimensional electron liquids 15

(23).

The typical detection threshold of a

standard EPR setup is around 1011 spins

placed in the cavity. In the absence of SOC,

the macroscopic spin oscillates at the Larmor

frequency ω0 = g∗µBB0 which, remarkably, is

independent of electron-electron interactions:

this is the Larmor theorem [53, 114] (see

below). In such case, the outputs of EPR

measurements are the determination of the

band g-factor g∗ and its anisotropy as in Ref.

[115]. The linewidth of the resonance at ω =

ω0 is also related to the homogenous-mode

relaxation rate 1/T2, which is defined from the

effective (Bloch) equation of motion that can

be inferred from Eq. (22),

i
d

dt
Ŝ+
q=0 = ω0Ŝ

+
q=0 − iŜ+

q=0/T2 . (27)

We discuss in Section 4.4 the Larmor

theorem when the spin-rotational symmetry is

broken by SOC.

Electromagnetic waves can indirectly cou-

ple to the spin modes through the ĥind =

−(e/m∗)A · p̂ coupling. Here, A(r, t) is the

electromagnetic vector potential and p̂ is the

electron momentum. Despite the fact that the

spin degrees of freedom do not appear in ĥind,

an indirect coupling arises from the spin-orbit

coupling L̂ · Ŝ in the host crystal, which creates

split-off bands with spin-mixed states. For ex-

ample, consider the total momentum Ĵ = L̂+Ŝ

in crystals for p-bands (l = 1, J = 3/2, 1/2);

the J = 1/2 states are of mixed spin and read

∣

∣J = 1
2
, Jz ± 1

2

〉

= −
√

2
3

∣

∣pz, Sz = ±1
2

〉

(28)

±
√

1
6

∣

∣(px ± ipy) , Sz = ∓1
2

〉

.

If the 2DEL occupies s-bands of the same

crystal, consider the process described by the

optical matrix element 〈l = 0, Sz|A · p̂|J =

1/2, Jz = 1/2〉: an electromagnetic vector

potential polarized along the z axis couples

to an |l = 0, Sz = +1
2
〉 electron in the

2DEL, while an x-polarized one couples to a

spin-down electron [116]. Hence, coupling to

transverse spin modes in the 2DEL can be

achieved via second-order spin-flip processes

characterized by matrix elements such as

M↑↓ = 〈l = 0, Sz = +1
2
|Azp̂z|12 , 12〉

× 〈1
2
, 1
2
|Axp̂x|l = 0, Sz = −1

2
〉. (29)

Experimental techniques involving this process

are Electronic Resonant Raman Scattering

(ERRS) [51, 53, 117], Impulsive Raman

generation (IRG) [43, 118], and Transient

Spin-Gratings (TSG) [57, 119]. They are

sketched in Fig. 6.

ERRS is a continuous-wave optical spec-

troscopy technique where energy and momen-

tum are conserved. Incoming photons from

a monochromatic optical beam (laser) scatter

with electrons in the crystal and the spectrum

of scattered photons is measured with a spec-

trometer. The matrix element (29) yields the

scattering probability (i.e, the Raman cross

section). In the ERRS case, only one of the

vector potentials in Eq. (29) belongs to the

incoming laser beam, the second one should

be viewed as the vacuum electromagnetic field

because this matrix element describes a spon-

taneous process.

In general, the spectrum shows “Raman

lines” at an energy below the Rayleigh line.

The latter is due to elastic scattering of the

incoming photons. The Raman shift is the

energy difference between the Rayleigh line

and the Raman line. It corresponds to an

excitation energy of the crystal, which is then

measured from this Raman shift. Raman lines

are discriminated from other photonic lines by

tuning the laser wavelength (if possible): the

Raman lines follow the Rayleigh lines by a

constant shift.

Discrimination between electronic and
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Figure 6. (a) ERRS experiment: incoming linearly polarized photons hit the 2DEL in its thermal equilibrium.

Fluctuations of the spins lead to backscattered photons with crossed polarization. Selecting the angle of incidence

and backscattering (here both equal to θ) probes the fluctuation spectrum at momentum q ≃ 4π

λ
sin θ, where λ is

the photon wavelength. (b) IRG experiment: a circularly polarized laser pulse creates a coherent spin state in the

2DEL. After the pulse, spins are out of equilibrium and the spin state evolves freely in time. A τ -delayed linearly

polarized pulse experiences Kerr rotation through transmission (or reflection). The Kerr angle θK is proportional

to the out-of-plane spin component. (c) TSG experiment: here, the circular pulse of IRG is divided into two

crossed linearly polarized pulses, with different angles of incidence (here ±θ/2). They generate a coherent spin

state, but, opposite to IRG, an in-plane momentum q ≃ 2π

λ
sin θ is transferred to the spin excitation, which

generates a spin grating. The delayed probe is diffracted by the spin grating while experiencing rotation of the

polarization (here θK = π/2).

other processes (vibrational) underlying the

presence of a Raman line is sometimes tricky.

In general, for 2DELs, electronic Raman lines

are broader (because electronic excitations

live shorter than phonons), disappear quickly

when raising the temperature of the system

from 1.0 K to 20 K and, furthermore, they

are strongly resonant. This means that the

electronic Raman line is visible only when the

incoming photon wavelength is close to an

optical resonance of the crystal.

Identification of the involved excitation

(plasmon, spin-plasmon, spin-wave etc...) is

done by (i) analysing the selection rules

followed by the polarizations of the incoming

and scattered photons (as developed above)

and (ii) measuring the dependence of the

Raman line with the transferred momentum

(if possible by the experimental setup and

the dimensionality of the electronic system).

Comparison with theory is the last necessary

step to complete the identification. In practice,

electronic Ramanists construct their reasoning

with the non-resonant approximation: when

neither the incoming nor the scattered photons

are in resonance with any of the electronic

transitions in the crystal, the ERRS cross

section is proportional [40] to Imχ↓↑,↓↑(q, ω),

which can be calculated within the frame

developed in Section 2.6. In the particular case

of a 2DEL, ERRS allows the measurements of

the dispersions of spin modes [69, 102, 120,

121] by varying the angle of incidence θ of the

incoming and scattered photon with respect to

the 2DEL plane§.
§ In the Raman process, the momentum is conserved.

In 2D and 1D, one can probe excitations with a

well defined momentum q by varying the momenta
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IRG is a transient time-domain spec-

troscopy. A circularly polarized laser pulse

of duration τ hits the crystal at time zero.

It leaves the 2DEL in a state of the form

|t = τ〉 = |0〉 + cf |sw〉, which is a coherent

state between the ground state and a spin

state (spin-plasmon, spin-wave). The ampli-

tude cf is given by the matrix of the second-

order process (29). Here, the two vector poten-

tials belong to the same beam. The circular

polarization provides the two required cross-

polarized photons involved in the matrix ele-

ment (29). Thus, during the pulse, the Raman

process acts as a coupling between opposite

spin states of the 2DEL. As the two involved

photons have necessarily the same momentum,

with same incidence and direction, no momen-

tum is transferred during the process, and only

q = 0 spin modes can be excited. After that,

the coherent state evolves freely. The expecta-

tion values of the transverse spin components

〈t = τ |Ŝ+
q=0|t = τ〉 oscillate at the frequency

ω0 and decay within a time T2. The oscilla-

tion of the transverse spin components can be

probed by measuring the rotation of the po-

larization of a linearly polarized delayed laser

pulse which crosses the sample [43]. The latter

effect is referred as the magneto-optical Kerr

effect (MOKE).

TSG involves two crossed linearly polar-

ized laser pulses. Contrary to IRG, the two

laser beams hit simultaneously the 2DEL plane

with different angles of incidence. Thus, an

in-plane momentum can be transferred to the

induced spin excitation, which is called a tran-

of the incoming ki and scattered ks photons, as

q = (ki − ks)conserved, where the subscript refers to

the components of the momentum that are conserved

by the dimensionality. In 2D, in a backscattering

geometry ki ≃ −ks, q ≃ 4π

λ
sin θ, where θ is the

incidence angle of the photons with respect to the 2D

plane.

sient spin-grating. The mechanism is still de-

scribed by the matrix element (29): here, the

two vector potentials belong to each of the

two beams. In this case, spin components at

non-zero q will oscillate and decay. The ex-

pectation values 〈t = τ |Ŝ+
q |t = τ〉 are the spin-

grating. Similarly to IRG, the dynamics of

these components will be sampled by a lin-

early polarized, delayed pulse. Photons of

this pulse have a momentum kp and can be

diffracted by the transient spin grating, such

that the diffracted beam has in-plane momen-

tum (kp)conserved ± q. At the same time, due

to the Kerr effect, the diffracted and the probe

beams are cross-polarized [57, 119].

A comparison of the efficiency between

direct (EPR) and indirect (ERRS, IRG, TSG)

coupling to spin degrees of freedom can

be done roughly by considering the ratio
∣

∣

∣
ĥd/ĥind

∣

∣

∣
≃ (α∗)−1, where α∗ is the material

fine structure constant. The inverse (α∗)−1

appears after converting the A · p̂ coupling

into the E · r̂ coupling and assuming 〈r〉 ≃
ae−h
B , where E is the electric field of the

electromagnetic wave, r is the electron position

operator and ae−h
B is the typical Bohr radius of

an electron-hole pair in the crystal. Thus, the

optical resonance makes the indirect coupling

more sensitive.

3. Spin-unpolarized 2DEL

3.1. Intersubband spin plasmons: collective

spin-orbit effects

As we discussed in Section 2.2 (see Fig.

1), the non-spin-polarized 2DEL can sustain

intersubband spin plasmon modes. We

now ask how these modes are influenced

by the presence of SOC [69, 105, 106,

122]. A collective spin mode is a coherent

superposition of many single-particle spin
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Figure 7. Left: schematic representation of the two lowest SOC-split subbands of a quantum well, with

longitudinal (red arrows) and transverse (blue arrows) single-particle transitions. Right: Associated intersubband

particle-hole continuum and charge and spin-plasmon dispersions. The closeup reveals a three-fold splitting of

the intersubband spin-plasmon dispersion into one longitudinal and two transverse collective modes.

excitations of the 2DEL; the left-hand side of

Fig. 7 shows four different excitations between

the two lowest, SOC-split subbands, assuming

for simplicity that both subbands have the

same parabolicity, and are subject to the same

BSO(k). We distinguish longitudinal (||) and

transverse (+,−) single-particle excitations

(shown as red and blue arrows, respectively):

the || excitations are E(1)
±k → E

(2)
±(k+q), and the

± excitations are E
(1)
±k′ → E

(2)
∓(k′+q′).

Intersubband single-particle excitations

with different k but the same momentum

transfer q all have a different energies, which

gives rise to the intersubband particle-hole

continuum, shown as shaded area on the right-

hand side of Fig. 7. The intersubband charge

and spin plasmons, on the other hand, are

collective modes which are “held together” by

Coulomb interactions.

Based on the discussion in Section 2.5,

one would expect the DP mechanism to

play an adverse role for the intersubband

spin plasmons: the underlying single-particle

spin excitations are each subject to different

BSO, which should lead to a significant line

broadening due to precessional dephasing.

However, this is not the case: in the absence

of impurities, defects, phonons, and dissipative

electron-electron interactions (such as the

SCD, see Section 3.2.2), the intersubband spin

plasmons are sharp lines, since the presence of

Coulomb many-body interactions renders the

precessional dephasing ineffective.

The experimental proof of this remarkable

phenomenon was given in Ref. [69], see Fig. 8.

Inelastic light scattering reveals rather sharp

intersubband charge and spin plasmon peaks.

The width of the spin plasmon peak increases

linearly with the magnitude of the plasmon

wavevector, q, and exhibits a modulation as a

function of the in-plane direction of q. This

behavior of the intersubband spin plasmon

linewidth is a direct consequence of SOC.

According to theoretical predictions [105,
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106], the intersubband spin plasmon dispersion

is split into three branches, as illustrated on

the right-hand side of Fig. 7. The longitudinal

intersubband spin plasmon dispersion ω||(q)

is independent of SOC to within the lowest

order of the Rashba and Dresselhaus coupling

constants α and β. The two transverse

intersubband spin plasmon dispersions, on the

other hand, are given by

ω±(q) = ω||(q)± qC
√

α2 + β2 + 2αβ sin 2ϕq

+ O((α, β)2) , (30)

where ϕq is the angle between q and the [100]

direction, and C is a constant that depends on

the subband envelope functions, the density

of electrons, and on the xc kernel fxc. The

experimentally measured intersubband spin

plasmon peak is a composite of the two

intersubband spin-flip plasmons, m+ and m−.

Thus, the intersubband spin plasmon splitting

is, to lowest order in q, α and β,

δ(q) = 2qC
√

α2 + β2 + 2αβ sin 2ϕq . (31)

Clearly, δ grows linearly with q and has an

amplitude that is modulated with period π, in

agreement with the experimental findings. We

briefly mention that to second and higher order

in SOC, one finds additional contributions

to the splitting between the longitudinal and

transverse modes which remain nonvanishing

even at q = 0 but are very small [106].

The physical picture that emerges from

these observations is thus as follows: the

intersubband spin plasmon behaves like a

macroscopic magnetic moment which precesses

in a collective SO magnetic field Bcoll
SO (q), and

whose magnitude is enhanced by a factor C

compared to the bare Rashba and Dresselhaus

SO magnetic field BSO(q), defined in Eq. (12).

The intersubband spin plasmon fine structure

can thus be viewed as an intrinsic normal

Zeeman effect [122]: the three-fold splitting of

the plasmon dispersion finds a direct analogy

to the so-called “Lorentz triplet” of atomic

spectroscopy, where spectral lines are split

according to the selection rules ∆ms = 0

and ∆ml = 0,±1. This picture was further

experimentally confirmed by mapping out

Bcoll
SO (q) using an applied external in-plane

magnetic field [69], which showed that the

many-body enhancement of the collective SO

magnetic field over the bare SO field is about

a factor of five.

3.2. Dimensionality crossover and nonlocality

There are challenges in calculating dissipation

and excitation linewidths in many-body sys-

tems from first principles. For example, the

most widely used (time-dependent) DFT ap-

proximation for calculating excitation spectra

is adiabatic-LDA (ALDA), which describes a

Markovian dynamics local in time and space
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and hence does not account for dissipative ef-

fects nor for strong inhomogeneities. How-

ever the nanoscale and low-dimensional sys-

tems typically proposed for spintronics and

quantum technology applications, may dis-

play strong inhomogeneities (for example due

to confinement, or background-charge densi-

ties, or designed impurity distributions) and

memory effects, for example due to coher-

ent feedback processes, phonon dephasing, or

time-dependent current distributions. These

systems will also display quantization effects.

TDDFT approaches based on local description

and 3D reference systems have been shown

to have problems with describing the 3D-2D

crossover relevant for the quasi-2D quantum

well-based systems [123], as we will discuss in

Section 3.2.1. Likewise, recent experiments

[69] have pointed out limitations of the SCD

formalism to describe dissipation in these sys-

tems if a local approximation based on 3D ref-

erence systems is used (see Section 3.2.2).

3.2.1. Excitation spectrum The many-body

excitation spectrum of any system can, in

principle, be exactly calculated using TDDFT

within linear response [125]. However, as the

exact exchange-correlation kernel fxc[n(r, t)]

defining the Kohn-Sham system is unknown,

the accuracy of results will depend on the

type of approximation used for this quantity

[104]. While fxc is known to be a nonlocal

functional of the electron density in both

time and space, computationally not-too-

demanding approximations usually assume

locality or semi-locality. The simplest and

most popular of these is the ALDA, which

assumes locality in both time and space.

A relevant question is then if these (semi)

local approximations are able to reproduce,

at least qualitatively, the spectral features

of 3D-2D crossover, in which nonlocality is

assumed to play a strong role. A related

question is up-to-which-point approximations

based on the 3D electron liquid can be trusted

in reproducing spectral features of quasi-2D

systems, such as quantum wells. These issues

were systematically analysed in Ref. [124].

The crossover from quasi-2D (i.e., quan-

tum wells with a finite width) to 3D bulk-like

is illustrated in Fig. 9, which shows ALDA

intersubband excitation spectra at q = 0, in

the charge and spin channel, for quantum wells

with different subband occupation numbers.

The well width and the sheet density n2D are

chosen such that the average density remains

constant at n̄ = 0.30 a∗0
−3. However, the den-

sity profile becomes more and more bulk like

as the number of occupied subbands increases.

For a single occupied subband (the

situation shown in Fig. 1, middle panels), the

spectra show only a single peak, corresponding

to the intersubband charge and spin plasmons.

As more subbands become occupied, more

peaks show up, and eventually merge into

very simple bulk limits. The charge plasmon

spectrum is then dominated by a single peak

at the bulk plasmon frequency ωbulk =
√
4πn̄,

and there is also a smaller surface plasmon

peak (red arrows in Fig. 9). On the other

hand, the spin plasmon disappears in the 3D

bulk limit, as expected. Thus, the 3D ALDA

correctly reproduces the physical features of

the crossover from quasi-2D to 3D.

However, things are different in the

opposite limit of increasingly narrow quantum

wells, going from quasi-2D to strictly 2D.

In Ref. [124], the performance of various

xc kernels was compared for both inter- and

intrasubband plasmon excitations, and it was

found that the 3D ALDA breaks down and

produces nonphysical results below a quantum

well critical width Linter
crit ≈ rs for intersubband

plasmons and Lintra
crit ≈ 0.4rs for intrasubband
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plasmons, where rs = 1/
√
πn2D. The relation

Lintra
crit < Linter

crit implies that, in the limit

of very narrow quantum wells, a 3D-based

ALDA performs better for describing in-plane

than out-of-plane dynamics. Similar results

were found for semilocal, gradient-corrected xc

functionals.

It is worth noting that, for GaAs-based

quantum wells and typical n2D values, the

critical widths are relatively small, with e.g.

Linter
crit = 17 nm for n2D = 1011 cm−2. This

is indeed good news given the popularity of

ALDA. On the other hand, for systems in

which these conditions are not met, more

sophisticated, nonlocal xc functionals (not

based on the 3D electron liquid as reference

system) should be used [124].

3.2.2. Intrinsic dissipation and linewidth

of excitations For homogeneous systems the

SCD can be phenomenologically introduced by

writing the spin-drag friction force per unit

volume exerted by the σ̄ spin population over

the σ spin population, moving with velocities

vσ and vσ̄, respectively [15]:

Fhom
σσ̄ (ω) = e2nσnσ̄ Re ρ

hom
σσ̄ (ω, nσ, nσ̄)(vσ−vσ̄),(32)

where the spin-transresistivity ρhomσσ̄ is a com-

plex number, with its real part contributing to

the drag coefficient [15].

For weakly inhomogeneous systems, one

can consider the system as locally homoge-

neous and make a local approximation over the

system volume V . The power loss due to the
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SCD then becomes [66]

PσV (ω) ≈
∫

V

Fhom
σσ̄ (ω; r) ·vσ(r)dr

= e2
∫

V

nσ(r)nσ̄(r) Re ρ
hom
σσ̄ (ω, nσ(r), nσ̄(r))

× [vσ(r)− vσ̄(r)] ·vσ(r)dr. (33)

Using a local-density approximation within

linear-response TDDFT it is possible to de-

rive, from first principles, an expression for

the 2DEL intersubband spin-plasmon intrinsic

linewidth [15]. Very appealingly, this expres-

sion has a structure closely resembling that

of the power loss, Eq. (33). However, when

considering very narrow quantum wells (GaAs-

based quantum wells, 20-25 nm wide), this

approximation gives a linewidth of about 0.4

meV: comparison with experiments [41, 69]

shows this to be an overestimate of the actual

linewidth by about a factor 3.

There are two main issues with an

approximation of the form of Eq. (33) when

considering a narrow quantum well and a

plasmon whose associated spin-current is

in the growth direction. First, is the

approximation good enough to account for

the quantum well’s strong inhomogeneity in

the growth direction? Second, which are the

consequences of using a 3D reference system

for constructing the local approximation?

To answer these questions, a fully inho-

mogeneous theory of SCD was developed in

Ref. [58] and then applied to the case of the

intersubband spin plasmon of a quantum well.

Eq. (32) is generalized to the fully inhomoge-

neous microscopic expression

Fσσ̄(r, r
′, ω) = e2nσ(r)nσ̄(r

′) Re
↔
ρσσ̄ (r, r′, ω)

× [vσ(r)− vσ̄(r
′)] , (34)

where
↔
ρσσ̄ (r, r′, ω) is now a non-local tensor.

Taking into account the homogeneity in the in-

plane directions and the strong inhomogeneity

in the growth (z) direction in a quantum well,

the corresponding intersubband spin plasmon

linewidth becomes

Γnonloc
SCD =

e2n2D

2m∗Ωs

∫

dz

∫

dz′ nσ(z)nσ̄(z
′)

× Re ρzz↑↓(q = 0, z, z′,Ωs)

× [v212(z) + v12(z)v12(z
′)], (35)

where Ωs is the spin-plasmon frequency at q =

0, and v12(z) is the velocity profile of the spin-

plasmon mode. The quasi-2D dimensionality

of a narrow quantum well is accounted for

by constructing Re ρzz↑↓ in a mixed (q, z, z′)

representation [58].

In contrast to the local approximation

(33), Γnonloc
SCD strongly depends on the quantum

well features, and accounts for the strong

inhomogeneity and the quantization in the

growth direction. All this has implications

for the allowed processes for the decay of the

spin plasmon: a large momentum parameter-

space region is now forbidden, and wide regions

corresponding to strong Coulomb interaction

cannot contribute. As a result the SCD

becomes much less effective and the plasmon

linewidth is drastically reduced; the estimate

for the intrinsic linewidth for narrow GaAs-

based quantum wells is now of the order

of 0.02-0.01 meV, about 15-20% of the

experimental results [41, 69].

Additional contributions to the intersub-

band spin-plasmon linewidth will come from

extrinsic (e.g. impurities and surface rough-

ness) and mixed intrinsic-extrinsic contribu-

tions to the spin-transresistivity. In fact it

can be shown [58] that the relevant spin-

transresistivity tensor component, when de-

rived from the generalized Kubo formula, is

given by

Re ρzzσσ̄(r, r
′, ω) =

m2

ωe2
Im〈〈J̇z

σ(r); J̇
z
σ̄(r

′)〉〉ω
nσ(r)nσ̄(r′)

,(36)

where J̇z
σ(r) = − i

~
[Jz

σ , H], and H is the many-
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body Hamiltonian of the system containing ki-

netic, Coulomb (WC), and external potential

(Vext) terms. Contributions from the mixed

terms combining [Jα
σ ,WC ] and [Jα

σ , Vext] com-

mutators can be estimated for scattering from

remote impurities (δ-layer doping) [126]. Re-

sults show that these terms contribute about

0.005 meV to the linewidth, suggesting that

the dominant contribution to the measured

linewidth comes from surface roughness and/or

inhomogeneous broadening.

3.3. Chiral spin waves

The concept of Chiral Spin Resonance (CSR)

was introduced in [127] to indicate the q =

0 resonant transition between electron states

split by SOC in a 2DEL with no applied static

magnetic field and driven by a high-frequency

electromagnetic field. SOC couples the

directions of electronic spin and momentum,

so that this resonance connects states with

opposite chirality. Because under SOC the

electron spin is not conserved, the width

and frequency of the CSR is renormalized by

electron-electron interactions [127].

The corresponding long-wavelength regime

was analyzed in [25], with the prediction of

collective modes termed ‘chiral spin waves’,

corresponding to in and out-of-plane modu-

lations of the magnetization. In the ballis-

tic limit, the stiffness of their dispersion rela-

tion is affected by the strength of the electron-

electron interaction; the lower energy mode

is the out-of-plane (longitudinal) spin-chiral

wave, which merges with the particle-hole con-

tinuum at qvF = 2|α|kF. For small q values

and strong enough electron-electron interac-

tion, the in- and out-of-plane modes could have

opposite curvature. By lateral modulation of

the SOC in the 2DEL plane, standing chiral

spin waves could be generated and experimen-

tally observed.

In a related study [85], the intrinsic

linewidth of the chiral spin waves due to the

interplay of SOC and momentum exchange be-

tween ‘+’ and ‘−’ spin populations (transversal

SCD) was analyzed using diagrammatic expan-

sion techniques. It was shown that, because

of SOC, dissipation due to transverse SCD –

usually vanishing as q → 0 – remains non-zero

even at q = 0. The damping rate is propor-

tional to the square of the SO splitting renor-

malized by the Fermi energy.

The observation of chiral spin waves may

have been realized in 2DELs confined in GaAs

quantum wells. Indeed in Ref. [128], the

SO-split particle-hole continuum is clearly ob-

served with ERRS (see Section 2.7), together

with an additional peak, which at the time of

the publication of Ref. [128] was not under-

stood. The SOC strength in GaAs is weak and

renders the confirmation of chiral spin waves

very difficult as their energy is very close to

the energy cut-off of the Raman technique.

Very recently, the zone center chiral spin

wave was observed by ERRS in the helical

2DEL which forms in the topological bands

of Bi2Se3 [129, 130]. In this material, the

topological surface states lying in the bulk

gap form helical Dirac cones (see Fig. 10).

When the doping level is finely adjusted in this

gap, the situation becomes close to a 2DEL

with a giant SOC, except that the kinetic

energy is linear in momentum. For a full

demonstration of the existence of chiral spin

waves in this system, the mode dispersion at

finite wavevectors remains to be observed.

4. Spin-polarized 2DEL

The spin-polarized 2DEL (SP2DEL) originally

attracted a large number of experimental and

theoretical investigations of its ground state
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properties. In fact, a prediction [27, 56, 131]

that a spontaneous spin polarization should

occur at low density (rs ≃ 2.3) due to

Coulomb-exchange (see Section 2.1), seemed

to be in conflict with the Mermin-Wagner

theorem (ferromagnetism is forbidden in 2D).

This was also connected with the mystery

of the metal-insulator transition discovered

at rs = 8 in Si inversion layers [132, 133]

and more generally stimulated developments

of spin-resolved formalisms for Coulomb many-

body phenomena [46, 134, 135, 136, 137].

The SP2DEL is a somewhat idealized

system where the spin-polarization degree ζ is

finite (see Section 2.1), caused by an external

magnetic field, but it must be without Landau

quantization. In contrast to earlier studies

of spins in GaAs/GaAlAs systems, where

Landau orbital quantization dominated over

spin quantization [117, 138], such an ideal

object is not easy to obtain: the external

magnetic field must be applied in the plane

of the 2DEL and its magnetic length lm
(see Section 2.6) must be lower than the

characteristic 2DEL thickness. Nevertheless,

to achieve high ζ, one necessarily breaks the

latter condition at some magnetic field, leading

to the formation of magneto-hybrid subbands

in the 2DEL. The doped diluted magnetic

quantum well detailed below allowed a new

approach to this problem.

4.1. Experimental model system

A 2DEL embedded in a high mobility

Cd1−xMnxTe quantum well [139] was success-

fully introduced in 2003 as a test bed for the

SP2DEL [36, 53, 114]. In Cd1−xMnxTe quan-

tum wells, the exchange coupling between the

2DEL (s-electrons) and d-electrons of Mn im-

purities introduces a Zeeman energy Z which

is controlled by x. The form of Z is given

in Eq. (3) and can be recast in Ĥm of Eq.

(13) as an external magnetic field of the form

Bsd = (Z/g∗µB)êBext
. The key value is the
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(a) (b)

Figure 11. (a) Spin-split parabolic subbands of the

2DEL in the absence of SOC. The external magnetic

field B = Bextez is applied along the z-axis lying in

the plane of the quantum well. Conduction states are

filled up to the Fermi energy. The spin ‘up’ (minority)

and spin ‘down’ (majority) Fermi disks are highlighted.

(b) Spin-excitation spectrum without SOC: spin waves

propagate in the energy gap below the single-particle

spin-flip excitation (SPE) continuum. Z∗ is the zone

center SPE energy [53]. Z is the homogenous spin wave

energy.

energy JsdNMn = xeff × 220 meV, see Eq. (4),

where xeff ≤ x is the unpaired spin number

per unit cell [35], and Jsd ≃ 14.96 meVnm3 and

NMn ≃ xeff×14.70 /nm3 are band structure de-

pendent quantities. Hence, for xeff = 1%, one

finds Z = 2.2 meV, which is already equiva-

lent to the substantial magnetic field strength

of |Bsd| ≃ 27 T. Thus, as depicted in Fig. 11,

the individual states of the SP2DEL are di-

vided into two spin-split subbands occupied up

to the Fermi energy. In the absence of ĤSO, the

equilibrium spins are antiparallel in the 2DEL

plane.

4.2. Excitations of the SP2DEL

Similar to the unpolarized case, the excitation

spectrum of the SP2DEL is divided into single-

particle and collective excitations, see Fig.

11. Both are subdivided into longitudinal and

transverse type, depending on whether they

involve spin-conserving or spin-flip processes.

The main feature of the SP2DEL is the

opening of a gap in the energy-momentum

excitation spectrum, which allows a collective

spin wave to propagate separately from the

single-particle excitations. As introduced in

Section 2.6.2, we recall the spin-wave operator

Ŝ+
q = Ŝx,q + iŜy,q =

∑

k c
+
k−q,↑ck,↓, where

c+k,↑ and ck,↓ are electron creation-anihilation

operators. A spin-flip (transverse) individual

excitation (SF-SPE) of the spin-polarized

ground state |0〉 is simply c+k−q,↑ck,↓|0〉, where
an electron of momentum k and spin ↓ is

promoted to the empty state k− q,↑.

4.2.1. Dynamics of single-particle excitations

As stated, the SP2DEL Hamiltonian is the one

of Eq. (13) without ĤSO. The kinetic part is

ĤK =
∑

k,σ Ekc
+
k,σck,σ, ĤC is the Coulomb part

and Ĥm = ZŜz,q=0 is the Zeeman part. The

individual modes are conserved by ĤK and Ĥm.

ĤC has a part that directly acts on the particle-

hole pairs, and a remaining part which couples

them to multi-electron-hole pairs. The former

renormalizes Z into Z∗ (see Section 2.6.1). The

latter has several consequences: it is the origin

of the transverse SCD (see Section 2.3) and can

be described by an electron-electron scattering

time τe−e [59]; ĤC conserves the global spin,

which means that multi-electron-hole pairs are

the product of spin one and spin zero pairs,

where the latter are the elemental components

of longitudinal collective modes [68].

The equation of motion for SF-SPE reads
[

c+k−q,↑ck,↓, ĤK + ĤC + Ĥm

]

=
(

Ek − Ek−q − Z∗ + i ~

τe−e

)

c+k−q,↑ck,↓

+
∑

Spin1

Multi pairs. (37)

Compared to the bare Zeeman energy Z, Z∗ is

enhanced by Coulomb-exchange between spin-

polarized electrons, a phenomenon linked to
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the spin-susceptibility enhancement [53]. SF-

SPEs are characterized by two wavevectors, k

and q, they are degenerate to Z∗ at q = 0 and

form a continuum when q 6= 0 (see Fig. 11).

4.2.2. Spin waves Since ĤC conserves the

macroscopic spin, the Coulomb interaction

makes no contribution in the equation of

motion of the spin-wave operator Ŝ+
q :

[

Ŝ+
q , ĤK + ĤC + Ĥm

]

= −ZŜ+
q + ~q · Ĵ+

q . (38)

The second term on the right-hand side is

the transverse spin-current operator, Ĵ+
q =

~

m∗

∑

k

(

k−q

2

)

c+k−q,↑ck,↓. Equation (38) has

several consequences. On one hand, for q = 0,

the state Ŝ+
q=0 |0〉 is an exact eigenstate of the

SP2DEL whose excitation energy is exactly

Z. This means that, despite the fact that

this state describes a collective motion where

spins precess in phase, its precession frequency

Z/~ has no contribution from the Coulomb

interaction. This exact result is called the

Larmor Theorem:

d

dt
Ŝ+
q=0 = i

Z

~
Ŝ+
q=0. (39)

The Coulomb interaction affects instead, in the

q = 0 limit, the SF-SPE precession frequency

Z∗/~. ERRS spectra nicely evidence these two

excitations, as can be seen in Fig. 12.

On the other hand, the spin-wave disper-

sion results from the spin current. It is an

interplay between the motion in a parabolic

band and Coulomb interaction. However, the

spin current (which is a superposition of SF-

SPE with different velocities) has an equation

of motion similar to Eq. (37). Thus it will also

introduce a coupling with longitudinal modes

and an intrinsic damping due to SCD, as we

discussed earlier in Section 3.2.2. The dis-

persion and damping of the spin wave can be
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Figure 12. (a) Cross-polarized Raman spectra with

incident and scattered beam along the growth axis of

the quantum well (see inset), taken for various values

of in-plane magnetic field Bext. Spin-flip excitations

are probed at q = 0. The low energy line is the

spin-flip wave (SFW), the other signal represents the

spin-flip single-particle excitations (SF-SPE). (b) Peak

positions of the SFW lines (open circles) and SF-

SPE (full circles) as a function of the magnetic field.

The SFW peaks are fitted with Eq. (3) to obtain

the Mn concentration x = 0.75% and the electronic

temperature T = 1.5 K. c©2007 American Physical

Society. Reprinted, with permission, from [53].

found with linear response theory [36, 54, 68];

in summary, one obtains

d

dt
Ŝ+
q = i (ωq + iηq) Ŝ

+
q , (40)

ωq = Z/~− Ssw
~

2m∗
q2, (41)

ηq = q2
~

2m∗ |ζ|
3Z∗ηsp

(Z∗)2 + η2sp

×
[

Z∗

Z
−

(Z∗)2 + 1
3
η2sp

(Z∗)2 + η2sp

]

, (42)

where Ssw = 1
|ζ|

Z
Z∗−Z

is the spin-wave stiffness

and ηsp is the SF-SPE scattering rate. We note

that both disorder and transverse SCD would
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Figure 13. (a) Typical cross-polarized Raman

spectra obtained at Bext = 2 T and for different

values of q. The single Raman line is the SFW.

Inset: scattering geometry showing the definition of the

angles. Incoming photon is polarized parallel to Bext

(π), while the scattered one is polarized perpendicular

to Bext (σ). (b) Spectra obtained by shifting the laser

wavelength. Amplitude variations of the Raman line

reveal the optical resonance width. c©2010 American

Physical Society. Reprinted, with permission, from

[68].

contribute with the same q2 dependence to ηq
[59].

Evidence of the universal q2-laws pre-

sented in Eqs. (41) and (42) has been pro-

vided in high mobility SP2DELs, as described

in this section. Since the well-defined spin-

wave modes have been successfully observed

in these quantum wells [53, 114], this mate-

rial is a perfect candidate to investigate these

laws. The sketch in Fig. 13 depicts the exper-

imental geometry: the external magnetic field,

Bext, is applied in the z direction parallel to

the quantum well plane and the average an-

gle θ of the incoming and back-scattered light

wavevectors with respect to the normal direc-

tion can be tuned to make the in-plane Raman

transferred wavevector q = 4π
λ
cos β

2
sin θ vary

in the range 0 < q < 16 µm−1, β ≃ 5◦, and λ

is the incoming light wavelength.

In Fig. 13a, cross-polarized Raman
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Figure 14. Typical spin-wave energy (a) and

linewidth (b) q-dependence obtained on a sample with

parameters x = 0.87 and rs = 2.4, for Bext=0.37, 0.63

and 0.8 T. In agreement with Eqs. (41) and (43) the

data follow a parabolic behavior. (c) Linewidth q-

dependence obtained on a CdTe sample (without Mn).

c©2010 American Physical Society. Reprinted, with

permission, from [68].

spectra are plotted. They are obtained for

increasing q and fixed external magnetic field

at superfluid He bath temperature (T ∼
2.0 K). These spectra present a clear

dispersive Raman line associated to the spin

wave. The resonant behavior of the Raman

peak is shown in Fig. 13b. Tuning the

laser wavelength across the optical resonance

evidences a resonance width which is 20 times

larger than the SFW Raman line. Hence, we

can consider that Raman spectra give access

to Imχ↓↑,↓↑(q, ω) and extract from these data

both the spin-wave energy (~ωsw) and the q-

dependence of the linewidth ηsw.

As shown in Fig. 14a, ~ωsw is well

reproduced by the formula of Eq. (41).

Extraction of the widths of the Raman lines

needs an accurate deconvolution process with

the spectrometer response [68]; the results are

plotted in Fig. 14b as a function of q2 for the

same conditions as the dispersions plotted in

Fig. 14a. As disorder effects dominate over
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the transverse SCD, here the latter is neglected

and the scattering time is assumed to be due

to disorder only [68]. It is found that, in the

explored range of wavevectors (q ≪ kF), the

linewidth and magnetic field q dependencies

are very well reproduced by the parabolic form

ηsw = η0 + ηq = η0 + η2q
2, (43)

where η0 is necessary to account for the

homogeneous mode (q = 0) damping caused by

any source that breaks the Larmor Theorem:

here, Mn spin fluctuations. Indeed, these

are known to introduce a strong damping

in the homogeneous mode [140]. In the

CdMnTe quantum wells, the typical Mn

average distance d̄ ∼ 0.4 nm is far smaller

than the minimum magnetization wavelength

probed in the Raman experiment (qd̄ ≪ 1).

Hence, Mn damping is expected to be constant

in the explored range of q and contributes to η0
but not to η2. Fig. 14c confirms the presence

of the q2 law with the same order of magnitude

in a CdTe quantum well (without Mn).

4.3. Chiral Spin Waves

Similarly to the unpolarized case of Section

3.3, chiral spin waves exist and have been

successfully observed in the model system of

section 4.1. SOC of the conduction band is

at the origin of the chirality. In reality, SOC

is always present in asymmetrically doped

quantum wells, but what matters here is the

relative importance of the Coulomb strength,

Zeeman energy and SOC. To successfully

evidence the chiral spin waves in the above

SP2DEL, a required condition is αkF ∼ Z ∼
Z∗ − Z. The former is the typical strength

of SOC as introduced in Eqs. (10) and (11),

the second is the Zeeman energy and the latter

is the Coulomb-exchange-correlation strength.

This condition was met in Ref. [102] by
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Figure 15. (a&b) Momentum dispersion of energy

(a) and linewidth (b) of the spin wave for the in-plane

direction φ = π/4 and Bext = ±2 T. Dispersions are

shifted by qs from q = 0 with a mirror symmetry when

inverting the magnetic field, see Eq. (44). (c) (•)
represents the qs dependence with φ, extracted from

the measured dispersions. The red curve is a fit with

the theoretical value of qs(φ) (see Ref. [102]). (d&e)

Universal linear relation between the linewidth and

the energy of the spin wave: (η − η0)/η2 is plotted

as a function of 2m
∗

~2 (~ω − Z)/Ssw, symbols of the

same color are for a given in-plane angle φ, but for

various values of q. (d) Bext = +1 T, open (solid)

symbols correspond to spin waves with wavevector

q = qex directed towards −ex (+ex). (e) Bext =

+2 T, solid symbols correspond to the two extremal

angles φ = π

4
, 3π

4
, open symbols are for other angles.

c©2016 American Physical Society. Reprinted, with

permission, from [102].

adjustment of the quantum well width, 2DEL

density n2D and Mn concentration x.

In addition to the definition given in

Section 3.3, chirality of spin waves can be

defined by the following broken symmetry of

the dispersion (41):

ωBext

q = ω−Bext

−q and ωBext

q 6= ωBext

−q . (44)

The property (44) is illustrated in Figs. 15a-

b, which present the energy and linewidth

dispersions of the type of spin wave shown

in Fig. 14 for both directions of the



Chirality and intrinsic dissipation of spin modes in two-dimensional electron liquids 29

magnetic field, but in a sample meeting the

above condition. Since the linewidth of

the Raman line yields the damping rate ηq,

Figs. 15a-b shows strikingly that both the

spin-wave energy and damping rate exhibit

the same chirality: they are invariant under

simultaneous inversion of the directions of

the magnetic field and of the wavevector.

Moreover one can extract a momentum shift

qs ≃ 1.5 µm−1 which shifts simultaneously the

extremal energy and damping from q = 0.

When changing the in-plane angle ϕ of

q for which the dispersions are probed, a

modulation of qs with ϕ appears, as shown

in Fig. 15c. The π-periodicity of the qs(ϕ)

modulation is in complete agreement with the

C2v in-plane symmetry of the SOC arising

from the superposition of the Rashba and

Dresselhaus contributions (see Section 2.4)

and confirms the SOC origin of the observed

chirality.

Chirality in spin-wave energy dispersions

and chiral damping have been observed

in Fe monolayers [141]. Chiral damping

dispersions have been observed in Pt/Co/Ni

films [142]. However, Eqs. (41) and (42) show

a universal linear relation between damping

rate and angular frequency of the spin wave,

independent of SOC, which reads:

ηq = η̃0 −
2m∗

~

η2
Ssw

ωq, (45)

where η̃0 = η0 + 2mZ/~2Ssw. This universal

linear behavior survives to the presence of

SOC as demonstrated in Figs. 15d-e where the

linewidth is plotted as a function of energy

for Bext = +1 T and Bext = +2 T and

various in-plane angles, which means various

strengths of SOC. The chirality and anisotropy

do not appear anymore: +ex and −ex waves,

for every ϕ, fall on the same line. This

linear relation of Figs. 15d-e was not found

in Ref. [142]. This underlines the particular

physics of chiral spin-waves in 2DEL, which

is due to the underlying symmetries of SOC.

Indeed, the SOC of the Hamiltonian (13) can

be removed by a unitary transformation [102].

In the transformed reference frame, position

and phase of the spin motion are locked by

the quantity q0 · ri where ri is the electron-spin
position and

q0 =
2m∗

~2
[(α + β sin 2ϕ) ex + β cos 2ϕez] (46)

is a SOC-dependent constant wavevector. As

a consequence, the dispersions of Eqs. (41)

and (42) obtained without SOC, are, with

SOC, simply shifted in q-space by q0, and the

complex angular frequency becomes:

~ω̃SO
sw (q) = Z−Ssw

~
2

2m∗
|q+q0|2+ i~ηq+q0

.(47)

This introduces in ωq a modulation term:

−Sswq(α + β sin 2ϕ) fully compatible with

Fig. 15c and qs = −q0 · ex. We point out that

Eq. (47) is correct to leading (first) order in

the SOC strengths α and β.

4.4. Larmor’s mode in the presence of SOC

In the presence of SOC, Larmor’s mode

frequency is no longer the bare Zeeman

energy Z, but is corrected by anisotropic

contributions that are of second order in the

SOC strengths α and β [99]. Equation (47)

seems to suggest that

~ωSO
sw (q = 0) ≈ Z − 2m∗Ssw(α

2 + β2

+ 2αβ sin 2ϕ). (48)

As the spin-wave stiffness Ssw contains

Coulombic contributions, SOC induces a

breaking of the Larmor’s theorem (39). Note

that, since q = 0, changing the ϕ angle has to

be understood as tuning the precession direc-

tion of the spins with respect to the crystalline

axis. The Rashba SOC is isotropic and sim-

ply shifts the frequency, so that the additional
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SO

sw ( 0)q 

Figure 16. Larmor’s mode energy ~ωSO
sw (q = 0) as a

function of angle φ. Dots: experimental data. Lines:

theoretical results using Eq. (49) (dashed blue) and

fully numerical linear-response TDDFT-ALDA (red).

presence of Dresselhaus SOC is responsible for

this anisotropy.

The breaking of the Larmor’s theorem has

been studied carefully and evidenced through

this anisotropic correction by ERRS in Ref.

[99]. Results are reproduced in Fig. 16.

It is shown that the experimental data are

reproduced by TDDFT linear-response theory

if SOC is taken into account beyond first

order. This yields the following result for the

Larmor’s mode frequency, correct to second

order in SOC:

~ωSO
sw (q = 0) = Z +

2πn2D

Z∗f̄xc
[
(

α2 + β2
)(

3f̄xc + 2
)

+ 2αβ sin 2ϕ
(

f̄xc + 2
)

]. (49)

Here, f̄xc can be calculated using the ALDA

xc kernel averaged over the lowest subband

envelope function, or fitted using f̄xc = Z/Z∗−
1 < 0. Equation (49) has the same sin 2ϕ

anisotropy as the approximate Eq. (48), but

with slightly different coefficients.

We conclude this section by pointing out

that expressions similar to (47)–(49), including

situations where q is not perpendicular to

Bext, were obtained in Ref. [111] using

diagrammatic techniques.

4.5. Spin-Helix Larmor mode

We now consider a very special case in which

exact results can be proved to all orders in

SOC, namely, the case of a persistent spin helix

[76, 119, 143, 144, 145, 146, 147, 148]. The spin

helix arises in a 2DEL in which the Rashba

and Dresselhaus coupling strengths are equal,

i.e., α = β. We here limit the discussion to

a 2DEL embedded in a zincblende quantum

well grown along the [001] direction: SU(2)

symmetry is then partially restored, and a

helical spin texture can be sustained along the

[110] direction. This property is protected

against decoherence from spin-independent

disorder scattering and Coulomb interactions

[144], and leads to the experimentally observed

extraordinarily long lifetimes of spin packet

excitations [119, 147].

Without any applied magnetic field, the

spin helix states are exact single-particle

eigenstates in the 2DEL; this is caused by a

degeneracy of the two branches of the energy

dispersion (see the left panel of Fig. 5) of the

form E+,k+Q = E−,k, where Q = 4αê[110]. A

superposition of any two degenerate states on

the two branches then has a helical structure,

see Ref. [144].

If a magnetic field is applied in the

plane of the 2DEL, perpendicular to the [110]

direction, then this degeneracy is lifted (see

right panel of Fig. 5). Instead, the spin

helix becomes a nonequilibrium feature, where

spin-flip single-particle excitations give rise to

propagating spin helices [145].

If we now include collective effects due

to Coulomb interactions, it becomes possible

to prove an exact many-body result for spin

waves, which we call the spin-helix Larmor

mode [103]: if, in a system with α = β, the spin

wave has wavevector Q commensurate with

the spin-helix texture, all Coulomb interaction

contributions drop out, and the spin-wave

frequency is given by the bare Zeeman energy:

ωα=β 6=0
sw (Q) = ωα=β=0

sw (0) = Z . (50)

In other words, Larmor’s standing-wave pre-
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(c) (d)

0α β= = 0.003 a .u .α β= =

Figure 17. (a) Spin-wave dispersion in the absence of SOC, illustrating the usual Larmor mode (circled in

red), in which all spins precess about the direction of the in-plane magnetic field. (b) Spin-wave dispersion in

the presence of SOC, with α = β. The spin-wave dispersion along the [110] direction is the same as for the

system without SOC, but shifted by a wavevector Q = 4α. The spin-helix Larmor mode (circled in red) is a

standing-wave mode, precessing about the spin-helix texture. (c) Proposed experimental design for the optical

excitation of the spin-helix Larmor mode, using a photoconductive antenna. (d) close-up view of the metal

stripes on top of the 2DEL, showing a proposal for detection of the mode by the induced alternating currents

triggered by the standing spin wave. Adapted from Ref. [103].

cessional mode now occurs with a finite

wavevector.

Panels (a) and (b) of Fig. 17 compare

the spin-wave dispersions with and without

SOC, and the cartoons on top of the panels

illustrate the spin dynamics at the special

points marked by the red circles. The usual

Larmor mode at q = 0 is characterized by

a collective precession about a spatially fixed

axis, whereas the spin-helix Larmor mode

at q = Q is characterized by a collective

precession about an axis that rotates in space,

but is not itself propagating. Both Larmor

modes are undamped in the absence of any

extrinsic mechanisms.

Panels (c) and (d) of Fig. 17 show

a proposal for direct optical excitation of

the spin-helix Larmor mode via a photo-

conductive antenna, using the same antenna

for detection of the alternating currents

associated with the magnetic fields induced by

the standing spin wave.

4.6. Comparison with DMI

Chiral spin waves meeting condition (44) have

been observed in ferromagnets [141, 149].

An extensive body of literature has been

devoted to describe such spin waves within

the Dzyaloshinskii-Moriya interaction (DMI),
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Figure 18. (a) DMI energy as function of 2DEL

density gated by illumination. As the chiral shift

depends sinusoidally on the in-plane direction, the

two extremal directions (φ = π/4 and φ = 3π/4)

are shown. The DMI energy is to be compared with

0.9 meV found in Ref. [141]. (b) DMI constant, to be

compared with 0.44 mJ/m2 found in Ref. [142].

an asymmetric Heisenberg-type exchange:

ĤFerro =
∑

<ij>

JijŜi · Ŝj +
∑

<ij>

DijŜi × Ŝj. (51)

In most systems the DMI energy terms Dij

remain empirical parameters with a magnitude

of a few percent of the exchange energy Jij
[150, 151, 152]. The microscopic origin of

the DMI term can be SOC [153, 154]. The

DMI approach is perfectly well suited for

spins strongly or weakly localized. However,

for delocalized spins in a Galilean invariant

system, such as a 2DEL, the main subject

of this review, one can show that the

DMI interaction cannot reproduce the physics

outlined in Fig. 15. Indeed, transforming Eq.

(51) into a continuous system of spins, coupled

by a DMI step function D(r), is equivalent to

an isotropic Dij for r < a∗B (inside the Pauli

hole) and zero elsewhere. Inserting the DMI

part of Eq. (51) into Eq. (22), and comparing

with the q-linear term in Eq. (47), we can

deduce the following, ϕ-dependent DMI energy

(the coupling between neighboring spins) [141]:

DE
ϕ =

2

3

Dij

r2s
= Ssw

4

a∗Bζ
(α + β sin 2ϕ), (52)

where a∗B is the material Bohr radius (see

Table 1) and ζ is the spin-polarization degree.

Alternatively, we can deduce a DMI constant

(the DMI energy times magnetization) [142]:

DC
ϕ = Ssw

n2Dζ

2w
(α + β sin 2ϕ), (53)

where w is the quantum well thickness. As

shown in Fig. 18, we find DMI energies 20

times larger than what was found by Zakeri

et al. [141] and DMI constants 5 orders of

magnitude below what was found by Di et al.

[142]. The DMI framework, which is based on

the fundamental assumption of localized spins,

is obviously inconsistent with the Galilean

invariance of the 2DEL.

5. Conclusion and perspectives

In this review, we have argued that the

2DEL—a model system which has been the

subject of intense scrutiny for many decades—

still holds many surprises. We have focused

on collective spin excitations of the 2DEL,

both of a longitudinal (spin conserving) and

transverse (spin-flip) nature. The presence

of SOC (Rashba and Dresselhaus), in-plane

magnetic fields, and magnetic impurities at

first seems to complicate matters enormously;

indeed, the single-particle properties exhibit

increasing degrees of complexity upon the

addition of new features in the Hamiltonian.

However—and surprisingly—when Cou-

lomb many-body effects enter the game,

collective behavior emerges which, in the

end, leads to dramatic simplifications. Spin

plasmons and spin waves behave, in many

ways, as macroscopic quantum object, subject

to precession or Zeeman effects, similar to what
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is seen in simple one- or few-body quantum

systems. Thanks to Coulomb interaction,

the collective modes are protected against

dephasing due to SOC. Through a unitary

transformation, exact many-body results such

as Larmor’s theorem find their counterparts

in the presence of SOC. However, things

don’t always get simpler: Coulomb many-

body effects also provide intrinsic sources of

dissipation for the collective modes, most

notably via the frictional forces due to the

SCD. There are a number of issues related to

the SCD that remain to be resolved, as we will

now discuss.

The longitudinal SCD is nonzero even

for q = 0: in this case the corresponding

spin-transresistivity in high-mobility systems

has been predicted to be comparable or

larger than the Drude resistivity [61, 64],

and to be stronger in low-dimensional systems

[63, 64]. Related theoretical predictions for

significant reduction of spin diffusion due to

longitudinal SCD [61] were initially confirmed

experimentally in [57] and more recently in [65]

and [145]. The longitudinal SCD is predicted

to not affect the spin mobility if the scattering

times for the two spin components are similar

[61, 62]; this was confirmed experimentally

for spin propagation in a GaAs 2DEL [65].

However, the SCD should affect the spin

mobility for spin-dependent scattering [62],

which is relevant for spin packets and spin-

wave propagation. Experimental confirmation

of this effect is still awaiting.

Experimental results on the dissipation

of intersubband spin plasmons [69] led to

the development of a fully non-homogeneous

theoretical treatment of longitudinal SCD [58].

While this predicts the SCD to be a sizeable

source of dissipation for collective spin modes

(e.g. up to 20% of the linewidth measured in

[69]), a direct observation disentangling SCD

from extrinsic sources of dissipation is still

lacking.

The transverse SCD is predicted to

contribute to the Gilbert damping of a

magnetized 2DEL [59], and hence to the

intrinsic dissipation of transverse spin waves.

The effect vanishes as q → 0 and so far has

eluded direct experimental verification [68].

In the presence of SOC, both longitudinal

and transverse SCD contribute to the Gilbert

damping of a spin-polarized 2DEL [67], both

for homogenous and modulated electronic

systems [67]. Indeed, SCD is enhanced

by the presence of SOC [84], as SOC

increases scattering between different-spin

populations: this SOC-enhanced Coulomb-

induced dissipation remains nonzero at q = 0,

both for longitudinal and transverse SCD. For

weak SOC, the strength of the damping is

proportional to the square of the SOC coupling

renormalized by the Fermi energy [67, 84, 85].

This dependence, and the related damping of

collective spin modes [67, 85], have not yet

been confirmed experimentally.

Coulomb interactions affect the diffusion

of spin packets (and hence of spin waves) both

through the spin stiffness and through SCD

[61, 62]. As a consequence, during a paramag-

netic to ferromagnetic transition, the spin dif-

fusion is predicted to undergo large variations,

including, in certain cases, vanishing [61]. Sim-

ilar predictions stand for related quantities

[16], and hold both for ordinary electron liquids

and for semiconductors doped with magnetic

impurities. These consequences of Coulomb

interactions remain to be experimentally ex-

plored.

We feel that cross-collaboration between

theory and experiments is fundamental to fur-

ther this field. For example in Ref. [69], ex-

cellent agreement between theory and exper-

iments for the linewidth modulation of inter-
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subband spin-plasmons was achieved; however

more experimental and theoretical studies are

necessary to achieve full consistency between

first-principles predictions by the DP mecha-

nism and experimental results, in particular,

time domain measurements (with TSG) of the

chiral spin-waves decay as a function of the in-

plane wavevector q [57] and measurements of

the Larmor’s mode lifetime at finite q. A com-

parison with measurements of the conductivity

would also be enlightening.

In general, improving first-principles

treatments of dissipation within (TD)DFT is

an enduring challenge for the DFT community,

as it requires inclusion of non-Markovian pro-

cesses (memory) within the formalism: con-

trary to the formalism reviewed in this arti-

cle, the most widely used TDDFT approxima-

tion, adiabatic-LDA, does not include memory

effects, so that in adiabatic-LDA dissipation

has to be included ’by-hand’. Precision exper-

imental linewidth data serves as an important

benchmark for the developers of new, nonadi-

abatic xc functionals in TDDFT [155, 156].

New materials platforms that support

low-dimensional quantum liquids continue to

emerge. Here, we have focused on 2DELs

in semiconductor quantum wells, which have

been well characterized for decades. However,

2D materials such as the graphene family and

beyond-graphene materials offer innumerable

opportunities to explore collective electronic

phenomena; features such as linear dispersions

(Dirac electrons), topological invariants, or the

interplay between different valleys remain to

be studied. We believe that the concepts

exposed here are largely transferable to the

emerging 2D systems such as dichalcogenides

monolayers [34, 157]. These materials exhibit

very large SOC and strong Coulomb coupling

strength. Ideal would be to find a system

were these effects survive at room temperature.

This requires a scaling of the strength of all

the protagonists by at least a factor of ten. If

such a material emerges, devices can be made

were the interplay between SOC and Coulomb

interactions can be utilized to build a spin-

wave based transistor like in Ref. [5]. As in

Ref. [102], it would then be easy to manipulate

the group velocity of a spin wave, or tune

its direction of propagation, or modulate its

phase, all together with gated electrodes acting

on the magnetic layer.

In conclusion, we are confident that the

study of collective spin dynamics in low-

dimensional electronic systems will continue

to lead to new discoveries in basic physics,

and will set the stage for new applications in

(quantum) technologies.
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