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Abstract: Old-growth forests are an important, rare and endangered habitat in Europe. The ability
to identify old-growth forests through remote sensing would be helpful for both conservation and
forest management. We used data on beech, Norway spruce and mountain pine old-growth forests
in the Ukrainian Carpathians to test whether Sentinel-2 satellite images could be used to correctly
identify these forests. We used summer and autumn 2017 Sentinel-2 satellite images comprising 10
and 20 m resolution bands to create 6 vegetation indices and 9 textural features. We used a Random
Forest classification model to discriminate between dominant tree species within old-growth forests
and between old-growth and other forest types. Beech and Norway spruce were identified with an
overall accuracy of around 90%, with a lower performance for mountain pine (70%) and mixed forest
(40%). Old-growth forests were identified with an overall classification accuracy of 85%. Adding
textural features, band standard deviations and elevation data improved accuracies by 3.3%, 2.1%
and 1.8% respectively, while using combined summer and autumn images increased accuracy by
1.2%. We conclude that Random Forest classification combined with Sentinel-2 images can provide
an effective option for identifying old-growth forests in Europe.
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1. Introduction

Old-growth forest (OGF), also referred to as primary, virgin or ancient forest, are forests that have
developed for a long period of time without significant human intervention and are characterised
by the presence of old and large trees, multi-layered vertical structure and abundant standing and
lying deadwood in different stages of decay [1–3]. OGF are important forest ecosystems, supporting
significant biodiversity [4], storing and sequestering large amounts of carbon [5–9] and buffering
microclimate [10].

In most European countries, centuries of exploitation have greatly reduced the extent of OGF.
There are 1.4 Mha of primary forests remaining in Europe, equivalent to 0.7% of Europe’s forest
area [11]. Due to its scarcity and exceptional importance as a habitat for a wide variety of wildlife,
conservation of OGF has become an important priority over the past few years. Despite this increased
priority, continued loss of OGF from deforestation and conversion to managed plantations is occurring
in Europe [12]. While there is no universally agreed definition of OGF, in most cases identification
generally involves surveying indicators such as dead wood quantity and quality, forest structure and
the degree of anthropogenic influence. This therefore requires time-intensive field surveys. Enabling
the identification of such stands by remote sensing would therefore be highly useful. Even establishing
the sites of potential OGF stands that could later be verified by field teams could help save time
and expense.

Forests 2019, 10, 127; doi:10.3390/f10020127 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
http://dx.doi.org/10.3390/f10020127
http://www.mdpi.com/journal/forests
http://www.mdpi.com/1999-4907/10/2/127?type=check_update&version=2


Forests 2019, 10, 127 2 of 19

While there have been a variety of studies using multispectral remote sensing to identify tree
species in Europe [13–17], these are mostly not concerned with OGF. Variation in tree species, height,
size and separation as well as the high number of shaded, dead and dying and spectrally unusual
trees, mean that tree species in OGF are harder to classify than in other forest types [18]. At the same
time, however, this spectral variability can potentially enable the distinction of OGF from younger
forest stands.

There have been a number of previous investigations [19–23] into the effect of forest structure on
satellite spectra in temperate zones using either Landsat or high resolution satellite imagery, mostly of
closed canopy conifer stands (including OGF) in the western USA. Landsat and commercial satellite
(10 m resolution) imagery was used to examine how tasselled cap vegetation indices varied with stand
characteristics in closed canopy conifer forest in Oregon, USA [20]. Unsupervised classification of
Landsat images (tasselled cap vegetation index) was also used in Oregon to map young, mature and
old-growth stands [19]. Unsupervised classification of Landsat imagery was used to map mature and
old-growth conifer stands in the Pacific Northwest, while Landsat imagery and a spectral mixing model
was used to identify stand structural stages in Washington state, USA [23]. There have also been efforts
to distinguish mature and old-growth forest using Lidar data and Random Forest classification [24]
but Lidar data is usually both expensive and difficult to obtain. Satellite data has been used to
identify potential OGF in Romania through manual inspection of images [25]. The recent European
Space agency (ESA) Sentinel-2 (S2) mission provides freely available high spatial resolution (10 m)
multispectral information and so offers great opportunities for such a forest classification study [26].

The Ukrainian Carpathians contain some of the largest remnants of old-growth fir-beech-spruce-
pine forests remaining in Europe. The Carpathian Convention commits Ukraine to the protection of its
virgin forests and in May 2017 the Ukrainian president signed an amendment to the Forest Code [27]
protecting all OGF sites in Ukraine. An ongoing inventory of OGF in the Ukrainian Carpathians is
being carried out by WWF Ukraine and can be viewed at gis-wwf.com.ua/.

In this paper we analyse the spectra of broadleaf, conifer and mixed forests in the Ukrainian
Carpathians, using Sentinel-2 imagery and supervised classification to investigate the potential of
machine learning to identify OGF, based on the hypothesis that there is a significant difference between
the spectra of OGF and other forest types (non-Old-Growth Forest). To the best of our knowledge, this
is the first such study employing Sentinel-2 imagery and a decision tree classifier to look at old-growth
broadleaf, conifer and mixed broadleaf–conifer woodland in temperate regions. The key objectives of
our study are to:

• Use machine learning (Random Forest classification) to identify different tree species in OGF.
• Determine if Random Forest classification can be used to identify and map potential OGF sites by

differentiating between OGF and other forest types.
• Determine how combinations of spectral bands, multitemporal imagery and ancillary data affect

map accuracy.

2. Material and Methods

2.1. Study Site

We analyse the ability of Sentinel-2 to identify OGF in the eastern Carpathian Mountains of SE
Ukraine, a 42% forested region [28] covering about 24,000 km2, ranging from 100–2060 m elevation and
characterized in the upper elevations by dense forest stands on steep slopes [29]. Intensive land use
and forest management has substantially affected the area’s forests, with much of the lowlands being
converted to agriculture. While over the past century forest cover has expanded in the region [30,31],
forests are still subject to extensive logging, both legal and illegal [32–34] and there are large areas of
intensively managed spruce plantations [35]. Nevertheless, the region still contains some of the largest
areas of OGF remaining in Europe.

gis-wwf.com.ua/
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Species composition in OGF in our study site is dominated by beech (Fagus sylvatica L) (33% of
area), Norway spruce (Picea Abies (L.) Karst.) (43% of area) and mountain pine (Pinus mugo Turra) (9%
of area), with smaller areas of silver fir (Abies alba Mill.) and sessile oak (Quercus petraea (Matt.) Liebl.).
Sycamore (Acer psudeoplatanus L), birch (Betula verrucosa Ehrh.), hornbeam (Carpinus betulinus L), rowan
(Sorbus aucuparia L), aspen (Populus tremula L), Swiss pine (Pinus cembra L), Scots pine (Pinus sylvestris
L), ash (Fraxinus excelsior L), wych elm (Ulmus glabra Huds.), hazel (Corylus avellana L), Norway
maple (Acer platanoides L), green alder (Alnus viridis (Chaix.) D.C.) and grey alder (Alnus incana (L.)
Moench) occur mixed in small quantities with these species. Tree species show a gradual transition with
increased elevation, changing from oak and beech at lower elevations (300–500 m) to beech and Norway
spruce dominated (500–1400 m) and to mountain pine and Norway spruce at the highest altitudes
(1400–1800 m). Natural alpine meadows cover only the highest of the mountain peaks (>1800 m),
though in most places the timberline has been artificially lowered through livestock grazing [36].

Mean annual precipitation varies by altitude from 600 mm in the lowlands to 1600 mm on the
mountain peaks [28]. Natural disturbance regimes in the forest are dominated by small-scale loss,
largely from low to moderate intensity windthrow damaging single or small groups of trees [37–39].
The study region covers three provinces (oblasts): Transcarpathian, Ivano-Frankivska and Chernivetska.
Figure 1 (inset map) shows the location of the study area within Ukraine.

Figure 1. Relief map (elevation range 200–2060 m) of the study site showing Old-Growth Forest (OGF,
shown as red polygons) and Non-Old Growth Forest (NOGF, shown as blue polygons). S2 image
shows the extent of the Sentinel-2 image used in the study. Inset map shows the location of the study
area within Ukraine.

2.2. OGF Survey Data

We use data on the spatial distribution of OGF from the ongoing survey (beginning in 2010) of
OGF across the Ukrainian Carpathians. This data was provided by WWF Ukraine and covered the
survey years 2010–2017 inclusive. This survey includes information on the location and spatial extent
of OGF (shapefile polygons of identified OGF stands) as well as detailed information on tree species
composition and age. The background to this WWF project and the criteria used for OGF identification
can be found here [40]. A map [41] shows the areas surveyed for OGF up to 2017.

The main criteria used in the WWF study for classification of a forest area as OGF are as follows:

• standing and lying dead wood;
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• complex structure (high variety of age groups and tree sizes);
• no non-native tree species;
• no visible traces of exploitation—i.e., logging.

While a minimum size criteria (of 20 ha) is given, in practise much smaller areas (down to 0.5 ha)
of OGF were also recorded.

A visual inspection of the autumn 2017 Sentinel-2 image showed that since the WWF survey 188
OGF polygons in our study area (mostly Norway spruce forest along the border with Romania) had
suffered disturbance through either clear felling, thinning or construction of tracks. These polygons
were discarded and not used in our study. Details of the OGF polygons that were used can be seen in
Table 1. There were a total of 4037 OGF polygons in our analysis, covering an area of 428 km2. We
defined the threshold for mixed forest as 20% and above.

Table 1. Number and area of polygons used in this study (not including polygons damaged by man)
for different tree species in OGF polygons. We denoted mixed tree species polygons as “Dominant Tree
Species Mix,” while C and B stand for conifer and broadleaved respectively. Thus, Norway Spruce
CBMix is Norway spruce dominant mixed with at least 20% broadleaved species, while Beech BMix is
beech dominated mixed with at least 20% other broadleaved species.

Tree Species Number of
Polygons

Area
(km2)

Mean
Elev (m)

Min
Elev (m)

Max.
Elev (m)

Mean
Slope (o)

Beech 1281 139.2 1055 394 1565 24.2
Oak 21 3.2 507 334 871 13.2

Mountain Pine 219 37.4 1477 1061 1982 22
Norway Spruce 1784 182.4 1343 519 1688 22.1

Silver Fir 20 1.3 598 481 946 12.5

Beech BCMix 189 16.0 1052 425 1443 24.5
Norway Spruce CBMix 226 19.2 1136 514 1620 29.2

Silver Fir CBMix 60 5.3 933 515 1286 24.8

Beech BMix 59 5.1 1039 454 1497 26.1
Other Bmix 15 1.5 618 342 1131 14

Other BCMix 6 0.7 1410 1030 1719 21.2
Norway Spruce CMix 98 10.6 1266 703 1568 22.3

Other CMix 48 6.0 1209 591 1953 23.1
Other CBMix 2 0.1 1598 1374 1722 24

Other B 2 0.07 1522 1422 1633 31.2
Other C 4 0.15 929 733 1373 24.5

Total Conifer 2173 237.6 1341 481 1982 22
Total Broadleaf 1378 149 1042 334 1633 24

Total Mixed 486 41.4 1084 342 1689 24.3
Total 4037 428 1208 334 1982 23

For comparison with OGF polygons, we created 4000 polygons randomly located within a buffer
of 2 km of the OGF. This distance was chosen as it enabled the requisite number of appropriately sized
NOGF polygons to fit in. To mimic the OGF polygons, polygon sizes were selected from a right-skewed
distribution ranging in size from 0.05–200 ha. Polygons which comprised of open areas, non-surveyed
areas or young forest were either eliminated or had their boundaries redrawn to exclude these areas.
Open areas and young forest was identified either through the publicly available forest cover and forest
loss data derived from Landsat timeseries [42] or through visual inspection since open ground and
young forest shows up brightly in the images [43]. Since the remaining polygons were forest situated
in areas that had been surveyed for OGF yet had not been identified as such, we were confident these
polygons consisted of forest that was not OGF (NOGF). These NOGF polygons were then ‘tidied up’
by expansion to remove small gaps between polygons so that they shared a common border. Much of
the OGF consisted of high altitude forest stretching up to the treeline. The neighbouring NOGF was
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therefore typically downhill from the OGF and consequently at a lower elevation and lacking high
montane forest. To compensate, we therefore manually created a number of NOGF polygons along the
treeline in areas that had been surveyed for OGF. Finally, all these NOGF polygons were classified
through visual inspection of Sentinel-2 summer, autumn and winter imagery, as either broadleaved,
evergreen or mixed forest. The end result was the creation of 4449 NOGF polygons (described in
Table 2), of which a majority lay directly adjacent to the OGF polygons. The median NOGF polygon
size was 0.08 km2, compared to 0.07 km2 for the OGF polygons. Figure 1 shows the study region with
OGF and NOGF polygons overlaid.

Table 2. Number and area of polygons used in this study for different forest types in non-OGF polygons.

Forest Type Number
of Polygons

Area
(km2)

Mean
Elev. (m)

Min
Elev. (m)

Max
Elev. (m)

Mean
Slope (o)

Conifer 2563 299.6 1238 457 1792 20.2
Broadleaved 1343 206.1 888 357 1456 23.6

Mixed 543 57.5 1045 438 1566 22.9

Total 4449 560.5 1108 357 1792 21.5

2.3. Sentinel-2 Images

Sentinel-2 (S2) features 13 spectral bands with 10, 20 and 60 m resolution [44]. We used the 10 and
20 m bands in our study (see Table 3). Two S2 images were downloaded (https://scihub.copernicus.
eu/) as Level-1C Top-of-Atmosphere reflectance products: one for summer (2 August 2017) and one
for autumn (16 October 2017), with codes:

“S2B_MSIL1C_20170802T092029_N0205_R093_T34UGU_20170802T092027.SAFE” and
“S2A_MSIL1C_20171016T092031_N0205_R093_T34UGU_20171016T092425.SAFE” respectively.

Table 3. Sentinel-2 bands with 10 m or 20 m resolution. Near IR is Near Infra-Red and SWIR is Short
wave Infra-Red.

Sentinel-2 Bands Central Wavelength (µm) Resolution (m)

B2–Blue 0.490 10
B3–Green 0.560 10

B4-Red 0.665 10
B5–Red edge 0.705 20
B6–Red edge 0.740 20
B7–Red edge 0.783 20
B8–Near IR 0.842 10

B8A–Near IR 0.865 20
B11–SWIR 1.610 20
B12–SWIR 2.190 20

These particular images were chosen for their low cloud cover (5.2% and 0% respectively). The
north-east and south-west corners of these images are 23◦43′7.73” E, 48◦43′15.34” N and 25◦7′41.74” E,
47◦41′27.06” N respectively. These images were then topographically and atmospherically corrected
using the Sen2Cor module [45]. The 20 m resolution bands were resampled to 10 m spatial resolution.
We investigated using spring or winter images but from December through to April most of the high
altitude OGF was completely covered with snow, with the polygons completely white and providing
limited useful information.

2.4. Sentinel-2 Image Evaluation

We used an object-based approach (as opposed to a pixel-based classification), where the mean
and standard deviation of the pixel spectra and the mean of the associated vegetation indices and

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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textural features within a forest polygon were used for the analysis. A number of studies have argued
for the superiority of object-based over pixel-based approaches [15,18,46] and the WWF data included
mixed forest polygons which suited an object-based approach. To further understand the distribution
of the pixels within the polygons, we also calculated percentile values ranging from 5% to 99% for
each polygon. T-tests of the band spectra mean values were calculated to test for significant differences
between the OGF and NOGF polygons.

We calculated 6 vegetation indices from the S2 bands: the Normalized Vegetation Difference
Index (NDVI) and the Enhanced Vegetation Index (EVI), probably the two most commonly used forest
classification indices. Since the more heterogeneous structure of OGF compared to other forest types
might help classification, we used two forest structure indices: Advanced Vegetation Index (AVI) and
the Shadow Index (SI). A study [20] found the difference between SWIR and NIR bands most useful in
distinguishing mature and OGF so we also used Normalised Difference Infrared Index (NDII). Lastly,
the Red edge Normalized Difference Vegetation Index (RENDVI) was chosen to exploit information in
the red edge bands.

NDVI =
B8− B4
B8 + B4

(1)

EVI =
2.5(B8− B4)

(B8 + (6× B4)− (7.5× B2) + 1
(2)

AVI = 3
√
(B8(1− B4)(B8− B4) (3)

SI = 3
√
(1− B2)(1− B3)(1− B4) (4)

NDII =
B8− B11
B8 + B11

(5)

RENDVI =
(B6− B5)
(B6 + B5)

(6)

Spectral images vary not only in tone but also in texture (spatial variation). Texture measurements
quantitively describe relationships of spectral values with neighbouring pixels, which information has
been used previously to improve forest stand classification accuracy [47,48]. The most commonly used
textural measure is the Grey Level Co-occurrence Matrix (GLCM) [49], essentially a description of how
often different combinations of pixel brightness values (grey levels) occur in an image. A detailed
overview of GLCM can be found here [50]. Generally, younger forest have a more uniform and low
contrast image due to the trees’ equal height and spatial distribution, whereas the heterogeneity of
OGF, with a broader distribution of tree heights and ages, results in more shadows cast by emergent
trees. OGF are therefore likely to have differences in texture compared to NOGF areas.

Use of GLCM requires choosing 6 parameters—textural features, pixel displacement and direction,
the moving window size, quantisation level and spectral bands – giving rise to thousands of potential
combinations. The textural features can be divided into contrast, orderliness and descriptive statistics
groups [50]. We chose one textural feature from each of these groups that had been found useful in
previous studies [51,52]: contrast, entropy and GLCM mean. Contrast is a weighted measure of the
contrast between adjacent pixels—the greater the value the greater the contrast. Entropy corresponds to
the orderliness of the image—larger entropy values indicate greater disorder. We calculate these features
for a visual, near IR and shortwave IR band (B3, B8 and B12). A study [53] found that for spectrally
homogenous classes, smaller window sizes improved classification accuracy. Combined with the coarse
resolution of the S2 data, we therefore computed the selected textural variables with a relatively small
5 × 5 pixel window size over all directions, a pixel displacement of 1 and a 32 level quantization using
the ESA Sentinel Application Platform (SNAP), available at http://step.esa.int/main/toolboxes/snap.

Mean and standard deviation for each polygon were extracted for each of the 10 bands, as well
as the mean of the 6 vegetation indices and the 9 textural measures. Mean elevation and slope was

http://step.esa.int/main/toolboxes/snap
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also calculated (using 1 arc second resolution Shuttle Radar Topography Mission (SRTM) data [54]).
The number of polygons and area for each forest type are given for OGF and NOGF in Tables 1
and 2 respectively.

2.5. Random Forest Method

Random Forest (RF) [55] is a non-parametric machine learning algorithm, selected for its high
classification accuracy [56,57], ease of use [58,59] and its demonstrated ability in previous remote
sensing forest classification studies [15–17,60].

The polygons were randomly divided into training and validation sets in a ratio of 75% and 25%
respectively. The classification analysis was performed using the scikit-learn Python library [61]. The
maximum number of features Random Forest was allowed to try in an individual tree was set as
the square root of the total number of features. The number of trees built was set at 500. We found
changing these parameters made little difference to model outcome. Feature importance was calculated
by mean decrease impurity.

We report user’s accuracy (how reliable is the map, that is, how often forest identified as, say,
OGF in our model is actually present on the ground), producer’s accuracy (how well is the situation
on the ground mapped, that is, how often OGF on the ground is correctly identified as such by our
model) and overall accuracy (how often all our forests were identified correctly). We report accuracy
as the average across the relevant polygons.

The Random Forest classification between tree species was carried out using only the 1781 Norway
spruce, 1281 beech, 219 mountain pine, 189 beech-conifer mixed (Beech BCMix) and 226 Norway
spruce-broadleaved mixed (Norway spruce CBMix) OGF polygons. Due to their relative lack of
polygons, no attempt was made to identify other tree species (such as oak and silver fir) and so
these polygons were excluded from this Random Forest classification. Therefore, a total of 3696 OGF
polygons covering about 92% of the total OGF area was used. No NOGF polygons were used for the
Random Forest tree species classification.

In order to classify [62] the tree species we used 10 mean spectral band values (B), 10 standard
deviation spectral band values (B_sd), mean elevation (Elev), 9 GLCM textural variables (TF) and 6
vegetation indices (VI). The classification was divided into 8 models: B, TF, VI, B+TF, B+VI, B+Elev,
B+B_sd and B+B_sd+Elev+TF+VI. These models were conducted for summer, autumn and summer
and autumn combined, resulting in 24 RF models.

A similar Random Forest classification was now made to distinguish OGF polygons from NOGF
polygons, using all 4037 OGF and 4449 NOGF polygons, with the OGF and NOGF identified as either
conifer, broadleaved or mixed. We used the same 8 models as for tree species classification, run for
summer, autumn and summer and autumn combined. RF classification was carried out separately for
conifer, broadleaf and mixed forest types and we therefore conducted a total of 72 RF models (3 × 24).

3. Results and Discussion

3.1. Distinguishing Old-Growth Forest Tree Species

We first explored whether S2 images could be used to identify different tree species within OGF
polygons. Figure S1 shows boxplots of all the spectral signatures, the vegetation indices and the
textural measures of the various tree species, including oak and silver fir, for both summer and autumn
The impact of autumnal colours for beech results in a 140% and 40% increase in brightness in the
autumn red (B4) and red edge (B5) bands respectively compared to the summer bands (see Figure S1a).
Land class maps are shown in Figure 2.
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Figure 2. Map of Old-Growth Forest tree species based on (a) the Random Forest classifier using all
features for combined summer and autumn images (b) WWF ground survey. Beech BCMix is dominant
beech with at least 20% conifer species, Norway Spruce CBMix is dominant Norway spruce with at
least 20% broadleaf species.

Figure S2 shows the ranking of features for importance. Figure 3 and Table S1 shows the
classification accuracies for the tree species for summer and autumn images for the different Random
Forest models. Beech and spruce consistently had the highest accuracies, with producer’s accuracy
of 95%–98% and user’s accuracy of 85%–90%. Lower accuracy was achieved for mountain pine with
producer’s accuracy of 25%–60% and user’s accuracy of 50%–90%. Classification was poorer for mixed
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forest with producer’s accuracy ranging from 10%–30% and user’s accuracy around 50%. For spruce
and beech, producer’s accuracy was consistently higher than user’s accuracy, while for mixed and
mountain pine the situation was reversed—a sign that the model was consistently misclassifying pine
and mixed forest as spruce and beech. Similar remote sensing tree classification studies tend to obtain
accuracies of between 70%–95% [15] and our study is generally in line with these.

Figure 3. User’s, producer’s and overall accuracies resulting from Random Forest classification for
Old-Growth Forest tree species for 5 selected models in (a) Summer (2 August 2017) and (b) Autumn
(16 October 2017). Abbreviations: FS—Beech, PA—Norway spruce, PM—mountain pine.

In summer, SWIR, NIR and red edge bands (B5-7) were generally most important for classification
(Table S1). Using only the bands, accuracy rates were higher using the autumn than the summer image
by 2.2% (Figure 3)—the autumnal change in leaf colour was distinctive and consequently red and red
edge bands were the best performing features for the autumn image (Table S1). Studies in eastern USA
also found that mid-autumn was the best time for tree species classification [63,64]. For the summer
image, adding elevation data improved overall accuracy. In particular, mountain pine, which only
occurred at very high elevations in the study area, had its user’s and producer’s accuracy increased
by 3.3% and 11.9% respectively. Previous studies have likewise found that topographic variables
improved classification in studies in the USA [56,65] and Spain [56,65]. Vegetation indices performed
better than the bands by 0.8% and 0.7% in summer and autumn respectively. Choice of features had a
notable effect on accuracy for mountain pine, with user’s accuracy varying from 50% to 90%. Using
combined summer and autumn images increased accuracy by 1.5%, less than the 2%–7% found by
another study [60].
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The Confusion matrix for the most accurate classification is shown in Table 4, with the diagonal
cells showing the number (in bold) of correct classifications and the off-diagonal cells indicating the
mistakes. In distinguishing beech and spruce it performed well, making just a single mistake and
producer’s accuracies for these forest types was high (Figure 3). However, accuracy for mixed forests
was poor, generally classing it as its pure tree species counterpart—i.e., beech mix was classed as pure
beech and spruce mix as pure spruce. The model had trouble distinguishing between spruce and pine
stands, classing 27 pine stands as spruce.

Table 4. Confusion matrix for three dominant tree species plus FS mix with conifers and PA mix with
broadleaved, based on the most accurate Random Forest classification—summer and autumn mean
band spectra with all features. FS—beech, PA—Norway spruce, PM—mountain pine.

Predicted Species

FS FS mix PM PA PA mix Sum

Actual
species

FS 300 5 0 0 4 309
FS mix 36 9 0 0 5 50

PM 0 0 40 27 0 67
PA 1 1 3 460 3 468

PA mix 8 6 1 27 22 64
Sum 345 21 44 514 34 958

3.2. Distinguishing between OGF and non-OGF

Land class maps are shown in Figure 4. Figure S3 shows the mean spectral signatures, vegetation
indices and textural measures for OGF and NOGF. OGF had a lower mean brightness than NOGF for
both broadleaf and mixed forests over all bands in both summer and autumn. For broadleaf, t-tests
showed a significant difference between OGF and NOGF for all non-visible bands (B5-B8, B8A, B11,
B12) and all bands for summer and autumn images respectively (p < 0.05). For mixed forest, t-tests
showed a significant difference (p < 0.05) between OGF and NOGF for all bands and all bands except
blue (B2) for summer and autumn images respectively. Younger forests tend to consist of small tree
crowns packed tightly together with few gaps. As the forest ages, both mean crown size and the
number of gaps increases. The increase in forest gap number and shadows cast by emergent trees
results in a reduction in the reflected light, leading to a lower mean brightness in OGF. Due to the
inverse relation between wavelength and atmospheric scattering, shadows will be illuminated more by
visible light (skylight) than longer wavelength bands [66,67]. Structurally diverse OGF would likely
result in more shadows compared to NOGF, resulting in a larger difference between OGF and NOGF
in the red edge, NIR and SWIR bands than the visible bands.

There was less difference between conifer OGF and conifer NOGF in the summer mean band
spectra, with significantly higher reflectance in OGF for all bands except B7 (t-test, p < 0.05). This is
a surprising result, as it is contrary both to the result for broadleaf and mixed forest, as well as to a
previous study [21] which found conifer OGF significantly darker than mature forest in summer in
blue, green and NIR Landsat bands. In our analysis, conifer OGF was, on average, at higher elevations
compared to conifer NOGF (1341 m and 1237 m respectively). Therefore, it is likely that a higher
percentage of conifer OGF consisted of mountain pine than in conifer NOGF and mountain pine was
significantly brighter than Norway spruce and silver fir across all bands (see Figure S1). Furthermore,
OGF towards the treeline was more likely to contain open forest and clearings than NOGF. If this were
the case then the OGF image would contain many more bright pixels comprised of ground vegetation
and soils. Open areas were generally about 50%–100% brighter than conifer canopy for all bands.
To test if this difference could explain our surprising result, we plotted mean percentile values for
OGF and NOGF conifers split into subsets of mean elevation above and below 1250 m (Figure 5). OGF
conifer contained significantly more bright pixels (percentile > 80%) than NOGF and for OGF below
1250 m more dark pixels (percentile < 20%). In other words, the higher mean brightness of OGF was
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due to the presence of more bright pixels (open areas), while the wooded areas are darker than NOGF.
(It is worth noticing that this pattern also holds true for broadleaf and mixed forest, as shown in Figure
S4). OGF conifer with a mean elevation below 1250 m was significantly darker than NOGF for Bands
B6-B8A. As conifer OGF increased in elevation, it contains more open ground (bright pixels), as can be
seen from comparing Figure 5a,b. An alternative explanation we considered for this surprising result
is that OGF conifer stands contain a higher percentage of broadleaved species (which are brighter
across all bands) than NOGF conifer stands. However, in autumn the red (B4) band in conifer OGF
and NOGF polygons brightens by about the same percentage relative to the summer image, so this is
unlikely to be a factor.

Figure 4. Map of Old-Growth Forest and Non-Old-Growth Forest based on (a) the Random Forest
classifier using all features for combined summer and autumn images (b) the WWF ground survey.
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Figure 5. Mean percentile values for the green Band (B3) for conifer Old-Growth Forest and non-Old-
Growth Forest polygons with mean elevation (a) below 1250 m (b) above 1250 m.

The vegetation indices NDVI, AVI, RENDVI and EVI are strongly correlated to chlorophyll
content [68,69]. All indices were greater for NOGF than OGF for all forest types (Figure S3b): as forest
ages the amount of green vegetation tends to decline from both an increase in dead and dying trees
and an increase in the amount of vegetation obscured by shadow from emergent trees. NDII is the
difference index between the NIR and SWIR bands and a measure of the canopy water content [70].
It was likewise higher for NOGF than OGF for summer and autumn images, again attributable to
greater non-photosynthetic vegetation in the OGF.

The texture of OGF was more heterogeneous, with OGF having higher contrast values for all
images in all forest types and bands than NOGF (Figure S3c). The large crowns of OGF cast large
shadows, which result in a coarse texture compare to the finer-grained texture of smaller, more
densely packed, younger tree stands. In contrast to our results, an investigation [20] of the effects of
stand structure on an absolute difference algorithm of tasselled cap vegetation indices found a poor
correlation between these textural features and stand characteristics which included age, which the
authors attribute to the coarse (30 m) resolution of the Landsat imagery used. A study of forest in
Israel [51] found that contrary to our results, mature unmanaged forests had lower GLCM entropy and
contrast values than younger forest. The authors explain this as resulting from the very high resolution
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(2 m) satellite imagery used, so that the large crown sizes associated with mature forest increased the
number of adjacent pixels with similar grey levels.

Figure 6 and Tables S2 and S3 shows the OGF producer’s accuracy and overall accuracy for
Random Forest models. OGF producer’s accuracy is arguably the most important measure—it matters
more if existing OGF is misidentified as NOGF and consequently overlooked than if we misclassify
NOGF as OGF. Figure S5 shows the ranking of features for importance.

Figure 6. Old-Growth Forest (OGF) Producer’s and overall accuracies resulting from Random Forest
classification for OGF and Non-OGF polygons for 5 selected models for (a) summer (2 August 2017) (b)
autumn (16 October 2017) and (c) summer + autumn.

Classification accuracies for OGF were roughly uniform with both user’s and producer’s
accuracies between 75%–85% for both conifer and broadleaf forest. Mixed forest accuracies were
lower with producer’s accuracy ranging from 65%–80% and user’s accuracy around 70%–85%. Overall,
classification accuracy using all features was 84%, on the verge of the 85% success threshold that is often
used for machine learning studies. A previous study [19] obtained 75% accuracy in distinguishing
OGF from mature forest using regression analysis and Landsat 5 imagery. Landsat 7 imagery and
unsupervised classification was used [22] to distinguish old and mature conifer forests with an
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overall accuracy of 80%–90% depending on the ecoregion. Landsat 5 imagery and unsupervised
classification [21] found 78% accuracy for classifying closed canopy conifer OGF. Another study [24]
using Random Forest and high resolution LIDAR data to separate old near-natural and old managed
conifer forest obtained overall classification accuracies of 85%–90%.

Accuracy was higher for mountain pine OGF stands than Norway spruce (about 92% and
83% respectively). This was consistent regardless of feature selection. Accuracy rose with elevation
for both broadleaf and conifers. The model failed significantly with the small number of silver fir
polygons—correctly identifying as OGF only about half. Again this result was consistent for all the RF
models examined. For mixed forest the classification accuracy for Norway spruce CBMix was high
(90%), while the accuracy for beech BCMix was much lower (70%).

A ranking of features (Table S2) indicates that in both summer and autumn, SWIR bands were
most important for conifers, with red edge and NIR most important for broadleaves. Overall, for the
band spectra accuracy rates were 0.3% higher using the summer than the autumn image. Adding
elevation data to the bands usually improved overall accuracy (by an average of 1.8% overall): a large
proportion of the surviving OGF ringed mountain summits, so that the adjacent NOGF polygons were
generally lower in elevation.

Vegetation indices generally performed worse than Bands, with their use instead of bands
reducing accuracy by 0.3%. Textural features performed extremely well and on average were 2.8%
more accurate than just using the bands. Adding mean vegetation index, band standard deviations and
textural feature data to the band spectra increased overall accuracy by 0.3%, 2.1% and 3.3% respectively
(see Table S2 and Figure 6). Using all features improved accuracy by 5% compared to using just the
mean band spectra.

We ran the RF classification separately on broadleaf, conifer and mixed forest types to provide
insight into how performance and most important features differed for different forest types. However,
the improvement in accuracy over running it on all OGF/NOGF forest types lumped together was
fairly small (0.15%).

Figure 6 shows the producer’s overall accuracies for various season combinations using all features.
Combining images improved accuracy in general, with the combined summer and autumn images 0.5%
and 1.9% more accurate than summer or autumn on its own respectively. The highest overall accuracy
achieved for all OGF polygons was 84.8% using summer and autumn images and all features.

4. Conclusions

The objective of this study was to evaluate the suitability of multitemporal Sentinel-2 data for
identifying OGF tree species and distinguishing OGF from other woodland. The Sentinel-2 spectral
signatures along with associated vegetation indices, textural features and elevation data were analysed
with the Random Forest classifier. The OGF analysed consisted of beech, Norway spruce, mountain
pine or mixtures of species in the Carpathian Mountains of Ukraine. An overall accuracy of about 85%
was achieved in separating OGF from the surrounding forest, with classification accuracies higher for
conifer and broadleaved than mixed forest.

We make a number of recommendations for automated identification of OGF. OGF is more
spatially heterogeneous than other forest types. Adding textural features therefore improved
classification. The addition of band standard deviations, combining summer and autumn images
and adding elevation data also improved overall accuracy. We found limited benefits to using
vegetation indices—which if added to the bands gave only a minimal performance improvement.
We’d recommend calculating textural features instead as it involves the same amount of effort and
since the spatial relationship of the pixels is not strongly correlated to their brightness you are adding
useful independent information to the model.

Our method of comparing OGF to adjacent forest is not without weaknesses. It meant that our
comparison of OGF to NOGF was not comparing ‘like-with-like,’ as the control NOGF polygons were
usually forests lower in height. However, as remaining OGF in Europe is usually confined to the
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mountains this will tend to be true of any real-world attempt to classify OGF. Furthermore, ground
identification will generally include criteria such as deadwood quantity and quality, presence of
non-native tree species and human impact such as livestock grazing that cannot be surveyed remotely.
With these caveats we were able to use free publicly available satellite imagery to correctly classify
OGF on the ground with an overall accuracy of about 85%. This is at the threshold of what is usually
deemed acceptable in machine learning studies [71]. Potential improvements could involve exploring
the use of other classification types—for example, Support vector Machines (SVM) has been found to
be more accurate than Random Forest in tree species classification studies [13,14,17]. Further studies
that cover different OGF types within different biogeographical settings would be useful.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/2/127/s1,
Figure S1: Boxplots of (a) spectral signatures, (b) vegetation indices and (c) textural measures for tree species
silver fir (AA), beech (FS), Norway spruce (PA), mountain pine (PM) and oak species (Quer) in Old-Growth
Forest polygons, Figure S2: Random Forest feature importance for OGF tree species classification, Figure S3:
Boxplots of (a) spectral signatures, (b) vegetation indices and (c) textural measures for broadleaf, conifer and
mixed Old-Growth Forest and Non Old-Growth Forest polygons, arranged in two pairs of summer (thick line
boxplots) and autumn (thin line boxplots) from left to right, Figure S4: Mean percentile values for the green Band
(B3) for (a) broadleaf and (b) mixed Old-Growth Forest and Non-Old Growth Forest polygons, Figure S5: Random
Forest feature importance for Old-Growth forest and Non-Old Growth forest classification for (a) conifers, (b)
broadleaf, (c) mixed forest, Table S1: Producers, users and overall accuracy for Random Forest Old-Growth forest
tree species classifications for our 8 models: mean band values (B), Textural features (TF), Vegetation indices(VI),
B+TF, B+VI, B+mean elevation (elev), B+band standard deviations (B_sd) and B+B_sd+Elev+TF+VI, Table S2:
Producers, users and overall accuracy for Random Forest Old Growth forest classification for our 8 models: mean
band values (B), Textural features (TF), Vegetation indices(VI), B+TF, B+VI, B+mean elevation (elev), B+band
standard deviations (B_sd) and B+B_sd+Elev+TF+VI, Table S3: Producers, users and overall accuracy for Random
Forest Old-Growth Forest classification for summer and autumn images combined and our 8 models: mean band
values (B), Textural features (TF), Vegetation indices(VI), B+TF, B+VI, B+mean elevation (elev), B+band standard
deviations (B_sd) and B+B_sd+elev+TF+VI.
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17. Sheeren, D.; Fauvel, M.; Josipović, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.-F. Tree species classification
in temperate forests using Formosat-2 satellite image time series. Remote Sens. 2016, 8, 734. [CrossRef]

18. Leckie, D.G.; Tinis, S.; Nelson, T.; Burnett, C.; Gougeon, F.A.; Cloney, E.; Paradine, D. Issues in species
classification of trees in old growth conifer stands. Can. J. Remote Sens. 2005, 31, 175–190. [CrossRef]

19. Cohen, W.B.; Spies, T.A.; Fiorella, M. Estimating the age and structure of forests in a multi-ownership
landscape of western Oregon, USA. Int. J. Remote Sens. 1995, 16, 721–746. [CrossRef]

20. Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from
Landsat and SPOT imagery. Remote Sens. Environ. 1992, 41, 1–17. [CrossRef]

21. Fiorella, M.; Ripple, W.J. Determining successional stage of temperate coniferous forests with Landsat
satellite data. Photogramm. Eng. Remote Sens. 1993, 59, 239–246.

22. Jiang, H.; Strittholt, J.R.; Frost, P.A.; Slosser, N.C. The classification of late seral forests in the Pacific Northwest,
USA using Landsat ETM+ imagery. Remote Sens. Environ. 2004, 91, 320–331. [CrossRef]

23. Sabol Jr, D.E.; Gillespie, A.R.; Adams, J.B.; Smith, M.O.; Tucker, C.J. Structural stage in Pacific Northwest
forests estimated using simple mixing models of multispectral images. Remote Sens. Environ. 2002, 80, 1–16.
[CrossRef]

24. Sverdrup-Thygeson, A.; Ørka, H.O.; Gobakken, T.; Næsset, E. Can airborne laser scanning assist in mapping
and monitoring natural forests? For. Ecol. Manag. 2016, 369, 116–125. [CrossRef]

25. Kathmann, F.; Ciutea, A.; Biris, I.-A.; Ibisch, P.L.; Salageanu, V. Potential Primary Forests Map of Romania; Ibisch, P.L.,
Ursu, A., Eds.; Greenpeace CEE Romania; Centre for Econics and Ecosystem Management, Eberswalde
University for Sustainable Development; Geography Department, A. I. Cuza University of Ias, i: Bucharest,
Romania, 2017; Available online: https://www.researchgate.net/publication/321098644_Potential_
Primary_Forests_Map_of_Romania_published_by_Greenpeace_CEE_Romania_Centre_for_Econics_
and_Ecosystem_Management_Eberswalde_University_for_Sustainable_Development_Geography_
Department_A_I_Cuza (accessed on 11 January 2018).

26. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

27. Forest Code of Ukraine (in Ukrainian). Available online: https://zakon.rada.gov.ua/go/3852-12 (accessed
on 10 January 2019).

http://dx.doi.org/10.1016/j.foreco.2015.02.034
http://dx.doi.org/10.1080/11263500903560512
http://dx.doi.org/10.1038/nature07276
http://dx.doi.org/10.1126/sciadv.1501392
http://dx.doi.org/10.1111/ddi.12778
http://dx.doi.org/10.1017/S0376892912000355
http://dx.doi.org/10.1016/j.rse.2012.03.013
http://dx.doi.org/10.1016/j.jag.2012.01.025
http://dx.doi.org/10.3390/rs4092661
http://dx.doi.org/10.3390/rs8090734
http://dx.doi.org/10.5589/m05-004
http://dx.doi.org/10.1080/01431169508954436
http://dx.doi.org/10.1016/0034-4257(92)90056-P
http://dx.doi.org/10.1016/j.rse.2004.03.016
http://dx.doi.org/10.1016/S0034-4257(01)00245-0
http://dx.doi.org/10.1016/j.foreco.2016.03.035
https://www.researchgate.net/publication/321098644_Potential_Primary_Forests_Map_of_Romania_published_by_Greenpeace_CEE_Romania_Centre_for_Econics_and_Ecosystem_Management_Eberswalde_University_for_Sustainable_Development_Geography_Department_A_I_Cuza
https://www.researchgate.net/publication/321098644_Potential_Primary_Forests_Map_of_Romania_published_by_Greenpeace_CEE_Romania_Centre_for_Econics_and_Ecosystem_Management_Eberswalde_University_for_Sustainable_Development_Geography_Department_A_I_Cuza
https://www.researchgate.net/publication/321098644_Potential_Primary_Forests_Map_of_Romania_published_by_Greenpeace_CEE_Romania_Centre_for_Econics_and_Ecosystem_Management_Eberswalde_University_for_Sustainable_Development_Geography_Department_A_I_Cuza
https://www.researchgate.net/publication/321098644_Potential_Primary_Forests_Map_of_Romania_published_by_Greenpeace_CEE_Romania_Centre_for_Econics_and_Ecosystem_Management_Eberswalde_University_for_Sustainable_Development_Geography_Department_A_I_Cuza
http://dx.doi.org/10.3390/rs8030166
https://zakon.rada.gov.ua/go/3852-12


Forests 2019, 10, 127 17 of 19

28. Lavnyy, V.; Lässig, R. Extent of storms in the Ukrainian Carpathians. In Proceedings of the Proceedings of the
International Conference on Wind Effects on Trees, University of Karlsruhe, Karlsruhe, Baden-Württemberg,
Germany, 16–18 September 2003; pp. 16–18.

29. Simpson, M. Determining the potential distribution of highly invasive plants in the Carpathian Mountains
of Ukraine: A species distribution modeling approach under different climate-land-use scenarios and
possible implications for natural-resource management. Environ. Sci. Policy 2011, 12. Available online:
http://jhir.library.jhu.edu/handle/1774.2/35707 (accessed on 10 January 2019).

30. Kozak, J.; Estreguil, C.; Troll, M. Forest cover changes in the northern Carpathians in the 20th century: A
slow transition. J. Land Use Sci. 2007, 2, 127–146. [CrossRef]

31. Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; van der Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border
comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 2008, 11, 614. [CrossRef]

32. Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Perzanowski, K.; Kruhlov, I. Post-socialist forest disturbance in
the Carpathian border region of Poland, Slovakia and Ukraine. Ecol. Appl. 2007, 17, 1279–1295. [CrossRef]

33. Kuemmerle, T.; Chaskovskyy, O.; Knorn, J.; Radeloff, V.C.; Kruhlov, I.; Keeton, W.S.; Hostert, P. Forest
cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007.
Remote Sens. Environ. 2009, 113, 1194–1207. [CrossRef]

34. Complicit in Corruption. How billion-dollar firms and EU Governments are Failing Ukraine’s Forests (2018)
Earthsight. Available online: https://docs.wixstatic.com/ugd/624187_673e3aa69ed84129bdfeb91b6aa9ec17.
pdf (accessed on 10 January 2019).

35. Irland, L.; Kremenetska, E. Practical economics of forest ecosystem management: The case of the Ukrainian
Carpathians. Ecol. Econ. Sustain. For. Manag. Dev. Trans-Discip. Approach Carpathian Mt. Ukr. Natl. For. Univ.
Press 2009, 59, 180–200.

36. Sitko, I.; Troll, M. Timberline changes in relation to summer farming in the Western Chornohora (Ukrainian
Carpathians). Mt. Res. Dev. 2008, 28, 263–271. [CrossRef]

37. Trotsiuk, V.; Hobi, M.L.; Commarmot, B. Age structure and disturbance dynamics of the relic virgin beech
forest Uholka (Ukrainian Carpathians). For. Ecol. Manag. 2012, 265, 181–190. [CrossRef]

38. Trotsiuk, V.; Svoboda, M.; Janda, P.; Mikolas, M.; Bace, R.; Rejzek, J.; Samonil, P.; Chaskovskyy, O.; Korol, M.;
Myklush, S. A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian
Carpathians. For. Ecol. Manag. 2014, 334, 144–153. [CrossRef]

39. Hobi, M.L.; Commarmot, B.; Bugmann, H. Pattern and process in the largest primeval beech forest of E
urope (Ukrainian Carpathians). J. Veg. Sci. 2015, 26, 323–336. [CrossRef]

40. Volosyanchuk, R.; Prots, B.; Kagalo, A.; Shparyk, Y.; Cherniavskyi, M.; Bondaruk, G. Criteria and Methology
for Virgin and Old-Growth (Quasi-Virgin) Forest Identification; Volosyanchuk, R., Prots, B., Kagalo, A., Eds.;
Liga Press: Lviv, Ukraine, 2017. Available online: http://d2ouvy59p0dg6k.cloudfront.net/downloads/old_
growth_forest_identification_methodology.pdf (accessed on 1 December 2018).

41. Roman Volosyanchuk Virgin and Old Growth Forests in Ukraine. Available online: http:
//www.carpathianconvention.org/tl_files/carpathiancon/Downloads/03%20Meetings%20and%
20Events/Working%20Groups/Sustainable%20Forest%20Management/6th%20meeting/presentations/
VF_for_CC_Sopron_WWF_UA.pdf (accessed on 11 January 2018).

42. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.;
Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover
change. Science 2013, 342, 850–853. [CrossRef] [PubMed]

43. Wulder, M.A.; Skakun, R.S.; Kurz, W.A.; White, J.C. Estimating time since forest harvest using segmented
Landsat ETM+ imagery. Remote Sens. Environ. 2004, 93, 179–187. [CrossRef]

44. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.;
Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services.
Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

45. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F.
Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Proceedings Living Planet Symposium
2016, Prague, Czech Republic, 9–13 May 2016; pp. 1–8.

46. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf
to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [CrossRef]

http://jhir.library.jhu.edu/handle/1774.2/35707
http://dx.doi.org/10.1080/17474230701218244
http://dx.doi.org/10.1007/s10021-008-9146-z
http://dx.doi.org/10.1890/06-1661.1
http://dx.doi.org/10.1016/j.rse.2009.02.006
https://docs.wixstatic.com/ugd/624187_673e3aa69ed84129bdfeb91b6aa9ec17.pdf
https://docs.wixstatic.com/ugd/624187_673e3aa69ed84129bdfeb91b6aa9ec17.pdf
http://dx.doi.org/10.1659/mrd.0963
http://dx.doi.org/10.1016/j.foreco.2011.10.042
http://dx.doi.org/10.1016/j.foreco.2014.09.005
http://dx.doi.org/10.1111/jvs.12234
http://d2ouvy59p0dg6k.cloudfront.net/downloads/old_growth_forest_identification_methodology.pdf
http://d2ouvy59p0dg6k.cloudfront.net/downloads/old_growth_forest_identification_methodology.pdf
http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/03%20Meetings%20and%20Events/Working%20Groups/Sustainable%20Forest%20Management/6th%20meeting/presentations/VF_for_CC_Sopron_WWF_UA.pdf
http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/03%20Meetings%20and%20Events/Working%20Groups/Sustainable%20Forest%20Management/6th%20meeting/presentations/VF_for_CC_Sopron_WWF_UA.pdf
http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/03%20Meetings%20and%20Events/Working%20Groups/Sustainable%20Forest%20Management/6th%20meeting/presentations/VF_for_CC_Sopron_WWF_UA.pdf
http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/03%20Meetings%20and%20Events/Working%20Groups/Sustainable%20Forest%20Management/6th%20meeting/presentations/VF_for_CC_Sopron_WWF_UA.pdf
http://dx.doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
http://dx.doi.org/10.1016/j.rse.2004.07.009
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.1016/j.rse.2005.03.009


Forests 2019, 10, 127 18 of 19

47. Coburn, C.A.; Roberts, A.C. A multiscale texture analysis procedure for improved forest stand classification.
Int. J. Remote Sens. 2004, 25, 4287–4308. [CrossRef]

48. Zhaoa, P.; Zhaoa, J.; Wub, J.; Yanga, Y.; Xuea, W.; Houa, Y. Integration of multi-classifiers in object-based
methods for forest classification in the Loess plateau, China. SCIENCEASIA 2016, 42, 283–289. [CrossRef]

49. Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [CrossRef]
50. Hall-Beyer, M. GLCM Texture: A Tutorial; Technical Report for Department of Geography; University of

Calgary: Calgary, AB, Canada, March 2000.
51. Ozdemir, I.; Karnieli, A. Predicting forest structural parameters using the image texture derived from

WorldView-2 multispectral imagery in a dryland forest, Israel. Int. J. Appl. Earth Obs. Geoinf. 2011, 13,
701–710. [CrossRef]

52. Shaban, M.A.; Dikshit, O. Improvement of classification in urban areas by the use of textural features: The
case study of Lucknow city, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [CrossRef]

53. Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on
classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [CrossRef]

54. Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the globe Version 4: Data grid. 2008.
Available online: https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-
data-grid (accessed on 31 December 2018).

55. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
56. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the

effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens.
2012, 67, 93–104. [CrossRef]

57. Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for
classification in ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]

58. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.
[CrossRef]

59. Sesnie, S.E.; Finegan, B.; Gessler, P.E.; Thessler, S.; Ramos Bendana, Z.; Smith, A.M. The multispectral
separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees.
Int. J. Remote Sens. 2010, 31, 2885–2909. [CrossRef]

60. Nelson, M. Evaluating Multitemporal Sentinel-2 data for Forest Mapping using Random Forest. Master’s
Thesis, Stockholm University, Stockholm, Sweden, December 2017.

61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

62. Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification
performance. Int. J. Remote Sens. 2007, 28, 823–870. [CrossRef]

63. Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal
information in high spatial resolution imagery for classification of individual tree species in a temperate
hardwood forest. Remote Sens. Environ. 2001, 75, 100–112. [CrossRef]

64. Schriever, J.R.; Congalton, R.G. Evaluating seasonal variablity as an aid to cover-type mapping from landsat
thematic mapper data in the northwest. Photogramm. Eng. Remote Sens. 1995, 61, 321–327.

65. Zimmermann, N.E.; Edwards, T.C.; Moisen, G.G.; Frescino, T.S.; Blackard, J.A. Remote sensing-based
predictors improve distribution models of rare, early successional and broadleaf tree species in Utah.
J. Appl. Ecol. 2007, 44, 1057–1067. [CrossRef] [PubMed]

66. Crist, E.P.; Laurin, R.; Cicone, R.C. Vegetation and soils information contained in transformed Thematic
Mapper data. In Proceedings of the Proceedings of IGARSS’86 Symposium; European Space Agency: Paris,
France, 1986; pp. 1465–1470.

67. Kimes, D.S.; Newcomb, W.W.; Nelson, R.F.; Schutt, J.B. Directional reflectance distributions of a hardwood
and pine forest canopy. IEEE Trans. Geosci. Remote Sens. 1986, 24, 281–293. [CrossRef]

68. Glenn, E.; Huete, A.; Nagler, P.; Nelson, S. Relationship between remotely-sensed vegetation indices, canopy
attributes and plant physiological processes: What vegetation indices can and cannot tell us about the
landscape? Sensors 2008, 8, 2136–2160. [CrossRef] [PubMed]

69. Tuominen, J.; Lipping, T.; Kuosmanen, V.; Haapanen, R. Remote Sensing of Forest Health. Geoscience and Remote
Sensing; IntechOpen: London, UK, 2009; Available online: https://www.intechopen.com/books/geoscience-
and-remote-sensing/remote-sensing-of-forest-health (accessed on 1 January 2019).

http://dx.doi.org/10.1080/0143116042000192367
http://dx.doi.org/10.2306/scienceasia1513-1874.2016.42.283
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1016/j.jag.2011.05.006
http://dx.doi.org/10.1080/01431160050505865
http://dx.doi.org/10.1080/01431160310001618464
https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid
https://research.utwente.nl/en/publications/hole-filled-srtm-for-the-globe-version-4-data-grid
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002
http://dx.doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1080/01431160903140803
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/S0034-4257(00)00159-0
http://dx.doi.org/10.1111/j.1365-2664.2007.01348.x
http://www.ncbi.nlm.nih.gov/pubmed/18642470
http://dx.doi.org/10.1109/TGRS.1986.289647
http://dx.doi.org/10.3390/s8042136
http://www.ncbi.nlm.nih.gov/pubmed/27879814
https://www.intechopen.com/books/geoscience-and-remote-sensing/remote-sensing-of-forest-health
https://www.intechopen.com/books/geoscience-and-remote-sensing/remote-sensing-of-forest-health


Forests 2019, 10, 127 19 of 19

70. Yilmaz, M.T.; Hunt, E.R., Jr.; Goins, L.D.; Ustin, S.L.; Vanderbilt, V.C.; Jackson, T.J. Vegetation water content
during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery. Remote Sens. Environ. 2008, 112,
350–362. [CrossRef]

71. Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating methodologies for scaling landcover classifications
from site-specific to global: Steps toward validating global map products. Remote Sens. Environ. 1999, 70,
16–28. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2007.03.029
http://dx.doi.org/10.1016/S0034-4257(99)00055-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Study Site 
	OGF Survey Data 
	Sentinel-2 Images 
	Sentinel-2 Image Evaluation 
	Random Forest Method 

	Results and Discussion 
	Distinguishing Old-Growth Forest Tree Species 
	Distinguishing between OGF and non-OGF 

	Conclusions 
	References

