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1. Introduction

In recent years, atomistic models of magnetic materials have 

allowed the study of new magnetic phenomena, especially 

in nanomaterials. These models are ideal to study complex 

magn etic behaviors such as exchange bias and surface aniso

tropy because they take into account finite size effects and 

changes in the magnetization at atomic scale [1]. The clas

sical 3D Heisenberg model is the most common prototype 

of an atomistic model of magnetic materials with continuous 

degrees of freedom. It has been successfully employed to 

accurately describe the magnetic behavior of many physically 

interesting magnetic systems [2].

In systems represented by classical spin models, such as 

the classical 3D Heisenberg model, numerical simulations are 

usually used because of the difficulty to solve by analytical 

approaches their partition function. The thermal averages of 

a system can be estimated employing Markov chain Monte 

Carlo methods. For the generation of new states of the systems 

in the Markov chain, local and cluster spin update algorithms 

have been proposed. Cluster update algorithms, such as the 

Wolff [3] and the Swendsen–Wang [4] algorithms, are useful 

to reduce the critical slowing down generated close to the 

critical temperature (Tc). However, the applicability of these 

algorithms is limited according to the terms considered in the 

Hamiltonian. In its basic form, the Wolff and the Swendsen–

Wang cluster algorithms are only applicable to Hamiltonians 

that just include exchange interaction contributions. If other 
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contributions (e.g. magnetic anisotropy and/or externally 

applied magnetic field) are considered, the cluster algorithms 

must be modified correspondingly, increasing the complexity 

of the algorithms and its implementation. Furthermore, the 

efficiency of cluster algorithms can be even lower than that 

of local update algorithms for small systems [2]. On the other 

hand, local update algorithms have shown high flexibility 

which allows its application to a great variety of systems. 

Therefore, much effort have been made to enhance the perfor

mance of these algorithms, which relies on their efficiency to 

sample the phase space and avoid long correlation times that 

slow the convergence of the thermal averages to equilibrium.

In the Monte Carlo Metropolis algorithm new states of 

the system are generated from a previous state by randomly 

selecting a single spin and updating it to a new trial position 

(trial move). Then, a transition probability, which depends on 

the energy difference between the initial and final state, is used 

to accept or reject the new state. Because the choice of the trial 

move has a direct influence on the efficiency of the algorithm 

and its physical interpretation, different types of trial moves 

have been proposed. Common choices include the spin flip, the 

random and the small step moves [5]. In the spin flip move, the 

direction of the spin is reversed. This trial move is the same 

employed for Ising spin systems. However, for classical spin 

systems it does not satisfy the condition of ergodicity because 

it can not sample the whole phase space. In the random move 

a new spin direction is chosen at random independently of the 

spin initial direction, sampling the whole phase space. In the 

small step move, the new spin direction is generated from a uni

form probability distribution within a cone with a given opening 

angle around the initial spin direction, hence each spin can only 

move by small angular changes limited by the opening angle.

Hinzke and Nowak [5] evaluated the efficiency of these 

trial moves by running simulations of the thermally activated 

reversal of the magnetization of a ferromagnetic particle. 

Their results showed that for high anisotropy systems, where 

the reversal mechanism is nucleation, the least efficient trial 

move is the small step move while the most efficient is the 

spin flip move. For low anisotropy systems, where the reversal 

mechanism is coherent rotation, the least efficient trial move 

is the random move while the most efficient is the small step 

move. Independently of the anisotropy value of the system, 

the small step move is the least efficient move at high temper

atures. They also showed that a trial move which combines the 

three types of trial moves has good efficiency independently 

of the anisotropy and the temperature values of the system.

In particular, the small step move is not efficient for high 

anisotropy systems because it can not produce large angular 

changes in the spins required to overcome the anisotropy energy 

barrier. Therefore, the acceptance rate of the new states is low. 

At high temperatures, although the acceptance rate is high, 

the sampling of the phase space is made by very small steps. 

A golden rule when using the Metropolis algorithm states that 

an acceptance rate of 50% is ideal to efficiently sample the 

phase space of the system [6, 7]. High or low acceptance rates 

generate a sampling of the phase space by very small steps or 

a rejection of almost every new state, respectively. A varia

tion of the small step move known as the Gaussian move [1] 

generates the new spin direction in the vicinity of the initial 

spin direction employing a Gaussian distribution and guaran

teeing that all possible states are accessible. Unlike the other 

trial moves, the Gaussian move straightforwardly allows to 

control the acceptance rate by adjusting the value of the cone 

width, while allowing the new spin state to point to any direc

tion on the unit sphere with nonzero probability.

In this work, we present a new adaptive algorithm for the 

Gaussian move (adaptive move) in 3D Heisenberg Monte Carlo 

simulations. The adaptive move keeps the acceptance rate close 

to 50%, enhancing the efficiency of the phase space sampling 

and generating low correlation times. We have made several 

tests to assess the performance of the algorithm, showing that 

it works efficiently at all temperatures and in systems with 

high and low anisotropy values. Our algorithm significantly 

improves the computational efficiency of Monte Carlo spin 

simulations allowing faster or higher quality statistical results 

for the same number of Monte Carlo steps. We have imple

mented our algorithm in two open source software packages, 

VAMPIRE [1] and VEGAS [8], to provide sample code and 

easy access to the community for use in magnetic simulations.

2. Model, methods and adaptive move

2.1. Heisenberg Hamiltonian and the Monte Carlo method

We considered a system with ferromagnetic spin moments 

located on a cubic lattice with periodic boundary conditions. 

The size of the system is 10 × 10 × 10 for a total of N  =  1000 

spin moments. Each spin moment was modeled using the clas

sical 3D Heisenberg model. The Hamiltonian, which includes 

nearest neighbor exchange interaction, uniaxial anisotropy 

and magnetic field interactions, is given by

H = −J
∑

i<j

Si · Sj − kv

∑

i

(Si · k)
2
− B

∑

i

(Si · k)
 (1)

where 
∑

i<j means the sum over the nearest neighbors pairs, J is 

the exchange interaction constant, Si and Sj are the spins of the 

magnetic sites labeled i and j, respectively, kv is the aniso tropy 

constant, k is the canonical vector in the z direction and B is 

the magnetic field intensity. Both the uniaxial anisotropy and the 

magnetic field are directed along the z axis. The values for kv and 

B were normalized by J in order to perform generic simulations.

Some of the simulations were made for kv/J = 0.001 and 

1.0 to recreate low and high anisotropy systems, where the 

critical temperatures are kBT/J = 1.485 427 and 1.753 970, 

respectively.

The total magnetization (M) was computed according to

M =
1

N
|M| (2)

where N is the total number of spins and M =
∑N

i Si.

2.2. Trial moves

For comparison purposes, we implemented other common 

trial moves besides the presented adaptive move. Figure  1 

shows schematics of the different types of trial moves and the 
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visualization of their Monte Carlo sampling on the unit sphere. 

The spin flip move reverses the spin direction according to

S
′

i = −Si (3)

where Si and S′

i are the initial and new spin directions, respec

tively. In the random move the new spin direction is chosen at 

random, according to

S
′

i =
Γ

|Γ|
 (4)

where Γ is a Gaussian distributed random vector. In the small 

step move, the new spin direction is also generated at random 

but within a cone with a given opening angle around the initial 

spin direction. And, in the Gaussian move the new spin direc

tion is generated in the vicinity of the initial spin direction 

according to [1]

S
′

i =
Si + σΓ

|Si + σΓ|
 (5)

where σ is proportional to the width of a cone around the 

initial spin direction. Unlike in the small step move, in the 

Gaussian move the sampling on the unit sphere is not limited 

by σ (see figure 1).

When using the Gaussian move, the acceptance rate can 

be adjusted by varying the value of σ. Figure 2(a) shows the 

acceptance rate (R) as a function of σ at low temperature for 
kv

J
= 1.0. As indicated in the figure, there is an optimum cone 

width (σopt) at which the acceptance rate is 50%. Hence, if we 

want to keep an acceptance rate of 50% at all temperatures for 

a given system, σ should be a function of parameters such as 

the temperature, the exchange coupling, the anisotropy and the 

field intensity. Figure 2(b) shows the temperature dependence 

(a) (b) (c) (d)

Figure 1. Schematic and visualization of the sampling on the unit sphere for the (a) spin flip, (b) random, (c) small step and (d) Gaussian 
moves.

(a) (b)

Figure 2. (a) Acceptance rate as a function of the cone width at kBT/J = 0.05 for kv/J = 1.0 and (b) optimum cone width as a function of 
temperature for different anisotropy values. Dashed vertical lines represent the critical temperatures.

J. Phys.: Condens. Matter 31 (2019) 095802



J D Alzate-Cardona et al

4

of σopt for different anisotropy values. As expected, at higher 

temperatures it is necessary to use a higher cone width in 

order to keep an acceptance rate of 50%. However, above Tc, it 

is not possible to keep this acceptance rate because almost all 

the new states are accepted independently of the cone width 

value, then the acceptance rate is always higher than 50%.

As σ increases, the Gaussian move tends to a random 

move as shown in figure 3, where the distribution of the polar 

angle (θ), the azimuthal angle (φ) and the cosine of the polar 

angle (cos(θ)) of spins generated using the Gaussian move 

(see equation (5)) are shown. Such as in the case of a random 

move, the mean value of θ tends to 90◦ and the mean value of 

cos(θ) tends to 0, while the mean value of φ is always close 

to 180◦.

2.3. Adaptive algorithm for the Gaussian move

Because σopt is characteristic of every system at a given 

temper ature and given Hamiltonian parameters, to find a gen

eral equation  for σopt that works in any system would be a 

very complex task. Therefore, we have developed an adaptive 

algorithm for the Gaussian move that changes the cone width 

adaptively to keep an acceptance rate close to 50%.

The adaptive move is developed as follows: at each temper

ature, the simulation starts using a high cone width (σ = 60) in 

the first Monte Carlo step (MCS). From then on, every MCS, 

the cone width is recalculated by multiplying the current cone 

width by a factor obtained according to the acceptance rate in 

the previous MCS. The selection of the factor is made such 

that the cone width approaches values close to the optimum 

cone width. From results as those shown in figure 2(a), it is 

possible to observe that a good approximation for the factor 

( f ) as a function of the acceptance rate at all temperatures is 

of the form

f =
0.5

1 − R
. (6)

Therefore, when the acceptance rate R = 50%, the cone 

width is multiplied by 1, and when the acceptance rate is high 

(low) the cone width is multiplied by a large (small) factor 

approaching the optimum cone width. Figure  4 shows the 

time dependence of the acceptance rate and the cone width 

using the adaptive move at different temperatures when the 

system is initially ordered (all the spin moments pointing in 

the z direction) and disordered (all the spin moments pointing 

in a random direction). Independently of the spin moments’ 

initial state, the acceptance rate converges to a specific value. 

At kBT/J = 0.1, because the simulation starts with a high 

cone width, the acceptance rate is initially very low when the 

system is initially ordered (see figure 4(a)). Then, the adaptive 

move keeps decreasing the cone width to a very low value, 

according to the equation (6), increasing the acceptance rate 

which stabilizes close to 50% within few MCS. On the other 

hand, when the system is initially disordered (see figure 4(d)), 

the acceptance rate is initially higher because large angular 

changes in the direction of the spin moments are taking 

place to order the system. Then, the acceptance rate starts to 

decrease because smaller angular changes are required as the 

system is being ordered. However, once the the cone width 

has decreased enough, the acceptance rate starts to increase 

approaching a value close to 50%. Figures 4(b) and (e) show the 

time dependence of the acceptance rate at a high temperature 

below Tc (kBT/J = 1.48). In these cases, the adaptive move 

requires more MCS to reach equilibrium and the cone width 

Figure 3. Distribution of the (a) polar angle, azimuthal angle and (b) cosine of the polar angle of spins generated using the Gaussian move. 
For cone width values between 0 and 100, 10 000 spins were generated and the mean of their polar angles, azimuthal angles and cosine of 
the polar angles was calculated. For cone width values higher than 60 (shaded region), it is reasonable to assume that the distributions are 
already stabilized.

J. Phys.: Condens. Matter 31 (2019) 095802
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stabilizes at a higher value than the previous cases. Above 

Tc (kBT/J = 2.0), when the system is initially ordered (see 

figure 4(c)), the acceptance rate is low because the exchange 

energy prevents the acceptance of large angular changes in the 

direction of the spin moments. For this reason, the cone width 

initially decreases in order to increase the acceptance rate. As 

mentioned before, at temperatures above Tc, it is not possible 

to reach an acceptance rate of 50%. Then, the acceptance rate 

keeps increasing past 50% and, consequently, the adaptive 

move starts to increase the cone width, trying to decrease the 

acceptance rate. When the system is initially disordered (see 

figure 4(f)), the acceptance rate is initially high and stabilizes 

at a lower value. Independently of the spin moments initial 

state, the cone width keeps increasing indefinitely when the 

acceptance rate stabilizes above 50%. Therefore, we reset the 

cone width to 60 every time it reaches higher values because, 

at this value, the Gaussian move works as the random move 

(see figure 3) and employing a higher value would produce the 

same results. For this reason, it is expected that the adaptive 

move has the same efficiency as the random move at temper

atures above Tc, where the cone width stabilizes at 60.

3. Results and discussion

In order to assess the performance of the adaptive move, we 

have made four tests comparing its efficiency with that of 

other common trial moves: the spin flip, random, small step 

and Gaussian moves. Also, we considered a combinational 

move which includes three of the aforementioned trial moves. 

As implemented by Hinzke and Nowak [5], we considered 

the small step move with a fixed opening angle of 30◦ and the 

combinational move as a combination of the spin flip, small 

step and random moves. In the combinational move, one of 

the three trial moves is selected from a set, composed by three 

random, one small step and one spin flip moves, at each MCS. 

All the tests were carried out in systems with low and high 

anisotropy values.

Before making any of the tests, it is important to guarantee 

that the computed thermal averages are the same indepen

dently of the trial move employed. Figure 5 shows the thermal 

dependence of the magnetization and the energy using the dif

ferent trial moves for low and high anisotropy values. Results 

of Landau–Lifshitz–Gilbert (LLG) spin dynamics simula

tions are also shown because in one of the tests the efficiency 

of the adaptive move is compared to that of spin dynamics. 

At high anisotropy (kv/J = 1.0), the spin moments remain 

more ordered as temperature increases than at low anisotropy 

(kv/J = 0.001), which increases the critical temperature (see 

figure  5(a)). This behavior also generates an important dif

ference in the energy between both systems, specially at low 

temperatures (see figure 5(b)). For both high and low aniso

tropy values, all the trial moves produced the same results, 

indicating that all of them can correctly sample the phase 

space and relax the system to equilibrium.

3.1. Convergence to equilibrium and integrated  

relaxation times

When computing averages of the thermal properties of a 

system, it is necessary to ensure that the system is already in 

(a) (b)

Ordered

Disordered

(c)

(d) (e) (f)

Figure 4. Time dependence of the acceptance rate and the cone width at (a), (d) kBT/J = 0.1, (b), (e) 1.48 and (c), (f) 2.0 for kv/J = 0.001 
when the system is initially (a)–(c) ordered and (d)–(f) disordered.

J. Phys.: Condens. Matter 31 (2019) 095802
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equilibrium. Depending on the characteristics of the system, 

such as its size, temperature and anisotropy constant, the time 

required to reach equilibrium can increase greatly. Usually, a 

large number of MCS needs to be discarded to ensure system 

equilibrium. Therefore, speeding up the convergence to equi

librium and enhancing the statistical quality of the thermal 

averages is important.

In this test, we assessed the performance of the different 

trial moves when the system is both approaching and is already 

in equilibrium. First, we evaluated the convergence to equilib

rium of the magnetization and the energy as a function of time 

at low and high temperatures below Tc, as shown in figure 6. 

Because at low temperatures the thermal energy is low, the 

spin moments are very ordered and its direction tends to vary 

by small angular changes. Therefore, the small step move has 

good efficiency at low temperatures (see figures 6(a) and (c)). 

However, at high temperatures (see figures 6(b) and (d)), the 

small step move is the least efficient move because the thermal 

energy can overcome the exchange and anisotropy energies, 

generating disorder in the system and high fluctuations in the 

direction of the spin moments. Conversely, the random move 

is very efficient at high temperatures but is the least efficient 

at low temperatures. In the case of the combinational move, 

although it has good efficiency at all temperatures, it is not 

the best move in any of the cases. The adaptive move is the 

most efficient move at low temperatures and presents the same 

efficiency of the random move at high temperatures. Then, in 

general, the adaptive move is the most efficient move to relax 

both thermal averages to equilibrium independently of the 

anisotropy value of the system.

In the second part of the tests, we computed the integrated 

relaxation time (τ ) for the different trial moves. The statistical 

error of the thermal averages depends on the number of sta

tistically independent configurations generated in the simula

tion, and this is the total number of configurations divided by 

τ  [2, 9]. Thus, low τ  values reduce the statistical error of the 

thermal averages. τ  is obtained from the equilibrium relaxa

tion function φMM(t) according to the equation [2]

φMM(t) =
1

(

〈M2〉 − 〈M〉
2
)

(

1

Nmcs − t

Nmcs−t
∑

t′

M (t′)M (t′ + t)

−
1

(Nmcs − t)
2

Nmcs−t
∑

t′

M (t′)

Nmcs−t
∑

t′′

M (t′′)

)

and φMM(t) → e−t/τ

 (7)

where Nmcs is the total number of MCS and t is the number 

of MCS employed for relaxation. The time dependence of τ  

for the different trial moves is shown in figure 7. These results 

present similar behavior to that of the first part of the test. At 

very low temperatures, the small step move is the most effi

cient move along with the adaptive move, while the random 

move is the least efficient. The adaptive move is the only 

move that produces low relaxation times at all temperatures. 

Specially at low temperatures, the relaxation times of the 

adaptive move are several orders of magnitude smaller than 

those of the random and the combinational moves, which indi

cates that it requires less MCS to produce results with similar 

statistics. As expected, all the relaxation times diverge at the 

critical temperature.

Independently of the temperature and the anisotropy 

values, the adaptive move is the most efficient move relaxing 

the system to equilibrium and producing low correlation times 

when the system is already in equilibrium.

3.2. Susceptibility: a slow convergence problem

The magnetic susceptibility is a measure of the thermal fluc

tuations of the magnetization. In a cubic system with uniaxial 

anisotropy along z at a given temperature, it is expected that 

the x and y spatial components of the susceptibility (χx and χy, 

respectively) converge to the same value. However, in Monte 

(a) (b)

Figure 5. Thermal dependence of (a) the magnetization and (b) the energy using the different trial moves for kv/J = 0.001 and 1.0. The 
results of the thermal averages are in good agreement independently of the employed trial move. Dashed vertical lines represent the critical 
temperatures.

J. Phys.: Condens. Matter 31 (2019) 095802
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(a) (b)

(c) (d)

Figure 6. Time dependence of the magnetization and the energy at kBT/J = 0.1 and 1.48 for (a), (b) kv/J = 0.001 and (c), (d) kv/J = 1.0. 
The convergence to equilibrium of these thermal averages is different for each trial move, specially at low temperatures. The adaptive move 
is efficient both at low and high temperatures.

(a) (b)

Figure 7. Integrated relaxation time as a function of temperature for (a) kv/J = 0.001 and (b) 1.0. The integrated relaxation times vary 
greatly with temperature. The combinational and the adaptive move are the only ones which present low integrated relaxation times at both 
low and high temperatures. Dashed vertical lines represents the critical temperatures.

J. Phys.: Condens. Matter 31 (2019) 095802
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Carlo simulations, these spatial components of the suscepti

bility typically require a large number of MCS to converge, 

particularly at high temperatures below Tc.

In this test we evaluated the convergence of χx and χy in a 

system with uniaxial anisotropy along z at kBT/J = 1.48. The 

spatial components χx and χy are given by

χα =

〈

M2
α

〉

− 〈Mα〉
2

kBT
for α = x, y. (8)

We computed the spatial components at each MCS after relax

ation taking averages of the magnetization data before that 

MCS, according to

χα(t) =

〈

Mα(t)
2
〉

− 〈Mα(t)〉
2

kBT
 (9)

where t is the number of MCS, 
〈

Mα(t)
2
〉

=  
Mα(1)2+Mα(2)2+...+Mα(t)2

t
 and 〈Mα(t)〉

2
=

(

Mα(1)+Mα(2)+...+Mα(t)
t

)

2.

The time dependence of the spatial components χx and 

χy and their difference |χx − χy| is shown in figure  8. As 

expected, χx and χy tend to the same value as time increases 

for all the trial moves, and consequently |χx − χy| converges 

to zero. Because the system is at a high temperature below 

Tc and the thermal energy is considerable, the spin moments 

are more disordered in the low (see figure 8(a)) than in the 

high anisotropy system (see figure  8(b)). Therefore, χx and 

χy conv erge slower to the same value in the low anisotropy 

system, specially using the small step and the combinational 

move. Although the random move presents similar behavior 

to that of the adaptive move, the convergence of |χx − χy| is 

faster when the adaptive move is employed for both low and 

high anisotropy systems.

3.3. Convergence of the coercivity

The calculation of hysteresis loops allows the characteriza

tion of a great variety of magnetic properties of materials. 

Particularly, a great number of studies deal with calculations 

of the coercivity, mainly because high coercivity materials 

have several applications as permanent magnets. Monte 

Carlo simulations are not considered efficient for the sim

ulation of hysteresis loops because the collective behavior 

of the interacting moments is not taken into account, there

fore requiring a huge number of MCS [10]. Thus, proper

ties like the coercivity can have a very slow convergence to 

equilibrium. Other integration methods such as LLG spin 

dynamics are more commonly employed to make this kind 

of calculations.

In this test, we estimated the convergence of the 

coercivity using both LLG spin dynamics and Monte 

Carlo simulations in a system with parameters similar 

to those of cobalt. We considered a magnetic moment 

µs = 1.72µB, where µB is the Bohr magneton. The hyster

esis loops were obtained at kBT/JCo ≈ 0.023 (T ≈ 10 K) 
for kv/J = 0.001 (kv = 0.037 85 meV/atom) and 1.0 

(kv = 37.85 meV/atom). For the LLG spin dynamics simu

lations, we considered a damping parameter λ = 1, time step 

∆t = 0.3 fs and magnetic field steps µs∆B = 0.015 and 0.15 

meV for the low and high anisotropy systems, respectively. 

The time step is in the stable region for the atomistic model 

at low temperatures (T ≪ Tc) and only valid for ferromag

nets (see figure 2 in [1]). To calculate the coercivity, we made 

independent simulations of the hysteresis loop employing in 

each simulation a specific value of time steps (MCS and LLG 

time steps per field step for the Monte Carlo and LLG spin 

dynamics simulations, respectively). Then, the coercivity was 

calculated in each independent simulation.

(a) (b)

Figure 8. Time dependence of the difference of the x and y spatial components of the susceptibility at kBT/J = 1.48 for (a) kv/J = 0.001 
and (b) 1.0. The insets show the time dependence of the spatial components.

J. Phys.: Condens. Matter 31 (2019) 095802
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Figure 9 shows the coercivity (Bc) as a function of the 

time steps per field step for the Monte Carlo and LLG spin 

dynamics simulations. Independently of the integration 

method and the trial move used, the coercivity is expected 

to converge to the same value as the number of time steps 

increases. At both low (see figure  9(a)) and high (figure 

9(b)) anisotropies, the coercivity converges faster with the 

adaptive move and slower with the random move. Then, the 

adaptive move requires less runtime to simulate a complete 

hysteresis loop than the random and combinational moves, 

and the LLG spin dynamics. Furthermore, according to the 

results shown in section 3.1, the adaptive move is expected 

to be significantly more efficient than the random move at 

lower temperatures and still more efficient at higher temper

atures below Tc.

3.4. Magnetization reversal

Different mechanisms of magnetization reversal present in 

magnetic materials make them ideal for technological applica

tions such as magnetic recording. In Monte Carlo simulations, 

the reversal mechanism and the time required to reverse the 

spin moments depend on the trial move employed.

In this final test, we simulated thermally activated reversal 

processes, as simulated by Hinzke and Nowak [5]. To begin 

the test, we considered a system with an initial spin moments 

configuration where all of them were pointing up and an 

external magnetic field pointing down. After some time, the 

external magnetic field energy overcomes the anisotropy and 

exchange energy and eventually the spin moments, which are 

in a metastable state, reverse their magnetization. The time 

required to produce a magnetization in z equal to zero, i.e. 

Mz(τ) = 0, is known as the metastable lifetime (τml). For low 

temperatures, τml is given by [5]

τml = τ0e

(

∆E
kBT

)

 (10)

where ∆E is the energy barrier which depends on the reversal 

mechanism. The temperature dependence of τml for the dif

ferent trial moves is shown in figure 10. It is observed that the 

results are very similar independently of the anisotropy value 

of the system. Such as in the results of the integrated relax

ation times (figure 7), the small step and the random moves 

(a) (b)

Figure 9. Coercivity as a function of the number of MCS and LLG time steps per magnetic field step at kBT/JCo = 0.091 for (a) 
kv/J = 0.001 and (b) 1.0.

(a) (b)

Figure 10. Temperature dependence of the metastable lifetimes for (a) kv/J = 0.001 and (b) 1.0.
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are the most and the least efficient moves at low temperatures, 

respectively. While at high temperatures, the adaptive and 

random move are the most efficient and the small step move is 

the least efficient. Overall, the adaptive move presents a good 

efficiency at all temperatures, indicating that it would require 

less time to reverse the magnetization of the system.

Although we performed the simulations on a simple cubic 

lattice with nearest neighbor interactions, the adaptive move can 

be applied to any lattice and long range interactions. There is 

no difference in terms of sample for the more general case, as 

each spin will have an effective exchange energy, and the spins 

simply sample the relevant phase space with an optimal sampling 

method. Moreover, in systems composed of two or more magn

etic phases with distinct magnetic properties, such as hard/soft 

core/shell nanoparticles, using the adaptive move with a unique 

adaptive cone width could lead to a poor phase space sampling 

for some or all the phases due to the different optimal cone width 

for a given temperature. In this case, it is more suitable to use 

independent adaptive cone widths for each magnetic phase.

4. Conclusions

In summary, we have developed an adaptive algorithm for the 

optimal phase space sampling in Monte Carlo simulations of 

3D Heisenberg spin systems. The proposed adaptive algo

rithm modifies adaptively a conebased spin update method 

keeping the acceptance rate close to 50%. We have shown that 

the adaptive algorithm is more efficient than other common 

spin update methods independently of the temperature and 

the anisotropy of the system in consideration. Low correlation 

times and a faster convergence to equilibrium of the thermal 

averages and the coercivity were obtained when the adaptive 

algorithm was used. Also, the adaptive algorithm showed good 

efficiency for magnetization reversal at all temperatures, even 

for high anisotropy systems. A generalization of the adaptive 

algorithm could be made to enhance the efficiency of Monte 

Carlo simulations of other kinds of systems.
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