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Abstract

This paper is concerned with the development and application of optimally
efficient numerical methods for the simulation of vascular tumour growth.
This model used involves the flow and interaction of four different, but cou-
pled, phases which are each treated as incompressible fluids, [1]. A finite
volume scheme is used to approximate mass conservation, with conforming
finite element schemes to approximate momentum conservation and an asso-
ciated equation. The principal contribution of this paper is the development
of a novel block preconditioner for solving the linear systems arising from the
discrete momentum equations at each time step. In particular, the precon-
ditioned system has both a solution time and a memory requirement that is
shown to scale almost linearly with the problem size.

Keywords: Multiphase system, Tumour model, Numerical simulations,
Preconditioning.

1. Introduction

In recent decades, research related to tumour growth has increased dra-
matically and mathematical tumour modelling has made a significant con-
tribution to this. These mathematical models complement biological exper-
iments and clinical observations, and simulations of tumours can help to
support the hypotheses taken from such observations. The review paper [2]
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contains a number of examples to illustrate how theory can drive experiments
and vice versa.

Generally, tumour growth is divided into three major stages:

• Avascular growth, the tumour in this stage does not get any blood
supply and has small size with a clustered and structured shape. The
nutrient that feeds the tumour arrives by the mechanism of diffusion.

• Angiogenesis, which is a biological process by which new blood ves-
sels are formed, is the next stage. Moreover, the tumour still has the
structured shape associated with avascular growth.

• Vascular growth is the final stage, where the tumour has access to
plentiful resources (blood supply), and gets a nutrient supply from
surrounding tissue. This stage can be harmful: rapid growth occurs in
the mass of the tumour with unstructured shape, cells are able to exit
through the walls of tumour vessel, which may then transmit through
the blood stream and seed secondary tumours in other areas [3].

Most mathematical models of tumour growth focus on one particular
aspect, such as avascular tumour growth (e.g. [4], [5] [6]), which is easier to
validate against experiment, or vascular tumour growth (e.g. [7, 1, 3]). This
work is focused upon the final stage of tumour growth, vascular tumours,
which are generally the most dangerous. Continuum or discrete models can
be developed which each have their own advantages. Discrete models allow
detailed study of individual cells but are limited in the physical scale they
can describe. Continuum models allow appropriate length scales but must
approximate the cell interactions in an averaged form. At large scales the
intercellular cohesion can be considered to act as a form of viscosity, so many
continuum models (e.g. [1, 3, 4, 5]), represent cell movement as very slow
viscous flow.

In this paper, we focus on the numerical solution of a particular continuum
multiphase flow model for tumour growth. The mathematical model that we
study in this paper is presented by Hubbard and Byrne [1], and extends the
work of Breward, Byrne and Lewis [4, 3]. It is a multiphase model of vascular
tumour growth in two dimensions and includes four phases : healthy cells,
tumour cells, blood vessels and extracellular material, with the assumption
that each phase behaves like a viscous fluid. Most of the studies in this area
have used between two and four phases in 2D and 3D, often treating all of
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the phases under consideration as fluids (e.g [1]), or mixtures between fluids
and solids (e.g [8]).

The most common mathematical formulations of multiphase flow require
a system of partial differential equations (PDEs), which are generally both
time dependent and nonlinear. There are several formulations of governing
conservation equations for multiphase flow, depending on the application
field (see for example in porous media [9] or in tumour growth [1, 4]). In
multiphase flow models, equations for conservation of mass and momentum
are developed for each phase (without mixing phases). These include the
terms of interaction, modelling the exchange of mass and momentum between
the phases. Each of these phases is considered to have a separate volume
fraction and velocity, and the sum of theses volume fractions is unity [10, 1].

The computational approach which is used in this work, and in [1], is
a combination of the finite element method (FEM) and the finite volume
method (FVM). In this two dimensional model, the hyperbolic PDEs of
mass balance are discretised through an explicit, conservative, upwind, FVM
scheme; whereas the momentum balance equations lead to generalised Stokes
equations which are solved using a FEM scheme. Additionally, the discretiza-
tion of the nutrient reaction-diffusion equation is also based upon a FEM
combined with a Newton iteration to solve the resulting nonlinear algebraic
equations. In [1], the discrete systems are solved using a sparse direct solver
(MUMPS), which encountered restrictions even for fairly small computations.
The memory and computational cost requirement for solving very large lin-
ear systems in 2D problems or for solving 3D problems may therefore cause
a challenge to efficient direct solution methods. Hence the purpose of this
work is to replace the use of MUMPS in [1] by designing optimal and efficient
iterative algorithms for the problem of interest.

An excellent and comprehensive introduction to efficient preconditioners
for the finite element solution of incompressible flow problems is provided
by [11]. Mixed finite element discretizations of such problems generally lead
to the need to solve a saddle point system following linearization, and the
most effective preconditioners tend to respect this structure through a block
matrix approach [11]. Some of the earliest examples are based upon sim-
ple block diagonal and general block preconditioners for Stokes systems ([12]
and [13] respectively), with subsequent generalizations to linearized Navier-
Stokes, as in [14, 15] for example. Each of these techniques is based upon
the observation of [16] that, for non-singular saddle point systems, a block
preconditioner based upon an exact Schur complement can lead to precondi-

3



tioned systems with precisely two or three distinct eigenvalues. Consequently,
the best practical preconditioners are those that can approximate the action
of the Schur complement with sufficient accuracy at minimal computational
cost: a philosophy that is built upon in this work.

The rest of the paper is organised as follows. In Section 2 the specific
mathematical model that has been chosen for this work is described in de-
tail. Then, the numerical schemes for this model are introduced in Section
3. Our primary contribution is to develop a novel preconditioner for the
discrete form of the momentum balance equations. This is described in de-
tail in Section 4, with results in Section 5 demonstrating close to optimal
performance. To ensure the optimality of the whole solver we also introduce
an optimal preconditioner for the Newton system arising from the nutri-
ent diffusion equation. This is based upon algebraic multigrid (AMG). The
third contribution of this research is to demonstrate that our preconditioning
methods may be applied to a generalized model of tumour growth, with more
phases, than in [1]. This is discussed in Section 6.

2. Mathematical model

In this section we describe the continuum mathematical model presented
in [1], which is based on multiphase model for studying vascular tumour
growth in two dimensions. This model includes four phases: normal/healthy
and tumour cells, blood vessels and extracellular material, with the assump-
tion that each phase behaves as a viscous fluid. There are three governing
systems of equations in this model, which are: mass balance equations for
the volume fraction of each phase (θi for i = 1, ..., 4), momentum balance
equations for the flow of each phase (velocities ui and vi and pressure pi for
i = 1, ..., 4), and a reaction-diffusion equation for the nutrient concentration
(c). The nutrient, which is supplied by the blood vessels, is consumed by
healthy and tumour cells, and therefore is not assumed to occupy volume in
its own right. The spatial domain is denoted by Ω, and the whole boundary
of the domain is denoted by Γ.

The dimensional form of the mathematical model is introduced in [1]. We
present here a nondimensionalised form where the independent and depen-
dent variables have been scaled as:

~x = L0~x
′, t =

t′

k1,1
, ~ui = L0k1,1~ui

′, pi = Λp′i, c = cvc
′, (1)
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in which L0 is a length scale, which is the initial radius of tumour seeded in
the healthy tissue, Λ is constant of the cell-cell interaction tension, cv is the
blood vessels nutrient concentration and k1,1 is the parameter of the birth
rate for the normal cells, which used to scale the time t.

2.1. Mass Balance Equations

All phases considered are assumed to have the same density, so the mass
balance for the healthy cells (θ1), tumour cells (θ2) and blood vessel (θ3)
volume fractions are given as follows:

∂θ1

∂t′
+ ~∇′.(θ1~u

′
1) = θ1θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

cell birth

− k∗2,1θ1

(
c∗c1 + c′

c∗c2 + c′

)

︸ ︷︷ ︸

cell death

∂θ2

∂t′
+ ~∇′.(θ2~u

′
2) = k∗1,2θ2θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

cell birth

− k∗2,2θ2

(
c∗c1 + c′

c∗c2 + c′

)

︸ ︷︷ ︸

cell death
∂θ3

∂t′
+ ~∇′.(θ3~u

′
3) = − k∗3θ3H(θ1p

′
1 + θ2p

′
2 − p∗crit, ǫ

∗
3)

︸ ︷︷ ︸

occlusion

+ k∗4(θ1 + θ2)θ3

(
θ4

ε+ θ4

)(
c′

(c∗a + c′)2

)

︸ ︷︷ ︸

angiogenesis

,

(2)

To determine the volume fraction for the extracellular phase (θ4), a simplistic
representation of the additional material required to create volume in the
other phases during mitosis and angiogenesis and the material than remains
when cells die, we use the no-voids condition:

4∑

i=1

θi = 1. (3)

The parameters are defined as
k∗
1,2 =

k1,2
k1,1

, k∗
2,1 =

k2,1
k1,1

, k∗
3 =

k3
k1,1

, k∗
4 =

k4
cvk1,1

,

c∗p =
cp
cv
, c∗a =

ca
cv
, c∗c1 =

cc1
cv
, c∗c2 =

cc2
cv
,

p∗crit =
pcrit
Λ

, ǫ∗3 =
ǫ3
Λ
,
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and the smooth switch function:

H(p, ǫ) = 0.5(1 + tanh
p

ǫ
), ǫ ≪ 1.

In (2) c′ is the nutrient concentration, p′i are the pressures in each phase,
cp, cc1 , cc2 denote the nutrient concentration parameters, cv is the nutrient
concentration within the blood vessels, k1,1,k1,2,k2,1,k2,2, k3 and k4 are pre-
defined rate constants, ε is the volume fraction of the extracellular material
at half the maximal angiogenesis rate, while ca is the nutrient concentration
at the maximal angiogenesis rate, and p∗crit is the critical pressure for vessel
occlusion.

Equations (2) are evolution equations for updating the volume fractions of
the cells (θ1, θ2) and blood vessels (θ3). In the first and second equations from
the system (2), θ1 and θ2 are increased during cell birth (proliferation) and
decreased because of cell death, while θ4, the volume fraction of extracellular
material, provides the required material for cell growth and birth. The rates
of birth are considered to increase when the nutrient concentration increases
from 0 −→ ∞, whereas, the rate of death is assumed to decrease. To satisfy
this, the parameters are chosen such k1,2 ≥ k1,1, k2,1 ≥ k2,2 and also cc1 > cc2 .

In the third equation from the system (2), θ3 is assumed to increase during
angiogenesis and decrease because of vessel occlusion.

The right-hand sides in (2) are called the source and sink terms (the total
of the source and sink terms must be zero in order to guarantee conservation
of mass) which ensure the values of θi for i = 1, 2, 3, 4, belong on [0,1]. The
terms relating to the birth of cells and to angiogenesis have a factor of θi
and consequently ensure that θi ≥ 0. Also the source terms are constructed
so that, because of (3), as θi → 1 other phase volume fractions that are
constrained by θi ≥ 0, must tend to zero. The initial conditions of the phase
θi are given by 0 ≤ θi(~x, 0) ≤ 1 (with

∑4
i=1 θi(~x, 0) = 1), thus ensuring

θ4(~x, t) ≥ 0.

2.2. Momentum Balance Equations

The inertial terms in the incompressible Navier-Stokes equation are ne-
glected due to the assumption that the Reynolds number is small [1]. The
following equations describe momentum balance for the dimensionless phase
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velocities ~u′
i and pressures p′i (i = 1, ..., 4):

∑

j 6=i

d∗ijθiθj(~u
′
j−~u′

i)−θi~∇
′. (Λ∗p′iI)+~∇′.[θi[µ

∗
i (~∇

′~u′
i+(~∇′~u′

i)
T )+λ∗

i (~∇
′.~u′

i)I]] = 0,

(4)
in which the first term models the interphase drag and the remaining terms
represent the viscous stresses for this phase.

The incompressibility condition implies that

Σ4
i=1

~∇′. (θi~u
′
i) = 0,

where

p′1 = p′2 = p′4 + Σ′(θ), p′3 =
p∗3
Λ
.

The term Σ′(θ) describes the pressure in the cell resulting from cell-cell
interaction:

Σ′(θ) =

{
(θ−θ∗)
(1−θ)2

if θ ≥ θ∗

0 if θ < θ∗,
(5)

where θ∗ is a given value, known as the cells natural density and θ = θ1+ θ2,
θ∗. Furthermore, in (4),

d∗ij =
dij
d12

, Λ∗ = Λ
d12k1,1L

2

0

,

µ∗
i =

µi

d12L
2

0

, λ∗
i =

λi

d12L
2

0

,

in which d∗ij is the drag coefficient, dij = dji for i, j = 1, 2, 3, 4, and i 6= j,
µi denotes the dynamic shear and λi denotes the bulk viscosities, which are
related through λi = −2

3
µi.

The momentum balance equations (4), do not depend on time and are lin-

ear in ~ui
′ and p′4. Furthermore, p′3 is assumed to be constant (p′3 =

p∗
3

Λ
), where

p∗3 is the externally-imposed pressure which is assumed constant. Hence, the
equations (4) update the velocities ~ui (four velocities in x-direction and four
velocities in y-direction) and only the pressure p′4.

2.3. Reaction Diffusion Equation

The governing equation for the nutrient/oxygen concentration c′, can be
written as
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D∗
c∇

′2c′ = θ3(1− c′)
︸ ︷︷ ︸

replenishment

−k∗
6,1θ1c

′ − k∗
6,2θ2c

′

︸ ︷︷ ︸

baseline consumption

− k∗
7,1θ1θ4

(
c′

c∗p + c′

)

− k∗
7,2θ2θ4

(
c′

c∗p + c′

)

︸ ︷︷ ︸

consumption due to cell birth

,
(6)

in which

D∗
c =

Dc

k5L
2

0

, k∗
6,1 =

k6,1
k5

, k∗
6,2 =

k6,2
k5

,

k∗
7,1 =

k7,1
cvk5

, k∗
7,2 =

k7,2
cvk5

.

(7)

Here D∗
c is the diffusion coefficient, (k5, k6,1,k6,2,k7,1,k7,2) are pre-defined rate

constants, with assumed k7,1
k7,2

= k1,1
k1,2

. The equation (6) does not contain a

time derivative, and is nonlinear in the single variable c′.

3. Numerical methods

In [1] the computational approach is a combination of FEM and FVM on
unstructured triangular meshes. In summary, at each time step:

• A cell-centred finite volume scheme is used to approximate the mass
balance equations (2) to update the cell-average θi for three phases
while the no-void condition (3) is used to update the fourth phase.

• A stable Galerkin finite element scheme, with Taylor-Hood elements, is
used to approximate the incompressible momentum balance equations
(4) to solve for new ~ui and pi.

• A standard Galerkin finite element scheme with linear elements ap-
proximates the reaction-diffusion equation (6) to update the nutrient
c. Note that this is solved on a finer mesh than for the previous two
steps, see [1] for details.

The detail of these numerical schemes are presented in the following subsec-
tions.
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3.1. Mass Balance Equations

Equation (2) is a set of hyperbolic mass balance equations which are time
dependent PDEs. These equations are approximated using an explicit Euler
solver in time with a standard cell centred finite volume scheme in space.
The integral form for the mass balance equation is given by

∫

∆

∂θi

∂t
d~x+

∮

∂∆

(θi~ui).~n ds =

∫

∆

qid~x, i = 1, ..., 3, (8)

where ∆ is the control volume, qi represents the source/sink terms, ∂∆ is the
boundary of the control volume, and ~n is the outward-pointing unit normal
to the boundary. In [1] a cell-centred MUSCL approach is used, which is a
conservative, upwind, finite volume scheme. This is used to update θ1, θ2,
and θ3 in time, while the no-voids condition (3) is used to update θ4. The
fluxes θi~ui are approximated by using a standard upwind scheme [17]. So,
the discrete equation for each triangle can be written as

θ
n+1

i = θ
n

i −
∆t

| ∆ |

3∑

k=1

(θni ~u
n
i )

∗
k. ~nk +∆t(qni )

∗, i = 1, ..., 4. (9)

in which n denotes the time level, ∆t is the time step size, | ∆ | is the control
volume area, and ~nk is the outward-pointing unit normal to the edge of the
cell opposite the vertex k.

To define the boundary condition, the volume fraction θi is described for
each phase on the inflow section Γinflow

i for t ≥ 0. These inflow sections
belong to the domain boundary Γ where ~ui.~n < 0, where ~n is the outward-
pointing unit normal to Γ.

3.2. Momentum Balance Equations

The momentum balance equations (4), do not depend on time, and they
are linear in ~ui and p4. The weak form is obtained using a Galerkin finite
element scheme with Taylor-Hood elements to yield

∮

∂Ω

ωqθiσi.~n ds−

∫

Ω

~∇ωq.θiσid~x+

∫

Ω

ωq ~Fid~x = 0, i = 1, ..., 4, (10)

∫

Ω

ωl

4∑

i=1

~∇. (θi~ui) d~x = 0, (11)
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where ωl and ωq are the standard linear and quadratic Lagrange test functions
respectively, σi are the stresses in each individual phase

σi = −piI+ µi(~∇~ui + (~∇~ui)
T ) + λi(~∇.~ui)I,

and ~Fi are the momentum sources

~Fi = piI~∇θi +
4∑

j=1,j 6=i

dijθiθj(~uj − ~ui), i = 1, ..., 4.

The velocities ~ui and pressures p are approximated by using piecewise
polynomials, which are written using the trial function as

~ui ≈

Nq∑

k=1

(~ui)kω
q
k, p ≈

Nl∑

k=1

pkω
l
k, (12)

in which Nq and Nl are, respectively, the numbers of degrees of freedom
related to the quadratic and linear Lagrange elements.

There are two possible boundary conditions used for the momentum bal-
ance equations, which are Dirichlet condition on ~ui or σi.~n specified. Here,
the boundary conditions imposed are zero normal stress σi.~n = 0 for the
healthy cell, tumour cell and blood vessel phases, and zero velocity for the
extracellular phase ~u4 = 0.

Applying this method to discretize (10) and (11) using trial functions (12)
leads to a matrix system that may be expressed in the block-matrix form:











kxx11 kxy11 kxx12 0 kxx14 0 kxx13 0 Cx1

kyx11 kyy11 0 kyy12 0 kyy14 0 kyy13 Cy1

kxx21 0 kxx22 kxy22 kxx24 0 kxx23 0 Cx2

0 kyy21 kyx22 kyy22 0 kyy24 0 kyy23 Cy2

kxx41 0 kxx42 0 kxx44 kxy44 kxx43 0 Cx4

0 kyy41 0 kyy42 kyx44 kyy44 0 kyy43 Cy4

kxx31 0 kxx32 0 kxx34 0 kxx33 kxy33 0
0 kyy31 0 kyy32 0 kyy34 kyx33 kyy33 0

BT
x1 BT

y1 BT
x2 BT

y2 BT
x4 BT

y4 BT
x3 BT

y3 0

















ux1
uy1
ux2
uy2
ux4
uy4
ux3
uy3
p4







=









fx1

fy1
fx2

fy2
fx4

fy4
fx3

fy3
0









. (13)

The coefficient matrix A has 9 × 9 block structure with 8 vectors of veloc-
ity variables and 1 vector of pressure variables. The first 8 block rows are
obtained from equations (10). Further details of the discretisation are pro-
vided in the reference [18]. Each two rows express the x and y directions of
momentum of each phase, starting from the healthy phase, tumour phase,
extracellular phase and blood vessels phase. The final block row is obtained
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from equation (11), the continuity equation. The number of unknowns in
this linear system is N = 8Nq +Nl.

In [1] the resulting large sparse system of linear equations is solved us-
ing the direct solution package MUMPS [19]. The system is nonsymmetric
and indefinite and has similarities with the standard system arising from
a mixed FEM discretization of Stokes’ equation for standard, single phase,
incompressible flow.

3.3. Reaction Diffusion Equation

Equation (6) is the quasi/steady state, reaction-diffusion equation. This
equation is a steady state nonlinear PDE, and is approximated using a stan-
dard Galerkin finite element scheme with linear elements to get:

∫

∂Ω

ωlfDc
~∇c.~nds−

∫

Ω

~∇ωlf .Dc
~∇cd~x−

∫

Ω

ωlf qcd~x = 0, (14)

in which Dc denotes the diffusion coefficient, which is assumed to be con-
stant, ωlf is linear test function defined on the finer mesh, which is used to
update the volume fractions of the phases, and qc is a source term, which is
a nonlinear function of the the nutrient concentration c.

The nutrient concentration c is written using the trial functions as:

c ≈

Nlf∑

k=1

ckω
lf
k . (15)

There are two possible boundary conditions used for the reaction diffusion
equation, which are Dirichlet conditions c or Neumann conditions ~∇c.~n. In
this work ~∇c.~n = 0 is specified on the boundary.

Here, FEM leads to a nonlinear system of equations with a sparse Jaco-
bian which is solved using a Newton method to linearize it. The MUMPS
sparse direct algorithm is again used to solve the linear system of equations
at each nonlinear iteration in [1].

3.4. Meshes for discretization

In this work two different triangular meshes are used for each solve: (i)
the original mesh, on which the momentum equations are solved; and (ii) a
uniform refinement of this original mesh, on which the mass equations and the
reaction-diffusion equation are solved. Because we use the Taylor-Hood FEM
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scheme to approximate the momentum equations, each edge of this original
mesh has velocity unknowns at its midpoint due to the quadratic Lagrange
polynomial basis functions used for the velocity unknowns. Consequently,
the vertices of the uniformly refined mesh correspond to the locations of the
velocity degree of freedom: hence the mass and concentration unknowns on
the refined mesh correspond to the velocity unknowns [1].

3.5. Solution of linear and nonlinear systems

The efficiency of the numerical scheme used in [1] is limited by the sub-
optimal algorithms used to solve the linear and nonlinear algebraic systems
resulting from the FEM approximations. The use of a sparse direct solver is
sub-optimal and leads to a very significant time and memory requirements
to solve the momentum balance equations at each time-step. Increasing
the mesh resolution or the number of phases present in the 2D model adds
significant extra memory and CPU overhead with this sparse direct solver.

In the remainder of this paper we introduce improved solution algorithms
to reduce the CPU time and memory requirements. An AMG preconditioned
GMRES method is used to solve the discrete algebraic linear system that
arises from approximation the reaction-diffusion equation (6) at each Newton
iteration. Furthermore, a new block preconditioned GMRES method is used
to solve the discrete system arising from the momentum balance equations.
This is described in full in the following section.

Simpler preconditioners, based on incomplete factorisation, have been
tested and a wider comparison is reported elsewhere [18].

4. A pseudo-optimal preconditioner for the momentum equation

In general, the block-matrix system (13) can be written as:
(
K C

BT 0

)

︸ ︷︷ ︸

A

(
U

P

)

=

(
f

0

)

, (16)

in which K is 8× 8 block matrix that includes all the k blocks, C is the 8× 1
block matrix, which includes all the C blocks, and BT is the 1 × 8 block
matrix that includes all the BT blocks. Also, U denotes all 8 velocity-vectors
and P is p4.

It is clear that this problem is Stokes-like (though it is far more complex
than a standard Stokes problem). In this model, matrix A is large and sparse
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and the system should be solved iteratively. The discrete system is nonsym-
metric, hence to solve this problem iteratively we choose a preconditioned
GMRES method. Efficient block preconditions for this class of problem are
known, provided subsystems involving the matrix K and the Schur comple-
ment S = BTK−1C can be solved efficiently [20].

4.1. The block preconditioning

This subsection presents how we have developed a new efficient block
preconditioner for the system (13). The new preconditioner is created using
only upper triangular blocks with the bottom right block taking the form of
the mass matrix for the finite elements used to approximate the pressure, mp
such a preconditioner can be written as follows:

P =









kxx11 kxy11 kxx12 0 kxx14 0 kxx13 0 Cx1

0 kyy11 0 kyy12 0 kyy14 0 kyy13 Cy1

0 0 kxx22 kxy22 kxx24 0 kxx23 0 Cx2

0 0 0 kyy22 0 kyy24 0 kyy23 Cy2

0 0 0 0 kxx44 kxy44 kxx43 0 Cx4

0 0 0 0 0 kyy44 0 kyy43 Cy4

0 0 0 0 0 0 kxx33 kxy33 0

0 0 0 0 0 0 0 kyy33 0

0 0 0 0 0 0 0 0 mp









.

In order to be able to invert the preconditioner as efficiently as possi-
ble two further steps are taken. Firstly, the diagonal blocks are solved only
approximately, using just one V-cycle of the algebraic multigrid method,
and secondly the diagonal of mp is used in the final diagonal block in place
of mp. We solve the preconditioning problem through a block-based back-
substitution. In practice, one AMGV-cycle is used with Gauss Seidel smooth-
ing and 2 pre-and post-smoothing iterations to solve the diagonal blocks.

Before presenting the numerical results that are obtained from using the
proposed preconditioner, the eigenvalues of the preconditioner are considered.
One of the motivations for computing the eigenvalues for this problem is to
understand the quality of the preconditioner for the GMRES solution [21]. If
the eigenvalues of the matrix A have a large spread, then the GMRES method
typically has slow convergence [21]. Moreover, a good preconditioner should
be a good approximation to the original matrix A and the eigenvalues of the
preconditioned system should be clustered in small groups and be bounded
away from zero and infinity.

For these results we have exactly inverted the diagonal blocks of the
preconditioner P, using the direct solver, to fined the eigenvalues of the pre-
conditioned system AP−1. The eigenvalues of the resulting preconditioned
systems are bounded in a small range compared to the eigenvalues of the
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matrix A, which are spread widely over the region (see Table 1). Further-
more, the spread of the eigenvalues of the original matrix increases with the
problem size, while the range of the eigenvalues of the preconditioned systems
is almost fixed for all problems sizes. In addition, a plot of the eigenvalues
in the complex plane shows that using the preconditioning technique makes
the majority of the eigenvalues cluster in a small range around 1, with just
a small number of isolated eigenvalues near to the origin.

Table 1: Minimum and maximum eigenvalues of the coefficient matrix A and precondi-
tioned matrix AP−1, computed using a sequence of uniform grids (see Figure 1).

Grid MIN λ(A) MAX λ(A) MIN λ(AP−1) MAX λ(AP−1)
92 0.0013 85.6117 0.0044 1.0182 + 0.0037i
172 6.9685e-07 101.1776 0.0045 1.0146 + 0.0002i
332 4.7706e-08 113.4432 0.0046 1.0154 + 0.0001i

4.2. Optimal performance

Before introducing the computational and memory costs for the whole
tumour model with our proposed approach based on preconditioned GMRES,
we present here the effect of our new block preconditioning on the time
required for solving the momentum equation system.

The performance for solving the discrete linear system arising from dis-
cretization of the momentum equations are presented in the next table. Table
2 presents the running time needed to solve the linear system using MUMPS
compared with our solver. It can be observed that MUMPS has a compu-
tational complexity that is significantly worse than linear. By replacing this
solver with P-preconditioned GMRES, the performance of the solution im-
proved significantly and the running time scales approximately linearly with
problem size.
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Table 2: The average running times (in seconds), over 1000 time steps, required for solving
the linear algebraic system using MUMPS and our solver on fully unstructured grids:
N is the number of unknowns, GI is GMRES iterations, computed using a sequence of
unstructured grids (see Figure 1).

MUMPS Our solver
N Average time per step Average GI Average time per step

76237 9.01380657199 35.138 2.12991429
302252 64.09243820 39.811 8.9229566389
1203643 - 41.901 38.244552119

To conclude, P-preconditioned GMRES is a superior solver, achieving
almost optimal solution times on unstructured grids. Moreover, the new
solution scheme reduced the memory that is required to solve the problem.

5. Numerical results

This section considers the computational and memory costs for the whole
tumour model with our proposed approach of preconditioned GMRES with
AMG preconditioning for solving the discrete reaction diffusion equation sys-
tem (6) and our new preconditioning, P, with GMRES for solving the discrete
momentum equations system (2). The numerical experiments presented in
this work have been carried out on a standard desktop machine with 16 GB
of memory.

We use two different sequences of grids to solve the problem. The first
is a circular domain of radius 16 with unstructured triangular grids. The
second is a square domain with a regular triangular grid with equal diameter
to the circle (see Figure 1). We start with the same grid from [1] that
has the number of nodes 2349 and the number of elements 4539. We then
apply uniform mesh refinements to obtain a sequence of finer grids, each with
approximately four times more unknowns than the previous.
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Figure 1: Uniform and unstructured grids used for simulations.

The initial conditions for the whole model for simulation of a single tu-
mour seeded in the centre of healthy tissue can be given as follows:

•

θ2(x, y, t = 0) =

{

0.05 cos2(πr
2
) for r � 1

0 otherwise
(17)

in which r =
√

x2 + y2.

• θ1(x, y, 0) = 0.6− θ2(x, y, 0), θ3 = 0.0174978 and θ4 = 0.3825022.

• Each phase has zero velocity.

• p3 = 0 and p4 = 0, then p1 = p2 = 0 due to θ1 = θ∗ in equation (5).

• The nutrient concentration c′ = 0.2532031 everywhere.

The boundary conditions for the whole model are:

• For the system of equations (2) we impose only inflow conditions on
the section of the boundary Γinflow

i on which ~u′
i.~n < 0

θi = θ∞i , i = 1, ..., 4.

• For the system of equations (4) we impose

σ′
i.~n = 0, i = 1, .., 3 and ~u′

4 = 0.

throughout Γ, where σ′
i are the stresses in each individual phase.
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• For the system of equations (6) we impose

~▽′c′.~n = 0,

where ~n is the unit outward-pointing normal to Γ. We used the values of
parameters that are shown in Table 1 in [1] .

In all the experiments we used the mathematical and computational mod-
els that are written in the FORTRAN language by Hubbard and Byrne [1]
modified to use the iterative solvers developed here. In addition, we make
use of the software implementation of iterative methods that are available
in the Harwell Subroutine Library (HSL) [22]. This includes: HSL-MI20 for
AMG preconditioner [23] and HSL-MI24 for GMRES method. For testing
purposes all the results in this paper are obtained using a fixed time step size
∆t = 0.25 with the number of steps 1000.

For the AMG-preconditioned GMRES method, one AMG V-cycle is used
with two pre- and post-smoothing iterations. For this nonlinear system the
full AMG algorithm must be applied at each Newton iteration. The Gauss-
Seidel method is used as smoother. Here, the restart parameter (m) and the
maximum number of GMRES iterations are given the same value (i.e. full
GMRES is used). Also, the absolute and relative convergence tolerances are
given respectively 0.0 and 1e− 3.

For the block-preconditioned GMRES method, solving this linear system
can be split into a single step that forms the AMG hierarchy of grids followed
by application of the AMG solver at each time step. The restart parameter
(m) of GMRES and the maximum number of GMRES iterations (maxGI)
are given the same value. Also, the absolute and relative tolerances for the
GMRES are set to 1e−10 and 1e−3 respectively. The blocks in the diagonal
of our preconditioner P are solved using one V-cycle of AMG with two pre-
and post-smoothing stages.

For comparison the original solver was run for the same problems and
CPU time and memory use were collected. Results are shown in Table 3 for
the circular domain. As expected, the MUMPS solver can not be used to
solve large problems due to memory requirement. Furthermore, our solver
achieved much faster times and required much less memory (see Table 3).
The time and the memory requirement for our preconditioner behave almost
optimally as O(N).
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Table 3: The CPU time and percentage of memory cost for solving the whole model on
fully unstructured grids using the MUMPS and our solvers: N is the number of unknowns
in the discrete momentum system.

MUMPS Our solver
N MEM (%) Time MEM (%) Time

76237 3.3 194m58s 2.4 37m22s
302252 18.4 1084m4s 8 156m47s
1203643 - - 27.5 672m28s

Similar performance is found when another type of the domain is used.
The results of the application of the model on a square domain using regular
triangular grids, such as in Figure 1, are shown in Table 4 where the optimally
of the results is very clearly observed.

Table 4: The CPU time and percentage of memory cost for solving the whole model
on regular grids using preconditioned GMRES: the linear system solved using p and the
nonlinear system solved using AMG preconditioning.

Grid N MEM (%) Time
332 34889 1 15m16s
652 137353 3.4 58m22s
1292 545033 12.7 246m53s
2572 2,171,401 48.5 998m10s
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Figure 2: From the top row to bottom row: the evolution of the volume fraction of tumour
cells θ2, the flux of tumour cells θ2~u

′

2
, the pressures of healthy and tumour cells p1 = p2,

and the nutrient concentration c. Increasing time from left to right: t=100, 200 and 300.
The number of unknowns in the momentum system is 76237.

The numerical simulations in Figure 2 show how the volume fraction of
tumour phase, the evolution of the phase flux, pressures and the nutrient
concentration develop with the time on the circle domain. Initially, the
simulation starts with a seed cluster of tumour cells in the middle of healthy
tissue (not shown). This cluster of tumour extends over time to produce
a high tumour cell density around the initial seed. The volume fraction of
tumour cells grows rapidly and reaches a maximum value, which is in the
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range between 0.8 and 0.9. Then the tumour cells spread out and die in the
centre, forming necrotic core due to the local nutrient concentration being
insufficient to maintain the tumour cells. It can be noted that the tumour
has an imperfect circle shape, due to the unstructured grid causing the radial
symmetry to be broken.

The proliferation and death rates of the tumour cells are assumed to be
double and half the values of the proliferation and death rates of the healthy
cells respectively. So, the tumour cells grow faster and die slower than the
healthy cells. In this case, the tumour cells absorb the extracellular mate-
rial during their growth. This leads to a fall in the extracellular material θ4
and therefore leads to decreasing the healthy cells’ birth rate. Also, when
the tumour cells grow faster than the healthy cells that leads to the tumour
cells pushing the healthy cells in front and replacing the volume by the ex-
tracellular material. Furthermore, the high tumour cells density generate
high pressures which leads to the occlusion of the blood vessels and therefore
restricts the supply of the nutrient inside the tumour.

6. Generalization to a greater number of phases

In this section we demonstrate that the optimal preconditioning approach
that we developed for the four-phase model with a nutrient may be naturally
extended to more general multiphase models. This is achieved by considering
two extensions of [1]. Firstly, the mathematical model of vascular tumour
growth is extended to include drug delivery, diffusion and uptake. Secondly,
the mathematical model is extended to simulate five phases. The extra phase
in our mathematical model is generated by splitting the tumour phase into
two different phases: one with high susceptibility to the drug (HS) and other
with low susceptibility to the drug (LS). So, the five phases in this model are:
healthy cells, LS tumour cells, HS tumour cells, blood vessels and extracellu-
lar material. In this paper our main objective in introducing the five-phase
model is to show that it is possible to extend our momentum equation pre-
conditioner, P, to a system with more phases.

Briefly, the generalization of the momentum balance equation for the new
model can be written as follow

∑

j 6=i

d∗ijθiθj(~u
′
j−~u′

i)−θi~∇
′. (Λ∗p′iI)+~∇′.[θi[µ

∗
i (~∇

′~u′
i+(~∇′~u′

i)
T )+λ∗

i (~∇
′.~u′

i)I]] = 0.

(18)
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for i, j = 1, 2, 3, 4, 5. The incompressibility condition implies that

Σ5
i=1

~∇′. (θi~u
′
i) = 0,

where

p′1 = p′2 = p′5 = p′4 +
′∑

(θ), p′3 =
p∗3
Λ
.

The momentum balance equations (18) is linear in ~ui
′ and p′4, and is not

time dependent. Moreover, p′3 is assumed to be constant (p′3 =
p∗
3

Λ
), where

p∗3 is the externally-imposed pressure and it is assumed constant. Hence, the
equations (18) update the velocities ~ui (five velocities in x-direction and five
velocities in y-direction) and only the pressure p′4.

The numerical approach for the discretization of the momentum equations
is essentially the same as for four phase system considered previously, based
upon Taylor-Hood elements. The boundary conditions used are zero normal
stress σi.~n = 0 for four phases: healthy cells, LS tumour cells, HS tumour
cells and blood vessels; and zero velocity for the extracellular phase ~u4 = 0.

Following the same approach as for the four phase system discretization
yields a similar block-matrix system for the discrete momentum equations in
our new model:












kxx11 kxy11 kxx12 0 kxx15 0 kxx14 0 kxx13 0 Cx1

kyx11 kyy11 0 kyy12 0 kyy15 0 kyy14 0 kyy13 Cy1

kxx21 0 kxx22 kxy22 kxx25 0 kxx24 0 kxx23 0 Cx2

0 kyy21 kyx22 kyy22 0 kyy25 0 kyy24 0 kyy23 Cy2

kxx51 0 kxx52 0 kxx55 kxy55 kxx54 0 kxx53 0 Cx5

0 kyy51 0 kyy52 kyx55 kyy55 0 kyy54 0 kyy53 Cy5

kxx41 0 kxx42 0 kxx45 0 kxx44 kxy44 kxx43 0 Cx4

0 kyy41 0 kyy42 0 kyy45 kyx44 kyy44 0 kyy43 Cy4

kxx31 0 kxx32 0 kxx35 0 kxx34 0 kxx33 kxy33 0
0 kyy31 0 kyy32 0 kyy35 0 kyy34 kyx33 kyy33 0

BT
x1 BT

y1 BT
x2 BT

y2 BT
x5 BT

y5 BT
x4 BT

y4 BT
x3 BT

y3 0





















ux1
uy1
ux2
uy2
ux5
uy5
ux4
uy4
ux3
uy3
p4









=












fx1

fy1
fx2

fy2
fx5

fy5
fx4

fy4
fx3

fy3
0












.

(19)
In this model, the coefficient matrix A has an 11× 11 block structure, with
10 sets of velocity variables and 1 set of pressure variables, p4.

Our new preconditioning P can be extended to include the extra phase
variables as follows:

P1 =











kxx11 kxy11 kxx12 0 kxx15 0 kxx14 0 kxx13 0 Cx1

0 kyy11 0 kyy12 0 kyy15 0 kyy14 0 kyy13 Cy1

0 0 kxx22 kxy22 kxx25 0 kxx24 0 kxx23 0 Cx2

0 0 0 kyy22 0 kyy25 0 kyy24 0 kyy23 Cy2

0 0 0 0 kxx55 kxy55 kxx54 0 kxx53 0 Cx5

0 0 0 0 0 kyy55 0 kyy54 0 kyy53 Cy5

0 0 0 0 0 0 kxx44 kxy44 kxx43 0 Cx4

0 0 0 0 0 0 0 kyy44 0 kyy43 Cy4

0 0 0 0 0 0 0 0 kxx33 kxy33 0

0 0 0 0 0 0 0 0 0 kyy33 0

0 0 0 0 0 0 0 0 0 0 mp











.
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As before, we approximate the inverse of each diagonal block by a sin-
gle AMG V-cycle, except for the pressure mass matrix which approximated
by its diagonal. The performance of our preconditioner for the five-phase
model is just as effective as for the four-phase model. Table 5 presents the
running time and the GMRES iterations that are required to solve the lin-
ear momentum system (19) on a sequence of grids. The computational time
again increased by factor of nearly 4 as N is quadrupled, which means that
the solver requires approximately O(N) complexity. Moreover, The GMRES
iterations in this case are again nearly independent on the grid size. The
cost of the whole new model solution on fully unstructured grids is also re-
ported in Table 5. It can be observed that the CPU time and the memory
requirement for the whole solvers scale approximately linearly and so behave
as O(N).

Table 5: The average running times (in seconds), over 1000 time steps, required for solving
the linear algebraic system (19) using P1 preconditioned GMRES on fully unstructured
grids and the CPU time and percentage of memory cost for the whole model on unstruc-
tured grids: GI is GMRES iterations, N is the number of unknowns.

Solution of the momentum equation Solution of the whole model

N Average GI Average time per step MEM (%) Time
94709 41.9560 2.7443692667 3.2 50m58s
375506 44.5614 11.91469505 10.3 220m35s
1495397 42.1758 46.629512359 34.4 867m25s

7. Conclusion

In this paper we have studied the multiphase model of vascular tumour
growth in two-dimensions, which is presented by Hubbard and Byrne [1].
Efficient computational algorithms have been developed for the numerical
approximation of these PDE systems describing multiphase flow. In particu-
lar we improved the efficiency of the numerical methods used in [1] in order
to reach optimal efficiency.

We believe that this work opens a number of possibilities for future re-
search in this area. There are two main avenues. Firstly we could exploit
this optimal efficiency across a broader range of multiphase flow problems.
This could include:
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• Using different numbers of phases in tumour model: our preconditioner
makes it possible to model multiphase problem with many more phases.

• Modelling different drug performance, for example attempting to use
the pharmacology of a drug such as in [24], taking sufficient fine spatial
meshes to ensure mesh convergence.

• Using multiphase incompressible flow models in completely different
applications, such as [25] and [26] for example.

Secondly, it is possible extend the existing model to 3D, still using our ef-
ficient algorithms. The important issues are extending the computational
algorithms to 3D problems, and making them efficient enough to be prac-
tical for real computations. In three-dimensions, for the four-phase model,
the mass balance equation and the reaction-diffusion equation could be ex-
tended to 3D using tetrahedral meshes. The momentum balance equations
will need to include three velocities for each phase, (u,v,w), and one pressure
variable. Moreover the same discretization schemes of these PDEs can be
used in 3D (i.e quadratic velocities and linear pressures). Our preconditioner
in 3D would then be:

P =













kxx11 kxy11 kxz11 kxx12 0 0 kxx14 0 0 kxx13 0 0 Cx1

0 kyy11 kyz12 0 kyy12 0 0 kyy14 0 0 kyy13 0 Cy1

0 0 kzz11 0 0 kzz12 0 0 kzz14 0 0 kzz13 Cz1

0 0 0 kxx22 kxy22 kxz22 kxx24 0 0 kxx23 0 0 Cx2

0 0 0 0 kyy22 kyz22 0 kyy24 0 0 kyy23 0 Cy2

0 0 0 0 0 kzz22 0 0 kzz24 0 0 kzz23 Cz2

0 0 0 0 0 0 kxx44 kxy44 kxz44 kxx43 0 0 Cx4

0 0 0 0 0 0 0 kyy44 kyz44 0 kyy43 0 Cy4

0 0 0 0 0 0 0 0 kzz44 0 0 kzz43 Cz4

0 0 0 0 0 0 0 0 0 kxx33 kxy33 kxz33 0

0 0 0 0 0 0 0 0 0 0 kyy33 kyz33 0

0 0 0 0 0 0 0 0 0 0 0 kzz33 0

0 0 0 0 0 0 0 0 0 0 0 0 mp













.
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