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Data-driven Multi-objective Optimization for

Burden Surface in Blast Furnace with Feedback

Compensation
Yanjiao Li, Sen Zhang, Jie Zhang, Yixin Yin, Wendong Xiao, Senior Member, IEEE, and Zhiqiang Zhang

Abstract—In this paper, an intelligent data-driven optimization
scheme is proposed for finding the proper burden surface
distribution, which exerts large influences on keeping blast
furnace running smoothly in energy-efficient state. In the pro-
posed scheme, production indicators prediction models are firstly
developed using kernel extreme learning machine algorithm. To
heel, burden surface decision is presented as a multi-objective
optimization problem for the first time and solved by a modified
two-stage intelligent optimization strategy to generate the ini-
tial setting values of burden surface. Furthermore, considering
the existence of approximation error of the created prediction
models, feedback compensation is implemented to enhance the
reliability of the results, in which, an improved association
rules mining method is developed to find the corrected values
to compensate the initial setting values. Finally, we apply the
proposed optimization scheme to determine the setting values
of burden surface using actual data, and experimental results
illustrate its effectiveness and feasibility.

Index Terms—Burden surface, blast furnace, multi-objective
optimization problem, kernel extreme learning machine, feedback
compensation.

I. INTRODUCTION

IN the metallurgy industry, blast furnace (BF) represents an

important process unit to produce the molten iron with high

energy consumption [1], [2]. Thereinto, burden distribution

scheme in the upper part of BF plays a crucial role in BF

operation, which influences the gas flow distribution, and

the utilization ratio of heat and chemical energy [3], [4].

Accordingly, the key to keep a smooth and stable operation

environment is to form a proper burden surface, further it

will achieve higher productivity, lower fuel rate and better

quality of molten iron [5]. However, during the BF ironmak-

ing process, many complicated chemical reactions and heat

transport phenomena occur inside the furnace as the solid

materials move downward and hot gases flow upward, so it

is difficult to establish the mechanism model to accurately

describe the effect of burden surface on the state of BF [6], [7].

In practice, the parameters corresponding to burden surface are

This work was supported in part by the National Natural Science Foundation
of China under Grants 61673056, 61673055, 61673125, 61333002, the Beijing
Natural Science Foundation under Grant 4182039 and the National Key
Research and Development Program of China under Grant 2017YFB1401203.

Y.J. Li, S. Zhang, J. Zhang, Y.X. Yin, and W.D. Xiao are with the
School of Automation & Engineering, University of Science and Tech-
nology Beijing, Beijing, China, 100083 (e-mails: liyanjiao.eee@gmail.com,
zhangsen@ustb.edu.cn, zhangjie.saee@gmail.com, yyx@ies.ustb.edu.cn, wdx-
iao@ustb.edu.cn).

Z.Q. Zhang is with the School of Electronic and Electrical Engineering,
University of Leeds, Leeds, U.K., LS2 9JT (e-mail: Z.Zhang3@leeds.ac.uk).

usually tuned by experienced operators without optimal setting

and system model as guidance. Such kind of manual tuning

cannot make a fast and accurate adjustment of burden surface

to ensure production indicators to be within the target ranges

and track the dynamic production state well. Therefore, how

to determine the optimal burden surface is still a challenging

issue.

Most of the existed research works focus on thermal state

prediction and burden distribution behaviors analysis for mon-

itoring and controlling BF production process. For example,

Li et al. [8] developed a fuzzy classifier for the development

tendency of hot metal silicon content (HMSC). Jian et al. [9]

proposed a novel binary coding SVM algorithm to judge the

BF state. Liu et al. [10] demonstrated a concurrent monitoring

method of the molten iron quality-relevant process faults,

quality specific fault and process specific fault. Zhao et al.

[11] established a comprehensive model from flow control

gate to stock surface in detail and analyzed the non-uniformity

phenomenon. Shi et al. [12] proposed a new stockline profile

formation model and a stepped burden descending strategy to

ensure the higher accuracy. The aforementioned investigations

may assist operators to evaluate the production state and guide

the charging process to achieve the desired burden surface. In

terms of the optimal setting of burden surface, it is basically

given by the operators based on their operational experience.

To our best knowledge, researchers rarely attempted to de-

termine the optimal setting of burden surface. Only Li et

al. [13] adopted the self-optimizing method to establish the

reasoning mechanism and constructed multiple sets of burden

surface by K-means clustering algorithm, which obtains the

local optimum and cannot ensure that the production indicators

are within their target ranges.

Recently, the requirement of energy-saving production and

high-quality products for the complex industrial process has

risen significantly. Operational optimization methodology for

the process production indicators has been successfully applied

to some other industrial processes except BF ironmaking

process, including flotation process [14], hematite grinding

process [15], [16], waster treatment [17], etc. The similarity

among these tasks is that they use data-based approaches for

operational decisions of “black box” processes. As a typical

complicated chemical industry, although the accurate mecha-

nism model for BF ironmaking process cannot be established,

many measurement instruments and sensors have been used to

collect a large amount of data from this process. Furthermore,

radars also have been installed to detect the burden surface
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profile [18]. Thus, inspired by the existed research works,

the optimal setting of burden surface that satisfy the key

production indicators can be obtained by employing data-

driven based optimization techniques.

In this paper, an intelligent data-driven optimization scheme

is proposed for achieving the optimal setting of burden surface

using the collected data and it does not need to know the

process dynamic model. It is worth noting that this is the

first attempt to consider the burden surface decision as an

optimization problem and solved based on data-driven tech-

nique. The proposed scheme can adjust the burden surface

setting values according to the variety of production state with

three modules, i.e., kernel extreme learning machine (KELM)-

based production indictors prediction model, a two-stage

multi-objective optimization-based initial setting model, and

an improved Apriori approach-based feedback compensation

model. In addition, comprehensive experiments are performed

using the actual production data to validate the effectiveness

and feasibility of the proposed scheme.

The main contributions include the following aspects:

1) From a new point of view, optimization of burden surface

in BF ironmaking process is addressed, to the best of our

knowledge, it has not been considered before;

2) In order to avoid the lack of understanding on physical

and chemical reactions inside BF, production indicators mod-

els are created using KELM, which can avoid the non-optimal

hidden node problem and ensure the stable performance;

3) The main target of BF ironmaking process is to obtain the

smooth and stable operation environment and further achieve

the energy-saving and consumption-reducing production with

high-quality molten iron, in which involves multiple objec-

tives (i.e., energy consumption indicator and production costs

indicator). To ensure that ironmaking process can achieve

satisfactory performance, the production indicators need to

be maintained at the admissible ranges. In addition, these

indicators are the two competing objectives which need to

be taken into consideration. Therefore, the optimal setting of

burden surface is considered as a multi-objective optimiza-

tion problem (MOP), and the corresponding two-stage multi-

objective optimization strategy is developed to find the initial

setting values;

4) Due to model approximation error, an improved Apriori

algorithm is implemented to discover the complex interrela-

tions from the operating data to compensate the initial setting

values of burden surface to enhance the reliability of results.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the problem descriptions. The details of the

proposed intelligent data-driven optimization scheme for de-

termining the optimal setting values of burden surface are

reported in Section 3. Section 4 reports the experiments and

results using the actual data collected from a BF. Finally, the

conclusions are given in Section 5.

II. PROBLEM DESCRIPTIONS

In this section, the present adjustment status of burden

surface is firstly given. Then, the primary production objectives
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Fig. 1. Blast furnace ironmaking process and burden distribution

of BF ironmaking process are analyzed. Finally, the discretiza-

tion of burden surface is described. These will motivate the

problem formulation.

A. Actual adjustment status description of burden surface

As shown in Fig. 1, during the ironmaking process, the

solid raw materials, including coke and ore, are fed into the

top of furnace layer by layer with certain quantities, while the

high-pressure preheated air and some auxiliary fuels are blown

into the bottom through the tuyeres. A series of complicated

chemical reactions and heat transport phenomena occur in the

different zones under the different temperatures due to the

downward movement of raw materials and the upward flow

of hot gases. Finally, the molten pig iron flows to the furnace

hearth at regular interval [19], [20], [21], [22], [23]. The radial

distribution of the charged solid raw materials, i.e., burden

surface (see the right of Fig. 1), influences the pressure loss

and local mass flows of solid and gas inside the furnace and

further affects the indirect reduction degree of the ore [24],

[25].

As a matter of fact, the scheduling department personnel

firstly determines the production indicators (denoted by P ∗

k ),

and the corresponding target ranges (Pkmin, Pkmax) according

to the production plan, where k denotes the number of the

key production indicators, Pkmin and Pkmax are the lower

and upper bounds, respectively. Then, according to current

production state, operators adjust the setting values of burden

surface (denoted by bst = {bst,i}, where i represents the

number of burden surface parameters) using comparison of

existing production state with different cases summarized over

years by their experience. Subsequently, according to the

difference between setting values and measured values of

burden surface, raw materials are distributed at the furnace

top through the charging device (i.e., rotating chute) based

on the generated burden distribution matrix to achieve the

desired burden surface so as to make the production indicators

within their target ranges. However, the traditional experience-

based manual operation is nonuniformly related to different

operators. Furthermore, the performance of production pro-

cess is composed of multi-objectives with actual production
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constrains. Thus, it cannot guarantee the optimality of pro-

duction indicators. Accordingly, it is necessary to develop an

appropriate adjustment strategy of burden surface.

B. Primary production objectives of BF ironmaking process

In practice, gas utilization ratio (GUR), a conversion ratio of

CO to CO2, is an important indicator to measure the operating

state and energy consumption [26]. If the burden surface

profile is reasonable, the chemical reactions are sufficient, the

gas utilization degree will be high. Hence, the improvement

of GUR is the embodiment of technical progress in BF

operation. Besides, coke ratio (CR) is another indicator we

should consider, which indicates the amount of coke consumed

by smelting one ton of qualified pig iron, so it is urgent to

decrease CR for reducing the production cost.

Permeability index (PI) is a significant symbol to measure

whether gas permeability inside the furnace is kept in its

admissible range. When PI is within a specific range, a dy-

namic balance between ascending gas and descending burden

materials is achieved. If not, it indicates the gas permeability

becomes worse, which may cause the charge material fall to

be difficult. In severe cases, it will lead to hanging.

In addition, HMSC is a main parameter by which product

quality of pig iron is measured [27]. In terms of energy, it is

desirable to keep the BF ironmaking process at a low HMSC,

while still avoiding the danger of cooling the hearth [6].

Accordingly, the production objectives of the optimization

BF operation are specifically described as follows:

1) Aim to maximize GUR and minimize CR within their

target ranges;

2) Take two aspects of requirement as constraints, including

PI and HMSC, keeping them within prescribed bounds;

3) Keep the operation at its best by adjusting the setting

values of burden surface.

C. Discretization of burden surface

Burden surface is actually a continuous shape, because it is

formed by the accumulation of raw materials. Thus, it needs

to be discretized to implement the optimal setting. In general,

charging regulation usually adopts platform plus funnel mode,

the main concerns of the operators are the width of platform,

the depth and width of funnel [28]. Fig. 2 illustrates the feature

extraction for burden surface discretization. The green curve

is the actual curve obtained by analyzing the data measured by

radar. In accordance with operational cognition, seven features

are extracted to represent the burden surface, including width

of funnel l1, width of platform l2, distance between zero

position and burden surface h1, depth of funnel h2, inclination

angle of funnel α, central angle of funnel β and inclination

angle of edge γ. The mathematical representations of the

aforementioned seven features are as follows:

h1 = |yC | , h2 = |yA − yC | , l1 = |xC − xA| ,

l2 = |xD − xC | , α = arctan

(

yC − yA

xC − xA

)

,

β = arcsin
(

xB − xA

R

)

, γ = arctan

(

yE − yD

xE − xD

)

.

(1)

Zero Line Position

A

B

C D E

Fig. 2. Schematic diagram of burden surface discretization

where (xi, yi) is the coordinates of point i and

R= (yB−yA)2+(xB−xA)2

2(yB−yA) .

In addition, in order to ensure the correctness of the sev-

en features and the implementation of the multi-parameter

optimization of burden surface, it is necessary to establish

the regression model of burden surface feature parameters.

“Curve-Line-Line-Curve” mode is used to fit the burden

surface profile. The coordinate values of the key points A,

B, C, D, E need to be determined firstly. The relationship

between the coordinate values of these five points and the

burden surface feature parameters are as follows:























RA : (0, h1 + h2)
RB : (R · sinβ, h1 + h2 +R−R · cosβ)
RC : (l1, h1)
RD : (l1 + l2, h1)
RE : (r, h1 + (r − l1 − l2) · tan γ)

(2)

Then the regression model can be represented as:

y =















h1 + h2 −R+
√
R2 − x2, 0 ≤ x < R sinβ

yC−yB

xC−xB
(x− xB) + yB , R sinα ≤ x < l1

h1, l1 ≤ x < l1 + l2
(x− xD) tanγ + yD, l1 + l2 ≤ x < r

(3)

The red curve denotes burden surface obtained by the

extracted features in Fig. 2. We can find that the red curve is

in good agreement with the green curve, which indicates that

the extracted features can well characterize the burden surface.

Therefore, seven feature parameters of burden surface can be

used as decision variables.

Overall, burden surface setting can only be adjusted by

experienced operators, which cannot guarantee the optimality

of production indicators. Inspired by the practical data-driven

techniques, considering the characteristics and production tar-

gets of BF ironmaking process, the problem that needs to

be solved is how to determine the setting values of burden

surface (i.e., burden surface features) with a large number of

data collected from BF to provide better decision support.

III. PROPOSED SCHEME FOR BURDEN SURFACE

OPTIMIZATION

This section introduces the proposed intelligent data-driven

optimization scheme, whose details are also presented.
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A. Overall framework of the proposed scheme

The intelligent data-driven optimization scheme for deter-

mining the setting values of burden surface is illustrated in

Fig. 3. The proposed scheme has three modules, including

production indictors modeling, multi-objective optimization s-

trategy for burden surface and feedback compensation. Firstly,

the optimization problem requires the model of production

indicators for performing the optimization. Due to the high

complexity of the furnace interior and its nonlinear nature,

the model of the ironmaking process is difficult to be estab-

lished in practice. KELM, which has fast learning speed and

good generalization performance without random projection

mechanism, is employed to create the production indicators

model.

After that, according to the production purpose of high

efficiency and low consumption, the optimal setting of burden

surface is summarized as a MOP. Then, the corresponding

mathematical description is given. In addition, in order to

obtain more comprehensive Pareto optimal solutions, a mod-

ified two-stage intelligent strategy optimization algorithm is

proposed to solve the MOP and generate the initial setting

values of burden surface.

Finally, if the models of production indicators are accurate,

the initial setting values of burden surface obtained in the

aforementioned step can ensure that the production indicators

remain with their target ranges. However, due to the existence

of model approximation error, this may not be ensured. There-

fore, a feedback compensation strategy is presented, in which

an improved association rule mining method is used to find

the corrected values to compensate the initial setting values of

burden surface using the difference between predicted values

of production indicators and their target values.

All notations used in describing the proposed data-driven

optimization scheme for determining the setting values of

burden surface are presented in Table I.

B. Modeling of production indicators

With the ironmaking mechanism analysis, burden surface

profile and operating state parameters affect the production

indicators. Thus, production indicators can be described as

(P1, P2, P3, P4) = f (b,ψ) (4)

where f (·) is an unknown nonlinear function, P1, P2, P3, P4

indicate GUR, CR, PI and HMSC, respectively, b =

{bi, i = 1, 2, . . . , 7} = {l1, l2, h1, h2, α, β, γ} is the burden

surface features, and ψ is the operating state parameters.

Denote τ = (b,ψ) and o = (P1, P2, P3, P4). The model

f (b,ψ) = f (τ ) can be approximated by the ELM model

f̂ELM (τ ,ν):

f̂ELM (τ ,ν) = h(τ )ν (5)

where h(τ ) is the hidden layer output matrix, ν is the output

weight vector between the hidden layer and the output layer.

h(τ ) can be randomly assigned before training and does not

require manual intervention [29], [30], [31], which is a salient

feature as compared to other data-based modeling approaches

(e.g., BP and SVM). Thus, only ν needs to be identified.

For a given sample set ℵ = {τ i,oi|i = 1, 2, . . . , N}, where

N is the number of samples, τ i = [τi1, τi2, . . . , τid] is a d-

dimensional input attributes, and its respective output variables

oi = [oi1, oi2, . . . , oim] is a m-dimensional vector, and here

m = 4. The following optimization problem is formulated to

identify ν:

min : J =
1

2
∥ν∥2 + C

2

N
∑

i=1

ξ2i

s.t.,h (τ i)ν = oi − ξi

(6)

where C is the regularization parameter, ξi is the training

error.

According to the Karush-Kuhn-Tucker condition, it can be

solved by the following dual optimization:

L(ν, ξ,ω) =
1

2
∥ν∥2 + 1

2
∥ξ∥2 − ω(h (τ )ν − o+ ξ) (7)

where ω = [ω1, ω2, . . . , ωN ] is the Lagrange multiplier corre-

sponding to the training samples.

Then, ν can be obtained:

ν = H
T

(

I

C
+H

T
H

)

−1

o (8)

Such that the ELM model f̂ELM (τ ,ν) in Eq.(5) becomes

f̂ELM (τ ,ν) = h(τ )HT

(

I

C
+H

T
H

)

−1

o (9)

Then, a kernel matrix Ω of ELM is defined by Huang et al.

[32], which can be written as

ΩELM = HH
T : ΩELMi,j = K (τ i, τ j) (10)

Finally, replacing HH
T in Eq.(9) with ΩELM from

Eq.(10), the KELM model can be obtained as

f̂KELM (τ ,ν) = h(τ )HT

(

I

C
+ΩELM

)

−1

o (11)

Remark 1: The significant benefits of KELM are that it

avoids the manual tuning on the number of hidden nodes and

the model generalization becomes optimal and stable due to

no random projection mechanism. Therefore, KELM is more

suitable for modeling using industrial data than BP and SVM

[32].



1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2908989, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

TABLE I
NOMENCLATURE USED IN THE INTELLIGENT DATA-DRIVEN OPTIMIZATION SCHEME FOR DETERMINING THE SETTING VALUES OF BURDEN SURFACE

Notation Description

Pk , P ∗

k
, Pkmin, Pkmax, P̂k Actual valuetarget value, minimum value, maximum value and prediction value of the kth production indicator

∆Pk Error between the target values and the predicted values of production indicators

bst, ∆bF , b̃ Optimal setting values, corrected values, initial setting values of burden surface

b = {h1, h2, l1, l2, α, β, γ} Seven burden surface features

r Radius of BF

ψ Operating state parameters

ν Output weight vector between the hidden layer and output layer in ELM

h (τ) = h (b,ψ) Hidden layer output matrix

N The number of samples

ℵ = {τ i,oi|i = 1, 2, . . . , N} Sample set

C, ξi Regularization parameter and training error in ELM model

ω = [ω1, ω2, . . . , ωN ] Lagrange multiplier

Ω Kernel matrix

Φ,Ψ Pareto optimal solution sets obtained by NSGA-II and MOPSO

ℜ Evaluation matrix of TOPSIS method

I (b, P ) Mutual information function

µ (·) Probabilistic density function of variable (·)

A,C,D Condition attribute set, decision attribute set and data table in association rule mining

∇ (·) The value of variable (·)

min sup,min conf Minimum support threshold and the minimum confidence threshold

Lk Frequent k-itemsets

σ Kernel bandwidth of Gaussian kernel function

C. Determing the initial setting values based on multi-

objective optimization

As mentioned in the Section II-B, burden surface optimiza-

tion is actually a MOP. Given the target values and ranges for

Pk, determine the burden surface features such that

J ∼ {maxP1,minP2} (12)

subject to the constrains:







Pkmin ≤ Pk ≤ Pkmax, k = 1, 2, 3, 4
bimin ≤ bi ≤ bimax, i = 1, 2, . . . , 7
(P1, P2, P3, P4) = f (b,ψ)

(13)

where bimin and bimax are the lower and upper bounds of bi.
In the constraints of Eq.(13), the first inequality guarantees the

production indicators in target ranges, in which, the constraint

on PI is to ensure the smooth and stable production, and the

constraint on HMSC is to ensure the production of qualified

hot metal.

It should note that the aforementioned optimization problem

belongs to a nonlinear MOP with constraints. The most

popular multi-objective algorithm based on meta-heuristic

approach, known as multi-objective evolutionary algorithm

(MOEAs), are considered the effectiveness in solving the

MOP by providing a Pareto optimal solution set. Among the

MOEAs, the non-dominated sorting genetic algorithm version

II (NSGA-II) [33] is one of the most famous and successful ap-

proaches with elitist strategy and diversity preservation mech-

anisms. The salient features of NSGA-II are computationally

efficient and less dependent on the sharing parameters. It has

been criticized that it is easy to produce duplicate individuals.

In recent years, with the further research of MOEAs, new

mechanisms and strategies have been developed to solve the

MOP. For example, multi-objective particle swarm optimiza-

tion (MOPSO) [34] was presented by Coello et al., which

preforms better in solving the MOP. The merit of MOPSO

has efficiency and fast convergence with external repository

strategy and mutation operator. However, it is difficult to

deal with some multi-frontal problems. They use different

search strategies for exploring the feasible solution space and

adopt different methods to handle constraints and selection

mechanisms. In order to obtain more comprehensive Pareto

optimal solutions, we take advantage of both the NSGA-II

and MOPSO algorithms.

A two-stage intelligent decision process, as shown in Fig. 4,

is implemented to determine initial setting values of burden

surface. Specifically, in the first stage, in order to make full

use of the advantages of different algorithms to get more

comprehensive Pareto optimal solutions, NSGA-II and MOP-

SO algorithms are firstly adopted to solve the optimization

problem shown in Eqs.(12) and (13). All solutions obtained by

the two algorithms are merged to find the final Pareto optimal

solutions. However, even though the results are informative,

the number of solutions may still be prohibitive for decision-

maker. At this point, in the second stage, a ranking method

called TOPSIS [35] is employed to rank the Pareto optimal

solutions by the preference of operators to select a compromise

solution.

Suppose that the Pareto optimal solution sets obtained by
NSGA-II and MOPSO are Φ and Ψ, respectively. We consider
the Pareto optimal solutions as the alternatives (i.e., Ψ ∪ Φ),
and the two objectives (i.e., GUR, CR) as criterion. Then,
an evaluation matrix consisting of p alternatives and q = 2
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Generate Pareto optimal solutions 

by MOPSO

Generate the final Pareto optimal solutions 

Rank the Pareto optimal solutions by TOPSIS 

Satisfied with the compromise solution?

Obtain the  compromise solution

Adjust the 

weights 

Assign weights to objective functions

Yes

No

Stage 1

Stage 2

Fig. 4. A two-stage intelligent decision process for determining initial setting
values of burden surface

criteria, ℜ, is created to perform the computation of TOPSIS:

ℜ =









ϖ11

ϖ21

...
ϖp1

ϖ12

ϖ22

...
ϖp2









(14)

where ϖij represents the evaluation matrix R of alternative

i under evaluation criterion j. Finally, according to the oper-

ators’ preference, their most satisfactory compromise solution

(i.e., the initial setting values of burden surface b̃ = {b̃i, i =
1, 2, . . . , 7}) can be found.

D. Improved Apriori algorithm based feedback compensation

Due to the existence of model approximation error, the ob-

tained initial setting values may not guarantee the production

indicators to be within their target ranges. In practice, the

useful and valuable association relationship hidden in collected

data needs to be mined and expressed by understandable sen-

tences, which is of great significance for production decision-

making. Therefore, motivated by the thought of control theory,

a feedback compensation strategy is presented, which uses

the association rules extracted from the large amount of data

to find the corrected values to further compensate the initial

setting values. In the proposed strategy, mutual information

(MI) [36] method is used to select the burden surface features

that need to be corrected, and the Apriori method as a powerful

rules mining tool is used to discover the association rules

(i.e., incremental rules relation between production indicators

and burden surface features) from the collected data. Un-

like general data mining, the essential relationship between

variables is clear and the quantitative relationship between

them needs to be mined in the industrial process data mining.

Because the traditional Apriori method does not contain any

prior knowledge about BF production, hence, considering the

characteristics of BF production data, an improved Apriori

association rule mining method is implemented to find the

feedback association rules. The proposed feedback compensa-

tion strategy is a data-driven approach, which does not require

process models.

1) Data-based compensation strategy: The initial setting

values are fed into the approximated nonlinear function in

Eq.(4) to obtain the predicted values of production indicators

P̂k(k = 1, 2). Define the error between the target values of

production indicators P ∗

k and the predicted values P̂k as

∆Pk = P ∗

k − P̂k (k = 1, 2) (15)

A lower bound ∆Pkmin is determined in advance by the

experienced operators. If |∆Pk| is greater that ∆Pkmin, it is

considered that the initial setting values need to be corrected.

The corrected values are found by association rules method,

which will be described in the next section. During the

mining process, data preparation is firstly implemented to

form data table. Because the burden surface features have

different effects on production indicators, the features that

closely related to production indicators are considered to be

compensated. MI method is employed to analyze the influence

degree of burden surface features on production indicators, and

the burden surface features that need to be corrected can be

selected based on the threshold of correlation coefficients. The

MI is defined as

I (b, P ) =

∫∫

µ(b, P ) log
µ (b, P )

µ (b)µ (P )
dbdP (16)

where µ(·) represents the probabilistic density function of

variable (·). The greater MI I (b, P ), the stronger the influence

degree is. I (Pk, bi) (k = 1, 2; i = 1, 2, · · · , 7) is defined as the

influence degree of the ith burden surface feature with respect

to the kth production indicator. Then the influence degree of

the ith burden surface feature with respect to the production

indicators can be calculated by

I (bi) =
2

∑

k=1

I (Pk, bi) (17)

Thus, the selected burden surface features that need to be

corrected bF = {bf , f = 1, 2, . . . , F} are obtained.

Here A = {Pk,∆Pk,bF } denotes the antecedent of data

table (i.e., conditional attribute set) and is marked as class1,

and C = {∆bF } is called the consequent (i.e., decision

attribute set) and is marked as class2, where ∆bF = {∆bf} is

the corrected values of selected burden surface features. Thus,

the data table D can be represented as

D = {Pk,∆Pk,bF ,∆bF } (18)

Then, the association rules form for feedback tuning via the
proposed association rules method is expressed as

If Pk=∇(Pk)∧∆Pk=∇(∆Pk)∧bf =∇(bf ) then ∆bf =∇(∆bf )
(19)

where ∇(·) is the value of variable (·). After that, the final

decision values of burden surface are written specifically as

bst,i =

{

b̃i, |∆Pk| < ∆Pkmin

b̃i +∆bf , |∆Pk| ≥ ∆Pkmin
(20)
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2) Improved Apriori algorithm: Because there is no prior

knowledge of BF production, the rules mined by the classical

Apriori algorithm may not be correct. For this reason, an

improved Apriori algorithm is implemented to discover more

effective association rules whose detailed steps are as follows:

Input: Database ℘ = D, minimum support threshold

min sup and minimum confidence threshold min conf .

Output: Feedback compensation association rules.
Step 1 (Discretization): Let r, r ∈ D, be a continuous

variable and its range is ℓr = [ηrmin, η
r
max]. Discretization is

to divide the range of variable into finite interval of assigned
symbols to generate ⟨varaible, interval⟩ pairs. Each variable
is firstly encoded according to the order in database. Further,
ℓr is divided into kr intervals, which is represented as

{

ℓr=[υr
0 , υ

r
1) ∪ [υr

1 , υ
r
2) ∪ · · · ∪

[

υr
kr
, υr

kr+1

]

ηmin=υr
0 < υr

1 < υr
2 < · · · < υr

kr
< υr

kr+1
=ηmax

(21)

where υr
i is the segmentation point of ℓr. The interval

length can be expressed as ρ = (ηrmax − ηrmin)/kr, thus the

segmentation points are ηrmin+iρ, i = 1, 2, . . . , kr. Meanwhile,

kr intervals are also coded as 1, 2, . . . , kr, respectively. Thus,

the database is discretized to convert into Boolean data form.

Step 2 (Find the frequent 1-itemsets L1): Scan the database

and calculate the support of each attribute. If it is greater than

min sup, the frequent 1-itemsets L1 is found.

Step 3 (Find the frequent 2-itemsets L2): Let itemk and

iteml be any two attributes in the database. If frequent

itemsets only contain the conditional attributes or the decision

attributes, then the invalid rules are generated. Thus, in order

to avoid the two attributes from the same class, the selection

requirement is given by

If class (itemk) ̸= class (iteml)
join itemk and iteml

inset (itemk, iteml) in frequent itemsets
end

(22)

Step 4 (Find the frequent k-itemsets Lk): Find the next level

frequent itemsets until Lk = ∅.

Step 5 (Generate the association rules): In order to mine

the rules shown in Eq.(19), the following constraint is added:

If (class (itemk)=class1 & class (iteml)=class2)

confidence = supp(itemk∪iteml)
supp(itemk)

If confidence ≥ min conf
output : itemk → iteml

end
end

(23)

IV. EXPERIMENT STUDIES USING ACTUAL DATA

In this section, comprehensive experiments are carried out

using the actual industrial data to verify the effectiveness

and feasibility of the proposed intelligent data-driven opti-

mization scheme. In the following experiments, the data are

collected from a medium-size BF with an inner volume of

about 2500m3. In addition, some daily production data from

historical database are selected for analysis.

A. Production indicators modeling experiments

Some important and measurable variables influencing the

production indicators are considered as the operating state

parameters ψ, including blast volume (m3/min), blast tem-

perature (◦C), blast pressure (kPa), top temperature(including

four-point temperature) (◦C), top pressure (kPa), differential

pressure (kPa), cross temperature (including center and edge)

(◦C), oxygen enrichment (%). The corresponding burden sur-

face features are obtained after processing the acquired radar

data (see Eq.(1)). For production indicators modeling, the

indices are achieved through the average. In terms of HMSC

prediction model, the sampling interval HSMC is one hour,

and that of other indices are one minute, all variables are

achieved through the 1-hour average of 1-minute variables.

In addition, the raw data collected from the real system may

contain some outliers, which may affect the performance of

modeling and decision-making. These may be due to irregular

behaviors of furnace interior in a certain period of time,

furnace shutdown or some wrong readings. The elimination

of outliers is performed to ensure the reliability. Furthermore,

there is great difference in the magnitude of the variables.

Considering the impacts of convergence and complexity on

modeling, all samples are normalized into [0, 1] to eliminate

the influence of magnitude before applying in the experiments.

We randomly select 1000 data pairs, the first 800 group-

s are used for training the KELM models and others for

validating the created models. The Gaussian kernel function,

i.e.,K (τ i, τ j) = exp
(

−σ∥τ i − τ j∥2
)

, is adopted in KELM,

where σ is kernel bandwidth. There are two user specified

parameters in KELM, i.e., C and σ, which need to be selected

appropriately to achieve good generalization performance.

In this paper, both C and σ are searched from the range
(

2−24, 2−23, . . . , 225
)

, whose optimal combination is chosen

as the one with the minimum testing error. For simplicity,

we mainly discuss the procedure of selecting the optimal

combination of (C, σ) in the data-based model of GUR. Fig. 5

details the effects of combination of (C, σ) on the model

performance. Accordingly, the performance (i.e., testing error)

is sensitive to the combination of (C, σ). There is a sharp

decrease when C and σ are in the range of
(

2−15,25
)

and
(

2−25,225
)

respectively. Then, with the increase of C, the

testing error tends to be stable. The minimum testing error

is achieved in a narrow range of such combination. Thus, the

optimal combination can be chosen in this range, so C and σ
are set as 215 and 2−15, respectively. For the models of CR,

PI and HSMC, the same procedures are preformed to select

the corresponding optimal ones.

Fig. 6 shows scatter diagram of the four models standing

for GUR, CR, PI and HSMC and the probability density

function (PDF) curve of modeling error with ELM and KELM.

According to Fig. 6(a), the horizontal and vertical coordinates

are the actual values and predicted values, respectively. Ac-

cordingly, we can find that the scattered points obtained by

KELM are closer to the line y = x, which means that the

predicted values can well track the changes of actual values

and further indicates that KELM provides more accurately

predicted results. In addition, since it is well known that the
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Fig. 5. Effects of combination of (C, σ) on the model performance

TABLE II
RMSE, MAPE AND CC OF KELM FOR FOUR MODELS

Model RMSE MAPE CC

GUR 0.0310 0.0254 0.9581

CR 0.0284 0.0443 0.9845

PI 0.0124 0.0219 0.9971

HMSC 0.0211 0.0393 0.9758

PDF of predicted error of a good model should be a Gaussian

distribution with smaller mean and variance, the PDF curves of

predicted error are presented in Fig. 6(b). From Fig. 6(b), the

error mean is 0 and the curve has only one peak, which are the

Gaussian curve characteristic. Meanwhile, KELM gets a PDF

with a higher and narrower shape, which shows that the errors

are more concentrated near the mean (i.e., 0) and variance is

less. Therefore, KELM can provide more accurate predicted

results. Furthermore, the root mean squared error (RMSE),

mean absolute percentage error (MAPE) and correlation co-

efficient (CC) between actual values and predicted values of

KELM are listed in Table II. As observed from Fig. 6 and

Table II, KELM shows satisfactory performance for the four

models, which can be used to provide the basis for subsequent

optimization.

B. Determination experiments for the setting values of burden

surface

1) Generation of initial setting values: For the MOP for-

mulated as Eqs.(12) and (13), the two-stage intelligent opti-

mization strategy is used to determine the initial setting values

b̃. The related variables used in the NSGA-II algorithm are:

population size is set to Npop = 200, the crossover probability

is assumed to be 0.95 and the mutation probability is set as

0.1. Similarly, for MOPSO, the swarm size is set as 200. In

particular, the maximum iterations Itmax is very important

for the convergence of both algorithms. The Pareto optimal

solutions obtained by NSGA-II and MOPSO algorithms with

different maximum iterations are given in Fig. 7. From Fig. 7,

with the increase of the maximum iterations, the solutions

trend to stable gradually. Therefore, Itmax is seleted as 150

in both algorithms. The Pareto optimal solutions for each

algorithm on a single production state are plotted in Fig. 8.
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Fig. 6. Scatter diagram of four production indicators models and PDF curve
of modeling error

The green circles and blue asterisks represent the NSGA-

II solutions and MOPSO solutions, respectively. As can be

observed, the solutions generated by both algorithms make the

values of objective functions roughly in the same ranges and

NSGA-II generates more solutions at the edge of the feasible

solutions. In this sense, more comprehensive Pareto optimal

solutions are obtained for operators to make decisions for

meeting the actual production. From this figure, when GUR

is above about 50.5, CR will not be decreased although GUR

is increased. This phenomenon means that only focusing on

improving GUR cannot ensure CR continue to decrease, which

illustrates that GUR and CR are interrelated and conflicting

and further clarifies that it is reasonable to summarize the

burden surface optimization as a MOP.

Next, TOPSIS is performed to rank the solutions and

determine the best compromise solution among them. For

this purpose, assuming an equal weight for each objective,

ten efficient solutions are given in Table III. The solution

with highest TOPSIS score marked in bold is the compromise

solution which best fits the preferences of operators. It can be
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Fig. 7. Pareto optimal solutions obtained by NSGA-II and MOPSO algorithms with different maximum iterations
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Fig. 8. Merged NSGA-II and MOPSO Pareto optimal solutions

found from Table III that these solutions provide useful infor-

mation for operators to adjust the burden surface to cope with

changes in production state. Actually, the selection of weight

of each objective can be determined based on the production

requirements at a certain time period and production state.

If we pay more attention to cost, CR will be given a larger

weight, on the contrary, GUR will be given a larger weight.

2) Generation of corrected values based on feedback com-

pensation strategy: The influence degree of each burden sur-

face feature on production indicators is calculated by Eqs.(16)

and (17) and the results are demonstrated in Fig. 9. Based

on these correlation coefficients, the burden surface features,

l1, h2, α, β with the influence degree no less than 0.18 are

selected to be corrected. After that, the improved Apriori

algorithm is applied to extract the useful rules, thus the

corrected values are generated. For simplicity, only some of

the rules are listed in Table IV.

3) Experimental results: The detailed analysis of genera-

tion of the initial values and the corrected values have been

given in the above section. Then, the setting values can be

achieved through Eq.(20). Based on the regression model of

TABLE III
TEN EFFICIENT SOLUTIONS WITH TOPSIS SCORE

TOPSIS Decision Variables (burden surface features)

Score l1 l2 h1 h2 α β γ

0.7006 1.96 1.53 0.81 0.64 24.77 19.80 -7.01

0.9212 2.09 1.68 0.77 0.71 23.89 18.58 -6.83

0.8380 1.82 1.71 0.83 0.69 24.11 19.23 -6.62

0.9509 1.98 1.59 0.73 0.76 25.02 18.80 -6.53

0.9391 2.01 1.45 0.84 0.60 24.85 19.05 -6.70

0.8298 1.84 1.66 0.85 0.63 25.09 19.23 -6.92

0.7885 1.93 1.58 0.79 0.64 24.53 19.70 -6.77

0.9177 1.89 1.62 0.82 0.76 24.22 19.63 -6.73

0.8630 1.88 1.70 0.81 0.72 24.76 19.03 -6.81

0.9298 1.95 1.59 0.85 0.76 24.62 19.67 -6.79

l1 l2 h1 h2 α β γ
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Fig. 9. Influence degree of each burden surface feature on production
indicators

feature parameters as calculated by Eq.(3), the shape of burden

surface can be drawn and shown in Fig. 10.

In order to demonstrate the effectiveness and feasibility of

the proposed scheme, the experimental results in the different

production situations are presented in Fig. 11 and Table V.

Fig. 11 illustrates the burden surface features generated by

the proposed scheme. The initial setting values and corrected

values of burden surface features are shown in Fig. 11(a)
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TABLE IV
SOME OF THE ASSOCIATION RULES

No.
Rules

Antecedent Consequent

1 P1(2) and P2(1) and ∆P1(2) and ∆P2(3) and b1(2) and b4(3) and b5(3) and b6(2) ∆b1(2)

2 P1(3) and P2(1) and ∆P1(2) and ∆P2(2) and b1(2) and b4(3) and b5(3) and b6(2) ∆b1(2)

3 P1(1) and P2(1) and ∆P1(2) and ∆P2(2) and b1(1) and b4(2)and b5(3) and b6(4) ∆b1(4)

4 P1(1) andP2(2) and ∆P1(4) and ∆P2(3) and b1(3) and b4(2)and b5(3) and b6(4) ∆b4(2)

5 P1(2) and P2(2) and ∆P1(3) and ∆P2(4) and b1(2) and b4(3) and b5(3) and b6(4) ∆b5(1)
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Fig. 10. Optimized shape of burden surface

TABLE V
DESCRIPTION OF GUR AND CR

Sample Numbers 1 2 3 4 5 6

GUR

Upper bound 51

Lower bound 47

Actual value 49.04 49.51 48.43 48.70 47.70 49.85

Optimal value 49.49 49.80 49.14 49.38 48.11 50.58

CR

Upper bound 460

Lower bound 370

Actual value 430.96 396.30 428.95 413.39 471.22 393.16

Optimal value 426.16 390.63 415.57 391.88 455.57 383.04

and 11(b). The results in Fig. 11(a) indicate that the burden

surface features vary with the change of the production states.

From Fig. 11(b), it can be seen that the corrected values

change uncertainly according to the extracted rules, which may

decrease, increase or unchange. Meanwhile, the final setting

values after corrected are depicted in Fig. 11(c). Table V gives

the optimal and actual values as well as upper and lower

bounds of GUR and CR. As observed from Table V, the actual

value of CR exceeds the upper bound under certain production

condition, but the optimal values obtained by applying the

proposed scheme is within the admissible ranges. Furthermore,

the experimental results of two optimization algorithms used

separately are shown in Table VI. According to Table VI, it

can be observed that NSGA-II is more effective in determining

the solutions than MOPSO for the first production situation

and MOPSO obtains more optimal efficient solutions for the

second production situation. The experimental results demon-

strate that the proposed scheme can combine the advantages

of the two algorithm to get a more efficient solution. Overall,

it is obvious that optimal burden surface features improve the

GUR and CR, which implies that the proposed scheme can

provide reasonable burden surface parameters.

V. CONCLUSIONS

This paper presents an intelligent data-driven optimization

scheme for determining the setting values of burden surface

in the BF ironmaking process instead of manual operations.

The salient features are nonlinear modeling of production
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(c) Final setting values of burden surface features

Fig. 11. Burden surface features generated by the proposed scheme

indicators, a MOP solved by a modified two-stage intelligent

strategy optimization algorithm to generate the initial setting

values of burden surface and the use of feedback compensation

strategy to find the corrected value based on the difference

between the predicted and target values of production indica-

tors. The results of comprehensive experiments demonstrate

the effectiveness and feasibility of the proposed scheme in

terms of improving production efficiency and saving energy.
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TABLE VI
COMPARISON RESULTS OF DIFFERENT OPTIMIZATION METHODS

No. algorithm GUR CR

1

Actual value 48.70 413.39

The proposed scheme 49.38 391.88

NSGA-II 48.91 405.62

MOPSO 49.38 391.88

2

Actual value 49.85 393.16

The proposed scheme 50.58 383.04

NSGA-II 50.58 383.04

MOPSO 50.03 390.59

In the future, how to establish the interpretable multi-objective

optimization model to make the described optimization prob-

lems more transparent and how to verify the proposed scheme

on the actual site should be addressed.
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