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ABSTRACT

Modelling user voting intention in social media is an important

research area, with applications in analysing electorate behaviour,

online political campaigning and advertising. Previous approaches

mainly focus on predicting national general elections, which are reg-

ularly scheduled and where data of past results and opinion polls are

available. However, there is no evidence of how such models would

perform during a sudden vote under time-constrained circumstances.

That poses a more challenging task compared to traditional elections,

due to its spontaneous nature. In this paper, we focus on the 2015

Greek bailout referendum, aiming to nowcast on a daily basis the vot-

ing intention of 2,197 Twitter users. We propose a semi-supervised

multiple convolution kernel learning approach, leveraging tempo-

rally sensitive text and network information. Our evaluation under a

real-time simulation framework demonstrates the effectiveness and

robustness of our approach against competitive baselines, achieving

a significant 20% increase in F-score compared to solely text-based

models.

CCS CONCEPTS

• Information systems → Web mining; Social networks; • Ap-

plied computing → Voting / election technologies; • Social and

professional topics → User characteristics;

KEYWORDS

social media; Greek referendum; natural language processing; multi-

ple kernel learning; convolution kernels; Twitter; polarisation

1 INTRODUCTION

Predicting user voting stance and final results in elections using

social media content is an important area of research in social media

analysis [21, 39] with applications in online political campaigning

and advertising [11, 25]. It also provides political scientists with tools

for qualitative analysis of electoral behaviour on a large scale [2].

Previous approaches mainly focus on predicting national general

elections, which are regularly scheduled and where data of past

results and opinion polls are available [33, 60]. However, there is

no evidence of how such models would work during a sudden and

major political event under time-constrained circumstances. That

forms a more challenging task compared to general elections, due

to its spontaneous nature [35]. Building robust methods for voting

intention of social media users under such circumstances is important

for political campaign strategists and decision makers.

Our work focuses on nowcasting the voting intention of Twitter

users in the 2015 Greek bailout referendum that was announced in

June, 27th 2015 and was held eight days later. We define a time-

sensitive binary classification task where the aim is to classify a

user’s voting intention (YES/NO) at different time points during the

entire pre-electoral period.

For this purpose, we collect a large stream of tweets in Greek

and manually annotate a set of users for testing. We also collect

a set of users for training via distant supervision. We predict the

voting intention of the test users during the eight-day period until the

day of the referendum with a multiple convolution kernel learning

model. The latter allows us to leverage both temporally sensitive

textual and network information. Collecting all the available tweets

written in Greek1, enables us to study user language use and network

dynamics in a complete way. We demonstrate the effectiveness and

robustness of our approach, achieving a significant 20% increase in

F-score against competitive text-based baselines. We also show the

importance of combining text and network information for inferring

users’ voting intention.

Our paper makes the following contributions:

• We present the first systematic study on nowcasting the voting

intention of Twitter users during a sudden and major political

event.

• We demonstrate that network and language information are

complementary, by combining them with multiple convolu-

tional kernels.

• We highlight the importance of the temporal modelling of

text for capturing the voting intention of Twitter users.

• We provide qualitative insights on the political discourse and

user behaviour during this major political crisis.

2 RELATED WORK

Most previous work on predicting electoral results focuses on fore-

casting the final outcome. Early approaches based on word counts

[63] fail to generalize well [21, 29, 39]. Lampos et al. [33] pre-

sented a bilinear model based on text and user information, using

opinion polls as the target variable. Tsakalidis et al. [60] similarly

predicted the election results in different countries using Twitter and

1As per Twitter Streaming API limitations: https://developer.twitter.com/en/docs/basics/

rate-limiting
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polls while others used sentiment analysis methods and past results

[8, 10, 44, 53]. More recently, Swamy et al. [56] presented a method

to forecast the results of the latest US presidential election from user

predictions on Twitter. The key difference between our task and this

strand of previous work lies in its spontaneous and time-sensitive

nature. Incorporating opinion polls or past results is not feasible, due

to the time-constrained referendum period and the lack of previous

referendum cases, respectively. Previous work on predicting the out-

comes of referendums [9, 22, 36] is also different to our task, since

they do not attempt to predict a single user’s voting intention but

rather make use of aggregated data coming from multiple users to

predict the voting share of only a few test instances.

On the user-level, most past work has focused on identifying the

political leaning (left/right) of a user. Early work by Rao et al. [50]

explored the linguistic aspect of the task; follow-up work has also

incorporated features based on the user’s network [1, 16, 46, 65],

leading to improvements in performance. However, most of this

work predicts the (static) political ideology of clearly separated

groups of users who are either declaring their political affiliation in

their profiles, or following specific accounts related to a political

party. This has been demonstrated to be problematic when applying

such models on users that do not express political opinion [12].

Preoţiuc-Pietro et al. [49] proposed instead a non-binary, seven-

point scale for measuring the self-reported political orientation of

Twitter users, showcasing that the task is more difficult for users who

are not necessarily declaring their political ideology. Our work goes

beyond political ideology prediction, by simulating a real-world

setting on a dynamically evolving situation for which there is no

prior knowledge.

A smaller body of research has focused on tasks that go beyond

the classic left/right political leaning prediction. Fang et al. [19]

predicted the stance of Twitter users in the 2014 Scottish Indepen-

dence referendum by analysing topics in related online discussions.

In a related task, Zubiaga et al. [66] classified user stance in three

independence movements while Stewart et al. [55] analysed user

linguistic identity in the Catalan referendum. Albeit relevant, none

of these works have actually studied the problem under a real-time

evaluation setting or during a sudden event where the time between

announcement and voting day is extremely limited (e.g., less than

two weeks). Previous work on social media analysis during the

Greek bailout referendum [4, 40] has not studied the task of infer-

ring user voting intention, whereas most of the past work in opinion

mining in social media in the Greek language has focused primarily

on tasks related to sentiment analysis [30, 45, 61]. To the best of our

knowledge, this is the first work to (a) infer user voting intention

under sudden circumstances and a major political crisis; and (b)

model user information over time under such settings.

3 THE GREEK BAILOUT REFERENDUM

The period of the Greek economic crisis before the bailout referen-

dum (2009-2015) was characterized by extreme political turbulence,

when Greece faced six straight years of economic recession and five

consecutive years under two bailout programs [62]. Greek govern-

ments agreed to implement austerity measures, in order to secure

loans and avoid bankruptcy – a fact that caused massive unrest and

demonstrations. During the same period, political parties regard-

less of their side on the left-right political spectrum were divided

into pro-austerity and anti-austerity, while the traditional two-party

system conceived a big blow [6, 52, 58].

The Greek bailout referendum was announced on June, 27th

2015 and was held eight days later. The Greek citizens were asked

to respond as to whether they agree or not (YES/NO) with the new

bailout deal proposed by the Troika2 to the Greek Government in

order to extend its credit line. The final result was 61.3%-38.7% in

favor of the NO vote. For more details on the Greek crisis, refer to

Tsebelis [62].

4 TASK DESCRIPTION

Our aim is to classify a Twitter user either as a YES or a NO voter

in the Greek Bailout referendum over the eight-day period starting

right before its announcement (26/6, day 0) and ending on the last

day before it took place (4/7, day 8).

We assume a training set of usersDt = {(x
(1)
t ,y

(1)), ..., (x
(n)
t ,y

(n))},

where x
(i)
t is a representation of user i up to time step t ∈ [0, ..., 8]

and y(i) ∈ {YES,NO}. Given Dt , we want to learn a function ft that

maps a user j to her or his stance ŷ(j) = ft (x
(j)
t ) at time t . Then, we

update our model with new information shared by the users in our

training set up to t+1, to predict the test users voting intention at

t+1. Therefore, we mimic a real-time setup, where we nowcast user

voting intention, starting from the moment before the announcement

of the referendum, until the day of the referendum. Sections 5 and 6

present how we develop the training dataset Dt and the function ft
respectively.

5 DATA

Using the Twitter Streaming API during the period 18/6–16/7, we

collected 14.62M tweets in Greek (from 304K users) containing

at least one of 283 common Greek stopwords, starting eight days

before the announcement of the referendum and stopping 11 days

after the referendum date (see Figure 1). This provides us with a

rare opportunity to study the interaction patterns among the users

in a rather complete and unbiased setting, as opposed to the vast

majority of past works, which track event-related keywords only. For

example, Antonakaki et al. [4] collected 0.3M tweets using popular

referendum-related hashtags during 25/06–05/07 – we have collected

6.4M tweets during the same period. In the rest of this section, we

provide details on how we processed the data in order to generate our

training set in a semi-supervised way (5.1) and how we annotated

the users that were used as our test set in our experiments (5.2).

5.1 Training Set

Manually creating a training set would have required annotating

users based on their voting preference on an issue that they had

not been aware of prior to the referendum announcement. However,

the same does not hold for certain accounts (e.g., major political

parties) whose stance on austerity had been known a-priori given

their manifestos and previous similar votes in parliament [52]. Such

accounts can be used as seeds to form a semi-supervised task, under

2A decision group formed by the European Commission, the European Central Bank

and the International Monetary Fund to deal with the Greek economic crisis.



Figure 1: Number of tweets in Greek per hour. The period high-

lighted in red indicates the nine evaluation time points (see Sec-

tion 4).

the hypothesis that users who are re-tweeting a political party more

often than others, are likely to follow its stance in the referendum,

once this is announced. Hence, we compile a set of 267 seed ac-

counts (148 YES, 119 NO) focusing on the pre-announcement period

including: (1) political parties; (2) members of parliament (MPs);

and (3) political party members.

• Political Parties: We add as seeds the Twitter accounts of

nine major and minor parties3 with a known stance on aus-

terity before the referendum (5 YES, 4 NO, see Table 1). We

assume that the pro-austerity parties will back the bailout

proposal (YES), while the anti-austerity parties will reject it

(NO). The pro-/anti- austerity stance of the parties was known

before the referendum, since the pro-austerity parties had al-

ready backed previous bailout programs in parliament or had

a clear favorable stance towards them, whereas the opposite

holds for the anti-austerity parties [52].

• MPs The accounts of the (300) MPs of these parties were

manually extracted and added as seeds. 153 such accounts

were identified (82 YES, 71 NO) labelled according to the

austerity stance of their affiliated party.

• Political Party Members We finally compiled a set of po-

litically related keywords to look up in Twitter user account

names and descriptions (names/abbreviations of the nine par-

ties and keywords such as “candidate”). We identified 257

accounts (133 YES, 124 NO), which were manually inspected

by human experts to filter out irrelevant ones (e.g., the word

“River” might not refer to the political party) and kept only

those that had at least one tweet during the period preceding

the announcement of the referendum (44 NO, 61 YES).

To expand the set of seed accounts, we calculate for every user u

in our dataset during the pre-announcement period his/her score as:

score(u) = PMI (u,YES) − PMI (u,NO),

3We excluded KKE (Greek Communist Party) since an active official Twitter account

did not exist at the time.

Table 1: Political position, austerity, referendum stance and na-

tional election result (January 2015) of the political parties that

are used as seeds in our modelling.

Party Position Auster. Referend. Jan 15 (%)

SYRIZA (ΣΥΡΙΖΑ) Left anti NO 36.34

New Democracy (Νέα Δημοκρατία) Centre-Right pro YES 27.81

Golden Dawn (Χρυσή Αυγή) Far-right anti NO 6.28

The River (Το Ποτάμι) Centre pro YES 6.05

Independent Greeks (Ανεξάρτητοι ΄Ελληνες) Right anti NO 4.75

PASOK (ΠΑΣΟΚ) Centre-left pro YES 4.68

KIDISO (ΚΙΔΗΣΟ) Centre-left pro YES 2.47

ANTARSYA (ΑΝΤΑΡΣΥΑ) Far-left anti NO 0.64

Creation Again (Δημιουργία Ξανά) Centre-Right pro YES -

Table 2: Number of users (u) and tweets (t) used in our experi-

ments per evaluation day.

day 0 1 2 3 4 5 6 7 8

date 26/06 27/06 28/06 29/06 30/06 01/07 02/07 03/07 04/07

trainu 2121 2121 2121 2121 2121 2121 2121 2121 2121

traint 307K 395K 468K 543K 609K 685K 752K 814K 867K

testu 1804 1985 2045 2115 2146 2174 2184 2194 2197

testt 293K 358K 414K 477K 533K 599K 658K 718K 768K

where PMI (u, lbl) is the pointwise mutual information between a

certain user and the respective seeding class (YES/NO). A high

(low) score implies that the user is endorsing often YES-related (NO-

related) accounts, thus he/she is more likely to follow their stance

after the referendum is announced. This approach has been success-

fully applied to other related natural language processing tasks, such

as building sentiment analysis lexical resources using a pre-defined

list of seed words [43]. Assigning class labels to the users based

on their scores, we set up a threshold tr = n(max(|scores |)), with

n ∈ [0, 1]. We assign the label YES to a user u if score(u) > tr or NO

if score(u) < −tr . Setting n = 0, would imply that we are assigning

the label YES if the user has re-tweeted more YES-supporting ac-

counts (and inversely), which might result into a low quality training

set, whereas higher values for n would imply a smaller (but of higher

quality) training set. During development, we empirically set n = 0.5

to keep users who are fairly closer to one class than the other. From

the final set of 5,430 users that have re-tweeted any seed account,

2,121 were kept (along with the seed accounts) as our training set

(965 YES, 1,156 NO).

5.2 Test Set

For evaluation purposes, we generate a test set of active users that

are likely to participate in political conversations on Twitter. First,

we identify all users having tweeted at least 10 times after the refer-

endum announcement (86,000 users). From the 500 most popular

hashtags in their tweets, we selected those that were clearly related

to the referendum (189) which were then manually annotated with

respect to potentially conveying the user’s voting intention (e.g.,

“yesgreece”, “no” as opposed to neutral ones, such as “referendum”).

Finally, we selected a random sample of 2,700 users (out of 22K)

that had used more than three such hashtags, to be manually anno-

tated – without considering any user from the training set. This is

standard practice in related work [20, 55] and enables us to evaluate

our models on a high quality test set, as opposed to previous related



work which rely on keyword-matching approaches to generate their

test set [19, 66].

Two authors of the paper (Greek native speakers) annotated each

of the users in the test set, using the tweets after the referendum

announcement. Each annotator was allowed to label an account as

YES, NO, or N/A, if uncertain. There was an agreement on 2,365

users (Cohen’s κ = .75) that is substantially higher if the N/A

labels are not considered (κ = .98), revealing high quality in the

annotations, i.e., in the upper part of the ‘substantial’ agreement

band [5]. We discarded all accounts labelled as N/A by an annotator

and used the remaining accounts where the annotators agreed for

the final test set, resulting to 2,197 users – similar test set sizes

are used in related tasks [18]. The resulting user distribution (NO

77%, YES 23%) is more imbalanced compared to the actual result

of the referendum, due to the demographic bias on Twitter [42].

To mimic a real-time scenario, we refrained from balancing our

train/test sets, since it would have been rather impossible to know

the voting intention distribution of Twitter users a-priori. Overall,

we use 18.9% (1.64M/8.66M) of the tweets written in Greek during

that period in our experiments (see Table 2).

6 MODELS

6.1 Convolution Kernels

Convolution kernels are composed of sub-kernels operating on the

item-level to build an overall kernel for the object-level [14, 23] and

can be used with any kernel based model such as Support Vector

Machines (SVMs) [27]. Such kernels have been applied in various

NLP tasks [14, 31, 37, 64]. Here we build upon the approach of

Lukasik and Cohn [37] by combining convolution kernels operating

on available (1) text; and (2) network information.

Let a, b denote two objects (e.g., social network users), repre-

sented by two M × N matrices Za and Zb respectively, where M

denotes the number of items representing the object and N the di-

mensionality of an item vector. For example, an item can be a user’s

tweet or network information. A kernel K between the two objects

(users) a and b over Za and Zb is defined as:

Kz (a,b) =
1

|Za | |Zb |

∑

i, j

kz (z
i
a , z

j

b
), (1)

where kz is any standard kernel function such as a linear or a radial

basis function (RBF). One can also normalise Kz by dividing its

entries Kz (i, j) by
√

Kz (i, i)Kz (j, j).

The resulting kernel has the ability to capture the similarities

across objects on a per-item basis. However, unless restricted to

operate on consecutive items (time-wise), it ignores their temporal

aspect. Given a set of associated timestampsTo = {t1o , ..., t
N
o } for the

items of each object o, Lukasik and Cohn [37] proposed to combine

the temporal and the item aspects as:

Kzt (a,b) =
1

|Za | |Zb |

∑

i, j

kz (z
i
a , z

j

b
)kt (t

i
a , t

j

b
), (2)

where kt is any valid kernel function operating on the timestamps

of the items. Here, Kzt is a matrix capturing the similarities across

users by leveraging both the information between pairs of items and

their temporal interaction.

6.1.1 Text Kernels. Let a, b denote two users in a social network,

posting messages Wa = {w1
a , ...,w

N
a } and Wb = {w1

b
, ..., wM

b
}

with associated timestamps Ta = {t1a , ..., t
N
a } and Tb = {t1

b
, ...,

tM
b
} respectively. We assume that a message w

j
i of user i at time

j is represented by the mean k-dimensional embedding [41] of its

constituent terms. This way, we can obtain text convolution kernels,

Kw and Kwt by simply replacing Z and z withW andw respectively

in Equations 1 and 2. Following Lukasik and Cohn [37], we opted

for a linear kernel operating on text and an RBF on time.

6.1.2 Network Kernels. Let assume a set of directed weighted

graphs G = {G1(N1,E1), ...,Gt (Nt ,Et )}, where Gi (Ni ,Ei ) repre-

sents the retweeting activity graph of the Ni users at a time point

i ∈ T = {1, .., t}. Let La ∈ R
N ,k , Lb ∈ R

M,k denote the resulting

matrices of a k-dimensional, network-based user representation for

two users a and b across time. Contrary to the textual vector repre-

sentation w
j
i that is defined over a fixed space given a pre-defined

vocabulary, user network vector representations (e.g., graph embed-

dings [57]), are computed at each time step on a different network

structure. Thus, a standard similarity score between two user repre-

sentations at timepoints t and t+1 cannot be used, since the network

vector spaces are different. To accommodate this, at each time point

t we calculate the median Lt
YES

and Lt
NO

vectors for each class of

our training examples and update the respective user vectors as:

L∗tu = d(L
t
YES
,Ltu ) − d(Lt

NO
,Ltu ),

using some distance metric d (for simplicity, we opted for the lin-

ear distance). If a user has not retweeted, his/her original network

representation ltu is calculated as the average across all user represen-

tations at t . Finally, the network convolution kernels, Kn and Knt are

computed using Equations 1 and 2 respectively by simply replacing

Z with L∗ and z with l∗. Similarly to text kernels, we use a linear

kernel kn for the network and an RBF kernel kt for time.

6.1.3 Kernel Summation. We can combine the text and network

convolution kernels by summing them up: Ksum = Kw +Kwt +Kn +

Knt . This implies a simplistic assumption that the contribution of

the different information sources with respect to our target is equal.

While this might hold for a small number of carefully designed

kernels, it lacks the ability to generalise over multiple kernels of

potentially noisy representations.

6.2 Convolution Kernel Models

6.2.1 SVMs with Convolution Kernels. Convolution kernels can

be used with any kernel based model. Here, we use them with SVMs.

First, a SVMs operates on a single information source s = {w,n},

i.e., SVMw for text and SVMn for network. Second, a SVMst takes

temporal information into account combined with text (SVMwt ) and

network (SVMnt ) information respectively. Finally, we combine the

text and the network information using a linear kernel summation

(Ksum ) of their respective kernels (SVMsum ).

6.2.2 Multiple Convolution Kernel Learning (MCKL). Multiple

kernel learning methods learn a weight for each kernel instead of

assigning equal importance to all of them allowing more flexibility.

Such approaches have been extensively used in tasks where different

data modalities exist [26, 48, 59]. We build upon the approach of

Sonnenburg et al. [54] to build a model based on labelled instances



xi ∈ I , by combining the different convolution kernels Ks with some

weight ws > 0 s.t.
∑

s ws=1 and apply:

f (x) = siдn

(

∑

i ∈I

αi

∑

s

wsKs (x ,xi ) + b

)

.

The parameters αi , the bias term b and the kernel weights are esti-

mated by minimising the expression:

min γ −
∑

i ∈I

αi

w.r.t. γ ∈ R,α ∈ R
|I |
+

s.t. 0 ≤ αi ≤ C ∀i,
∑

i ∈I

αiyi = 0

1

2

∑

i ∈I

∑

j ∈I

αiα jyiyjKs (xi , xj ) ≤ γ ∀s .

This way, the four convolution kernels are calculated individually

and subsequently combined in a weighted scheme accounting for

their contribution in the prediction task. This allows us to combine

external and asynchronous information (e.g., news articles), while

adding other kernels capturing different aspects of the users (e.g.,

images) is straight-forward.

7 EXPERIMENTAL SETUP

7.1 Features

7.1.1 Textual Information (TEXT). We obtain word embeddings

by training word2vec [41] on a collection of 14.7 non-retweeted

tweets obtained by [61], collected in the exact same way as our

dataset, over a separate time period. We performed standard pre-

processing steps including lowercasing, tokenising, removal of non-

alphabetic characters, replacement of URLs, mentions and all-upper-

case words with identifiers. We used the CBOW architecture, opt-

ing for a 5-token window around the target word, discarding all

words appearing less than 5 times and using negative sampling with

5 “noisy” examples. After training, each word is represented as a

50-dimensional vector. Each tweet in our training and test set is

represented by averaging each dimension of its constituent words.

7.1.2 Network Information (NETWORK). We trained LINE

[57] embeddings at different timesteps, by training on the graphs

{G1(N1,E1), ...,GT (NT ,ET )}, where Ni is the set of users and Ei is

the (directed, weighted) set of retweets amongst Ni up to time i. We

choose the “retweet” rather than the “user mention” network due to

its more polarised nature, as indicated by past work [15]4. LINE was

preferred over alternative models [47, 51] due to its ability to model

directed weighted graphs. We construct the network Gt every 12

hours based on the retweets among all users up to time t , and LINE is

trained onGt to create 50-dimensional user representations. We used

the second-order proximity, since it performed better than the first-

order in early experimentation. We also refrained from concatenating

them to keep the dimensionality relatively low.

4The “following” network cannot be constructed based on the JSON objects returned

by Twitter Streaming API; to achieve this requires a very large number of API calls and

cannot be constructed accurately in a realistic scenario.

7.2 Models

7.2.1 Convolution Kernel Models. Our MCKL and our SVM

models are fed with the convolution kernels operating on the tweet-

level (for TEXT) and each NETWORK representation (derived every

12 hours), based on the tweets and re-tweeting activity respectively

of the users up to the current evaluation time point.

7.2.2 Baselines. We compare our proposed methods against com-

petitive baselines that are commonly used in social media mining

tasks trained on feature aggregates [38, 66]. We obtain a TEXT

representation of a user at each time step t by averaging embedding

values across all his/her tweets until t . Similarly, a user NETWORK

representation is computed from the retweeting graph up until t .

Finally, we train a regularised Logistic Regression (LR) with L2 reg-

ularisation [34], a feed-forward neural network (FF) [24], a Random

Forest (RF) [7] and a SVM.

Model Parameters. Parameter selection of our models and the

baselines is performed using a 5-fold cross-validation on the training

set. We experiment with different regularisation strength (10−3, 10−2,

..., 10
3) for LR, different number of trees (50, 100, ..., 500) for

RF, and different kernels (linear, RBF) and parameters C and γ

(10−3, 10−2, ..., 103) for SVMs. For FF, we stack dense layers, each

followed by a ReLU activation and a 20% dropout layer, and a final

layer with a sigmoid activation function. We train our network using

the Adam optimiser [32] with the binary cross-entropy loss function

and experiment with different number of hidden layers (1, 2), units

per layer (10, 25, 50, 75, 100, 150, 200), batch size (10, 25, 50,

75, 100) and number of epochs (10, 25, 50, 100). For MCKL, we

experiment with the same C values as in SVM and apply an L2
regulariser.

7.3 Evaluation

We train and test our models based on the data collected on a daily

basis (every midnight), starting from the day before the announce-

ment of the referendum (day 0) until the day before its due date (day

8). This way, we mimic a real-time setting and gain better evaluation

insights. To evaluate our models, we compute the macro-average

F-score, which forms a more challenging metric compared to micro-

averaging, given the imbalanced distribution of our test set. At each

evaluation time point t , we use information about the users in our

training set up to t , to classify the test users that have tweeted at

least once up to t (note that all of the users in our training set have

tweeted before the announcement of the referendum, thus the size

of the training set in terms of number of users remains constant).

This results into a different number of test instances per day (see

Table 2). However, we did not observe any major differences in our

evaluation by excluding newly added users. Parameter selection is

performed on every evaluation day using a 5-fold cross-validation

on the training set.

8 RESULTS

8.1 Nowcasting Voting Intention

Figure 2 presents the macro-average F-scores obtained by the meth-

ods compared in all days from the announcement to the day of the

referendum. As expected, the closer the evaluation is to the refer-

endum date, the more accurate the models since more information



Figure 2: Macro-average F-score across all evaluation days using TEXT, NETWORK and BOTH user representations.

Table 3: Average F-score and standard deviation across all eval-

uation days using TEXT, NETWORK and BOTH user repre-

sentations. SVMs and SVMst denote the SVM with convolution

kernels (SVMw , SVMn ) and (SVMwt , SVMnt ), respectively.

TEXT NETWORK BOTH

LR 63.55 ±2.86 83.21±7.55 79.43±5.34
FF 68.19 ±3.78 80.66±5.93 79.83±5.11
RF 61.27 ±5.14 87.43±5.60 88.22±5.03
SVM 68.51 ±3.80 82.43±5.83 79.39±5.18
SVMs 78.91±5.68 83.65±4.82 –
SVMst 80.30±5.81 84.03±4.47 –
SVMsum – – 85.22±3.64
MCKL – – 88.31±3.95

becomes available for each user. Table 3 shows the average (across-

all-days) F-score by each model.

Temporal convolution kernels using TEXT (SVMwt ) signifi-

cantly outperform the best text-based baseline (p = .001, Kruskal-

Wallis test against SVM), with an average of 11.8% and 17.2%

absolute and relative improvement respectively. This demonstrates

the model’s ability on capturing the similarities between different

users on a per-tweet basis compared to simpler models using tweet

aggregates. Also, SVMw and SVMwt implicitly capture similari-

ties in the retweeting activity of the users. This is important, since

network information might not be easily accesible (e.g., due to API

limitations) while it is expensive to compute at each timestep. Hence,

one can use SVMwt to model user written content and partially

capture network information.

Classification accuracy consistently improves when using the

NETWORK representation (i.e., graph embeddings). RF achieves

94% F-score on the day before the referendum, whereas the worst-

performing baseline (FF) still achieves 80.66% F-score on average.

SVMnt provides a small boost (1.6% on average) compared to

the vanilla SVM, which uses only the user representations derived

at the current time point. This implies that the current network

structure is indicative of users’ voting intention, probably because

the referendum was the dominant topic of discussion at the time,

e.g., most of the retweeting activity was relevant the referendum (see

Section 9). This is also in line with recent findings of Aletras and

Figure 3: Change in performance (mean/standard deviation)

compared to the results in Figure 2, after 100 experiments with

added noisy features.

Chamberlain [3] on predicting occupation class and income where

network information is more predictive than language.

When combining the user text and network representation (BOTH),

the baselines fail to improve over using only NETWORK. In con-

trast, our MCKL improves by 4.28% over the best performing single

convolution kernel model (SVMnt ). This demonstrates that MCKL

can effectively combine information from both representations by

weighting their importance, and further improve the accuracy of

the best performing single representation model. Overall, MCKL

significantly outperforms the best performing text-based baseline by

approximately 20% in F-score (p < .001, Kruskal-Wallis test).

8.2 Robustness Analysis

Due to the semi-supervised nature of our task, it is impossible to

judge whether the small difference between MCKL and RF stems

from a better designed model. Furthermore, it is difficult to assess

MCKL’s effectiveness with respect to its ability to generalise over

multiple and potentially noisy feature sources.

To assess the robustness of the best performing models (MCKL,

RF) operating on BOTH information sources, here we perform ex-

periments by adding random noise in their input. We assume that

there is a noisy source generating an extra K-dimensional representa-

tion X for every user that we add as extra input to the models. We set

K = 25, so that (a) we account for a smaller noisy input compared



to our features (25 vs 50) and (b) 1/5 of our kernels in MCKL and

25/125 input features in RF are noisy. We perform 100 runs, each

time drawing random noise X ∼ N (0, 1).

Our results indicate that RF is more sensitive to the noisy input

compared to MCKL (see Figure 3). On average, RF achieves a small

boost (0.04%) in performance with the added noise. That together

with the higher standard deviation reveal the vulnerability of RF

to potentially corruption and stochasticity introduced in the input.

On the contrary, MCKL is consistently robust, achieving only a

tiny reduction in performance on average across all days (0.02%)

while the respective average standard deviation is lower than the one

achieved by RF (0.12 vs 0.41). This robustness is highly desirable

is cases of such sudden political events and it also indicates that

we can add kernels capturing different properties of our task (e.g.,

user-related information, images, etc.), without having to decide

a-priori which of them are indeed predictive of the user’s voting

intention. We plan to investigate this in future work.

9 QUALITATIVE ANALYSIS

In this section, we provide insights into the temporal variation ob-

served in the users’ shared content and the network structure during

this major political crisis. Besides performing a qualitative analysis

during this time period, we believe that this analysis will also provide

insights on (a) the reasons that trigger the significant improvement

in performance of convolution kernels methods operating on TEXT,

and (b) the reason that our non-temporally-sensitive baselines are

rather competitive to our convolution kernel models, when using

NETWORK information. In the current section we provide details

on both of these aspects.

9.1 Language

We are interested in investigating which are the political-related enti-

ties that voters from both sides most likely mention. We expect that

this will shed light on the main focus of discussion in the political

debates between the YES/NO voters that occurred after the announce-

ment of the referendum. For this, two authors manually compiled

two lists of n-grams containing different ways of referring5 to the (a)

the six major political parties and (b) their leaders (see Table 1). We

represent every YES/NO user in the test set as aggregated tf-idf

values of the ngrams (1-3) appearing in his/her concatenated tweets;

then, we compute an n-gram ’s n score as PMI (n,YES)−PMI (n,NO).

A positive score implies that it is highly associated with users who

support the YES vote, and vice versa.

Figure 4 shows that the parties and leaders that supported one side,

mostly appear in tweets of users supporting the opposite side. This is

more evident when we consider tweets shared by the users after the

announcement of the referendum. Examining the content of highly-

retweeted tweets, revealed sarcasm and hostility for the opposite

side in the majority of them (see Table 5). Hostility is a frequent

phenomenon in public debates [28] and our findings corroborate

previous work showing that the political discourse on Twitter is

polarised [15, 20].

Finally, we examine the temporal variation of language over the

same two periods. Table 4 shows the most similar words (translated

5Note that Greek is a fully inflected language. We opted not to apply stemming because

inflected word forms carry meaningful information.

Figure 4: Scores of n-grams related to the political par-

ties/leaders, pre (18/06-26/06) and post (27/06-05/07) the refer-

endum announcement.

Table 4: Most similar words to YES and NO (translated to Eng-

lish), when training word2vec on different time periods.

Before the announcement After the announcement

(18/06-26/06) (27/06-05/07)

YES

no, ok, nah, alright, sure,

usrmnt, hahaha, alrighty,

but, so

no, abstain, referendum, KKE,

question, invalid, euro, clearly,

clash, nai

NO

yes, only, sure, so (slang),

disagree, mainly, especially,

obviously, so (abbrv), agree

yes, abstain, KKE, referendum,

clash, question, people, invalid,

vote, clearly

to English) to the yes and no words, measured by cosine similarity,

when training word2vec using the tweets of each time period. The

difference of the cosine similarities cospost − cospre between the

yes/no vectors and each of their corresponding most similar words

over these two periods is shown in Figure 5. After the announcement,

the context of the two words shifts towards the political domain. That

might explain why text aggregates become noisy, as shown in our

results. Convolution kernels are able to filter-out this noise since

they operate on the tweet level by also taking the time into account.

We plan to study the semantic variation in language [17] in a more

fine-grained way in future work.

9.2 Network

We explore the differences in retweeting behaviour of users over

the same periods ((a) before the announcement of the referendum

and (b) after and until the day of the referendum), by training two

different LINE embedding models using tweets from the each period

respectively. Figure 6 shows the plots of the first two dimensions

of the graph embeddings before and after the announcement using

principal component analysis. The results unveil the effects of the

referendum announcement and provide insights on the effectiveness

of NETWORK information for predicting vote intention, as demon-

strated in our results. Before, YES and NO users appear to have

similar retweeting behaviour, which changes after the announce-

ment. This finding illustrates the political homophily of the social



Table 5: Examples of highly re-tweeted tweets after the an-

nouncement of the referendum.

Tweet #RT

They say that there is a long queue of people in ATMs but

they show only 6 people waiting; this is not a queue, this

is PASOK.

686

Looking for any angry tweets by SYRIZA fans concern-

ing Kasidiaris’s (Golden Dawn MP) release from prison.

Have you seen any?

246

I want to write something funny regarding the state-

ments made by Kammenos (Ind. Greeks leader), but I

cannot find something funnier than the statements made

by Kammenos.

178

Figure 5: Difference in cosine similarity (cospost (wno/yes ,w) −

cospre (wno/yes ,w)) between the no/yes (red/blue) word vectors

wno/yes and each of their most similar words in the two periods.

network [13] and highlights the extremely polarised pre-election

period [62].

Next, we question whether the distance between the two classes

of users through time changes according to time points at which

Figure 6: Network representations of YES/NO (blue/red) users,

before (above) and after (below) the referendum announce-

ment.

real-world events occur. To answer this, we compute the network

embeddings of the train and test users every 12 hours, as in our ex-

periments, and represent every class (YES/NO) at a certain time point

t by the average representations (avдt
Y

, avдt
N

) of the corresponding

users in the training set at t . Then, for every user u in the test set, we

use the cosine similarity cos to calculate:

network_scoretu = cos(u
t
,avдtY ) − cos(ut ,avдtN ).

Finally, we calculate the average score of the YES and the NO users

in the test set (networkt
Y

, networkt
N

) at every time point t and nor-

malise the corresponding time series s.t.networkY (0)=networkN (0) =

0. We also employ an alternative approach, by generating the network

embeddings on a seven-day sliding-window fashion and following

the same process. The results are shown in Figure 7. In both cases,

the YES/NO users start to deviate from each other right after the an-

nouncement of the referendum, with an upward/downward YES/NO

trend until the day of the referendum. This is effectively captured in

our modelling and might explain the reason for the high accuracy

achieved even by our baseline models, which are trained using the

network representation of the users in the last day only. However, the

YES/NO users start to again approach each other only in the sliding

window approach after the referendum day, since in our modelling

the representations are built based on re-tweets aggregates over the



Figure 7: Normalised difference of similarity of YES/NO

(blue/red) users in our modelling (left) and in a sliding window

approach (right).

whole period. While this does not seem to have affected our perfor-

mance, exploring the temporal structure of the network formations

through time is of vital importance for longer lasting electoral cases.

10 LIMITATIONS AND FUTURE WORK

Despite working under a real-time simulation setting, we are aware

that our results come with some caution, owed to the selection of

the users in our test set. The limitations stem from the fact that

we have selected highly active users that have used at least three

polarised hashtags in their tweets after the announcement of the

referendum. As previous work has shown [12, 49], we expect that

the performance of any model is likely to drop, if tested in a random

sample of Twitter users. We plan to investigate this, by annotating a

random sample of Twitter users and comparing the performance in

the two test sets, in our future work.

We also plan to assess the ability of MCKL to generalise, through

exploring different referendum cases and incorporating more sources

of information in our modelling. Finally, we plan to study the tem-

poral variation of language and network in a more fine-grained way.

11 CONCLUSION

We presented a distant-supervised multiple convolution kernel ap-

proach, leveraging temporally sensitive language and network in-

formation to nowcast the voting stance of Twitter users during the

2015 Greek bailout referendum. Following a real-time evaluation

setting, we demonstrated the effectiveness and robustness of our

approach against competitive baselines, showcasing the importance

of temporal modelling for our task.

In particular, we showed that temporal modelling of the content

generated by social media users provides a significant boost in per-

formance (11%-19% in F-score) compared to traditional feature

aggregate approaches. Also, in line with past work on inferring the

political ideology of social media users [1, 16], we showed that the

network structure (in our case, the re-tweet network) of the social

media users is more predictive of their voting intention, compared to

the content they share. By combining those two temporally sensitive

aspects (text, network) of our task via a multiple kernel learning

approach, we further boost the performance, leading to an overall sig-

nificant 20% increase in F-score against the best performing, solely

text-based feature aggregate baseline. Finally, we provided qualita-

tive insights on aspects related to the shift in online discussions and

polarisation phenomena that occurred during this time period, which

are effectively captured through our temporal modelling approach.
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