

This is a repository copy of *Reduced mechanism generation for methanol-based toluene reference fuel with combined reduction methods*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144646/

Version: Accepted Version

Article:

Zhang, J. and Zhang, Y. orcid.org/0000-0002-9736-5043 (2019) Reduced mechanism generation for methanol-based toluene reference fuel with combined reduction methods. Fuel, 247. pp. 135-147. ISSN 0016-2361

https://doi.org/10.1016/j.fuel.2019.03.028

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Reduced mechanism generation for methanol-based toluene
2	reference fuel with combined reduction methods
3	Jing Zhang [*] , Yang Zhang
4	(Department of Mechanical Engineering, The University of Sheffield, Sir Frederick Mappin Building,
5	Sheffield S1 3JD, United Kingdom)
6	(E-mail: JZhang155@sheffield.ac.uk (J. Zhang), yz100@sheffield.ac.uk (Y. Zhang))

Abstract: TRF is a very competitive substitute fuel of gasoline, and methanol as a high octane 7 8 oxygenated fuel has been attracted widely attention. In this study, a new reduced mechanism for methanol-9 based toluene reference fuel was developed based on the sensitivity analysis (SA), and reaction pathways 10 analysis methods. At first, reduced mechanisms of methanol (including 24 species and 57 elementary reaction) 11 and TRF (including 98 species and 264 elementary reaction) were developed and vilified separately. Then, 12 coupling methanol and TRF reduced mechanisms that have been validated in above section, a new reduced 13 of mechanism for methanol blending with TRF fuel was proposed that including 100 species and 290 14 elementary reactions. Extensive validations were performed by comparing experimental data of shock tube 15 ignition delay times, flow reactor species profiles, pressure profiles with simulation results. High accuracy is 16 demonstrated in wide ranges of temperature ($T=300\sim2500$ K) and equivalence ratio ($\Phi=0.375\sim2$), which indicates that the present methanol blending with TRF fuel reduced mechanism can well predict the 17 18 experimental data.

Key words: Methanol; Toluene reference fuel; Mechanism Reduction; Sensitivity analysis; Reaction
 pathways analysis method

21 **1 Introduction**

22 Increasingly severe fossil energy shortage and environmental problems promote many new combustion 23 technologies used in internal combustion engines. In recent years, for example, homogeneous charge 24 compression ignition (HCCI), low temperature combustion (LTC) with its high efficiency and low emission have won the favor of the majority of researchers. The LTC technology [1] controls the combustion 25 temperature by combining modes of pre-mixing and compression-ignition, which means that fuel mixed with 26 27 air form a uniform premixed gas before the compression process happened. As temperature rises, multiple 28 points are simultaneously ignited in the cylinder. Therefore, it contributes to reduce NOx and hydrocarbon 29 emissions and maintain high thermal efficiency, because of lower in-cylinder temperature. Lots of studies 30 found that both of the HCCI and LTC combustion are ignited by the compression from the piston 31 motion [2,3,4,5], so the chemical kinetics play key role in these processes [6,7]. Therefore, understanding the reaction kinetics of hydrocarbon fuels can provide an important theoretical guidance for the development of
 internal combustion engines.

In addition to adopting new combustion theories, biofuels, like alcohol and biodiesel, are regarded as promising substitute fuels to be used in engines. Methanol has high octane value and oxygen content, which can improve fuel economy and reduce exhaust pollutants [8]. Another advantage is that methanol can be synthesized from fossil fuels and can also be extracted from biomass [9]. Therefore, it is considered as an addictive fuel in this study.

39 Gasoline fuel is a mixture of hundreds or thousands of components including linear alkanes, branched 40 alkanes, cycloalkanes, alkenes, aromatic hydrocarbons, etc. It is widely believed that the physicochemical properties of gasoline fuel can be characterized by part of major components [10]. At first, iso-octane was 41 42 often used as an alternative fuel because of its similar physical and chemical properties with the gasoline. 43 Later, considering the effect of octane number, mixture of n-heptane and isooctane (the primary reference 44 fuel (PRF)) was used to characterize the gasoline octane number [11]. Generally, the gasoline contains 20%-45 50% of aromatic hydrocarbons, of which toluene is a representative component of aromatic hydrocarbons 46 [12]. As a result, toluene gradually becomes one of main components for characterizing gasoline fuel. A 47 mixture of n-heptane, isooctane and toluene in different proportions, also known as toluene reference fuel (TRF), has been used to represent gasoline. Table 1 shows several specific parameters for the three 48 49 components in TRF[13], which clearly demonstrates its basic physicochemical properties.

50

Table 1. Specific parameters for the three components in TRF

Parameter name	iso-octane	n-heptane	toluene
Molecular formula	(CH ₃) ₂ CHCH ₂ C(CH ₃) ₃	CH ₃ (CH ₂) ₅ CH ₃	C ₆ H ₅ CH ₃
Molecular weight	114.23	100.20	92.14
C/H ratio	4:9	7:16	7:8
Density(20°C)/(g/ml)	0.6910~0.6930	0.682~0.685	0.865~0.869
Boiling point /°C	99.25	98.50	110.80
Low heating value /(MJ/kg)	44.65	44.93	40.94

Actually, the methanol detailed mechanism has been developed for many years. Bowman[14] first proposed a detailed chemical kinetic mechanism for methanol oxidation, but the model is inaccurate to predict experimental results when the temperature is below 1800 K[15]. Subsequently, Aronowitz et al.[16] constructed a kinetics model for methanol oxidation over the intermediate temperature range by experimental study using an adiabatic flow reactor under atmospheric conditions. In the same year, Westbrook and Dryer et al.[17] used shock tube and flow reactor to measure the reaction rates of some dominant species, and constructed a kinetic model of methanol oxidation that is adoptable over a wide range of conditions. The one-

58	dimensional flame propagation rate of this model under stoichiometric ratio condition can be well predicted.
59	Thomas et al.[18] corrected the methanol mechanism proposed by Tsang et al.[19]. The modified mechanism
60	greatly improved the simulation accuracy on the flow reactor. Flow analysis provides a further understanding
61	of the important reactions in the methanol oxidation process. The detailed chemical kinetic mechanism of
62	methanol proposed by Held and Dryer et al.[15] has good agreement with experimental data at various
63	situations. Since then, Li et al. [20] have used some new thermodynamic data of GRI-Mech 3.0[21] to
64	improve the mechanism developed by Held and Dryer et al.[15]. It is found that prediction performance of
65	this mechanism under a wide range of experimental conditions is better than that of Held and Dryer et al.[78],
66	especially in the simulation of the ignition delay time. In 2011, detailed kinetic mechanism of methanol
67	constructed by Zhang et al.[22] by considering the effects of CH, CH ₂ (S) and CH ₂ (T) radicals and nitrogen-
68	oxides. In this mechanism, the reaction rate constant of C/H/O is derived from the mechanism of Held and
69	Dryer et al.[15], and the stratification of CO/H ₂ O/H ₂ /O ₂ , CH ₂ O and CH ₃ OH in Li et al.[20] were added. The
70	mechanism is verified by shock tubes and flow reactor experiments. In 2016, Burke et al.[23] first built a
71	new methanol chemical kinetic model (Mech 15.34), which accurately simulates methanol combustion
72	characteristics over a wide range of experimental conditions, especially when the pressure achieve at 10-50
73	atm. It has been extensively validated by experiments and previous studies. However, this mechanism has a
74	slight deviation from the experimental data of the stirred reactor when predicting the concentration of
75	formaldehyde. From above analysis, the methanol mechanism proposed by Zhang et al.[87] is adopted in
76	current study, due to its wide operating range. Some chemical kinetic mechanisms of methanol are
77	summarized in Table 2.

Table 2. Overview of methanol chemical kinetic mechanisms

Time	Literatures	Species	Reactions	T/K	p/atm	Φ	Experiments
1975	Bowman et al. ^[14]	14	28	1545-2180	1.8-4.6	0.375-6.0	IDT(ST)
1979	Aronowitz et al. ^[16]	18	37	950-1030	1	0.03-3.16	SP(FR)
1070	Weather als at al [17]	26	0.4	1000 2190	1050	0.05.2.0	IDT(ST),
1979	westbrook et al.	20	84	1000-2180	1.0-3.0	0.05-5.0	SP(FR)
							IDT(ST),
1998	Held et al. ^[15]	22	89	633-2050	0.26-20.0	0.05-2.6	SP(FR),
							LFV(SF)
							IDT(ST),
2007	Li et al. ^[20]	18	84	300-2200	1.0-20.0	0.05-6.0	SP (FR),
							LFV(SF)
2011	71	10	247	200 2500	1025	0.92.1.6	IDT(ST),
2011	Zhang et al. ^[22]	40	247	800-2500	1.0-2.5	0.83-1.0	SP(FR)
							IDT
2016	Burke et al. ^[23]	173	1011	820-1650	2-50	0.5-2.0	(ST,RPM),
							SP (JSR)

79 IDT: Ignition Delay Time; SP: Species Profile; LFV: Laminar Flame Velocity; ST: Shock Tube;
80 JSR: Jet Stirred Reactor; CF: Counter-flow Flame; SF: Spherical Flame; FR: Flow Reactor; RPM:
81 Rapid Compression Machine;

The toluene chemical kinetics mechanism has also attracted extensive attention, several typical chemical kinetic models for TRF are presented in Table 3. Zhang et al.[24] added the toluene mechanism in PRF mechanism and improved it to form a simplified TRF mechanism. Heghes et al.[25] modified the mechanism of toluene based on a detailed PRF mechanism proposed by Andrae et al.[13]. Mehl et al.[26] of Lawrence National Laboratory developed a detailed TRF chemical kinetic mechanism that is well matched to experimental data over a wide range of pressures, temperatures, and equivalence ratios.

88

 Table 3.
 Overview of TRF chemical kinetic mechanisms

Time	Literatures	Species	Reactions	T/K	p/atm	${\Phi}$	Experiment s
2007	Andrae et al. ^[27]	1083	4635	800-1450	10-50	0.3-1	ST, HCCI
2009	Zhang et al. ^[24]	70	196	320-1800	1-42	0.5-2	ST, HCCI
2009	Heghes et al. ^[25]	1087	4639	700-1200	30-55	0.5-2	ST, HCCI
2009	Sakai et al. ^[28]	783	2883	500-1700	2-50	0.25-1	ST, FR
2011	Ra et al. ^[29]	113	487	870-1650	13-40	0.3-2	ST, HCCI

89 Further considering fuel chemical reaction mechanism gives an insight of pollutant emission and 90 thermodynamic analysis in engine operation process. Because of the complexity of the detailed mechanisms 91 and the significant stiffness induced by the highly reactive radicals, it is impractical to couple detailed 92 chemical kinetic mechanism with multidimensional CFD model directly, which could be far beyond the 93 current computing capability. So, there is a strong need to reduce chemical kinetic mechanisms which still 94 retain the essential dynamic features of the reaction system in a wide range of IC engine operating conditions. 95 In this paper, the reduced kinetic mechanism of methanol blending with toluene reference fuels is developed by combining the methods of sensitivity analysis and reaction path analysis. Moreover, extensive validated 96 97 were performed by comparing experimental data of shock tube ignition delay times, flow reactor species 98 profiles, pressure profiles with simulation results.

- 99 **2. Mechanism reduction method**
- 100 2.1 Methodology for sensitivity analysis

The sensitivity analysis (SA) method is mainly to analyze the response of the system to small disturbances, and the response value is sensitivity. The sensitivity coefficient can be obtained by solving a set of partial differential equations, and then the importance of each reaction can be determined by comparing the magnitude of each reaction sensitivity coefficient. Removing the less influential reactions is very important to get a preliminary simplified reaction kinetic mechanism. 106 Considering the sensitivity of temperature to the rate constant of the elementary reactions is the 107 temperature sensitivity coefficient, which can be written as[30]:

108
$$\mathbf{S}_{\mathrm{T}} = \frac{\mathbf{k}_{\mathrm{j}}}{\mathrm{T}} \frac{\partial \mathrm{T}}{\partial \mathbf{k}_{\mathrm{j}}} = \frac{\partial \ln \mathrm{T}}{\partial \ln \mathbf{k}_{\mathrm{j}}}$$
(1)

109 Where S_T is the orthogonal temperature sensitivity coefficient, and *T* is the system temperature, and k_j 110 is the parameter of the *j*th reaction in the mechanism.

The SA method can greatly simplify the reaction mechanism by effectively analyzing the dependence among the interrelated reactions and deleting the secondary reactions. However, it has shown that there are problems in the application process if only uses SA, as the reduced mechanism are unstable, and other methods are still needed to be adopted for improving its accuracy.

115 2.2 Methodology for reaction rate analysis

The reaction rate analysis method can analyze the effect of each elementary reaction on the net production rate of a specific specie. This method is widely used in chain reactions analysis, so that the reactions experienced the chain propagation process can be quickly obtained. In the calculation, the reaction rate $P_{\rm K}$ of the specie *K* and the influence coefficient of the different elementary reaction on the reaction rate of the reactant *K* are calculated by the following formulas (2) and (3), respectively[30]:

121
$$P_{K} = \omega_{K} = \sum_{i=1}^{I} v_{ki} q_{i}$$
(2)

122
$$C_{ki}^{p} = \frac{\max{(v_{ki}, 0)q_{i}}}{\sum_{i=1}^{I} \max{(v_{ki}, 0)q_{i}}}$$
(3)

Where v_{ki} is the chemical equivalent coefficient of the *i*th elementary reaction, and q_i represents the reaction rate of the *i*th elementary reaction. *I* is the total number of all elementary reactions that contain reactant *K*. The importance of corresponding elementary reaction can be judged according to the ROP coefficient, which can be obtained by the Chemkin-Pro[31].

127 **3.** Develop and verify methanol and TRF blends reduced mechanism

128 3.1 Build reduced mechanism for methanol

First of all, it is significant to identify main intermediate species, as these species play a crucial role in chemical reaction process. The constant volume homogeneous batch reactor module in the Chemkin-Pro is used to calculate temperature sensitivity coefficients at the l condition of φ =1.0, *p*=3.1atm and *T*=1700K. The sensitivity coefficient of the first ten reactions that have the greatest influence of temperature is listed in Fig.1 by calculating the temperature sensitivity coefficient, as the sensitivity threshold is set to 0.001. If the sensitivity coefficient of a reaction is positive, it means that this reaction is more likely to promote combustion process, and vice versa.

136 Fig.1 indicates that the reaction R30:CH₃OH + HO₂ = CH₂OH + H₂O₂ has the greatest influence on 137 CH₃OH consumption process by H-atom abstraction. In addition, both of reaction $R1:H + O_2 = O + OH$ and $R17:H_2O_2(+M) = OH + OH (+M)$ are sensitive to temperature. As rate of the reaction increases, a large 138 139 amount of heat is released when hydrogen peroxide is decomposed to hydroxyl, promoting the ignition process and reducing the combustion ignition delay time. However, both of the reactions R14: $HO_2 + OH =$ 140 141 $H_2O + O_2$ and $R24:CH_3OH + H = CH_2OH + H_2$ are endothermic, so the temperature sensitivity coefficient is 142 negative. It is should be noted that hydroxyl radical is converted into a stable H₂O molecule via reaction R69:CH₂O+OH<=>HCO+H₂O, but this reaction is exothermic releasing lots of heat to promote ignition. 143 144 Therefore, species appearing in the above top ten most sensitivity reactions are determined as main 145 components, including CH₃OH, H, OH, HO₂, O₂, CH₂OH, CH₃O, CH₂(S), and CH₂O, H₂O, HCO, H₂O₂.

146

147

Fig.1. Temperature sensitivities at the time of ignition for methanol

In the next step, it is important to analyze key consumption pathways of these important intermediates 148 149 (CH₃OH, CH₂OH, CH₃O, CH₂(S), CH₂O, HCO) by using the rate of reaction analysis method, thus those 150 paths that have opposite effects on the ignition delay time can be removed from detailed mechanism. It can be seen from Fig.2, CH₃OH is consumed by the reaction R26:CH₃OH + O = CH₂OH + OH, R28:CH₃OH + 151 $OH = CH_2OH + H_2O$ and $R24:CH_3OH + H = CH_2OH + H_2$, so methanol mainly generated CH_2OH with 152 small species such as with oxygen atom and hydroxyl radical by H abstraction reaction. However, CH₂OH is 153 154 further oxidized generating an important intermediate product (CH₂O) by the reaction R44:CH₂OH + O_2 = $CH_2O + HO_2$. In addition to formaldehyde mainly formed by reaction R44, the reaction R52: $CH_3O + M =$ 155 $CH_2O + H + M$ is also one of important production pathway. Reactions R67: $CH_2O + H = HCO + H_2$ and 156 $R71:CH_2O + O_2 = HCO + HO_2$ are the main consumption pathways of formaldehyde, so CH_2O can be further 157 dehydrogenated to form aldehyde group (HCO). As shown in Fig.2 (d), CH₂O is produced by the reaction 158 159 R29:CH₃OH + OH = CH₃O + H₂O, and then consumed by the reaction R52 and R57:CH₃O + $O_2 = CH_2O + O_2 = CH_2O + O_2O + O_2 = CH_2O + O_2O + O$ HO₂. CH2(S) is mainly formed by the reaction R99:CH₃ + OH = CH₂(S) + H₂O and R36:CH₃OH + M = 160 $CH_2(S) + H_2O + M$, and then consumed via R124: $CH_2(S) + M = CH_2(T) + M$, R118: $CH_2(S) + H = CH + H_2$ 161

and R121:CH₂(S) + OH = CH₂O + H. It indicates that a small portion of methanol will occur decomposition

163 producing $CH_2(S)$ that can form formaldehyde by oxidation reaction. Finally, the H atom is abstracted in the

164 HCO group to form CO, and then CO is oxidized to CO₂.

171

172

Fig.2. Reaction rate of some major intermediates in methanol reduced mechanism.

174 Combining the methods of SA and reaction rate analysis, the above processes were repeated, and

reactions that reaction rate is above 1e-6 mole/cm³-sec are supposed to be remain in reduced mechanism.

176 Therefore, a reduced methanol mechanism including 24 species and 57 reactions was obtained, and it primary

177 oxidation pathways are shown in Fig.3.

178 179

Fig.3. Methanol primary oxidation pathways.

180 3.2 Validate methanol reduced mechanism

The ignition delay time is defined as the time, at which the products CO and O reach a maximum concentration. Table 4 gives the simulation conditions for $CH_3OH/O_2/Ar$ mixture according to the shock tube experiments of Bowman et al.[14]. It can be seen from Fig.4 that the ignition delay time of methanol is advanced with the increase of initial temperature. When the equivalence ratio is 0.375 and 0.75, predictions

185 that simulated via Chemkin-Pro are in good agreement with experimental data. Nevertheless, when the 186 equivalent ratio is 1.5, predicted value of the reduced mechanism is slightly lower than experimental data because part of the species and reactions are removed, causing the pre-exponential factor and the activation 187 188 energy changed. However, the constructed reduced mechanism reflects that the ignition delay time decreases 189 with increasing temperature. It well captures ignition characteristics within the error tolerance during 190 methanol combustion process.

191

Table 4. CH₃OH/O₂/Ar mixture shock tube experiments parameters

Mixture	φ	CH ₃ OH/%	O ₂ /%	Ar/%	Presure/atm
1	0.75	2.00	4.00	94.00	1.40
2	1.5	1.00	1.00	98.00	3.10
3	0.375	1.00	4.00	95.00	2.95

194

195

Fig.4. Comparison of the predicted ignition delay times between the methanol reduced mechanism and experiments data at various equivalence ratio^[14].

196 The flow reactor experiment essentially compensates for the gap between the static reactor and the shock 197 tube experiment for good understanding and developing the combustion dynamics. The flow reactor 198 experiment provides information at the low and medium temperature ranges, typically in the 800-1200K 199 temperature. The flow reactor is set to a homogeneous condition and is adiabatic. Aronowitz et al.[16], Norton 200 et al.[32] and Held et al.[15] simulated methanol oxidation in a flow reactor. Table 5 summarizes the

201 experimental conditions for the flow reactor. Fig.5 shows important species concentration file and 202 temperature file that calculated by the methanol reduced mechanism. For all cases, prediction of the CH_3OH 203 and CO concentration are generally consistent with experimental measurements. As a result, the model is 204 able to well predict major species, while the temperature is a little bit over predicted at the end of combustion, 205 which mainly because the model that we assumed is adiabatic.

Table 5. The summation of the experimental conditions for the flow reactor

Case	Experiments	<i>T</i> /K	<i>p</i> /atm	φ	CH ₃ OH/%	O2/%	N2/%
a	Aronowitz et al. [16]	1000	1	1.6	0.735	0.6891	98.5759
b	Norton et al. [32]	1030	1	1.22	0.943	1.1594	97.8976
c	Held et al. [15]	949	2.5	0.83	0.333	0.6018	99.0652
0.007 0.006 0.005 0.004 0.003 0.000 0.002 0.001 0.000 0.001	CH ₃ OH CO Temp 3 0.10 0.12 0.14 Time (s)	Case a	1150 0.012 1100 0.001 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00		0.04 0.06 0.0 Time (s)		1200 ase b 1150 1150 1100 1050 1000 0.12
0.008 0.006 Uge traction 0.004 0.000 0.002	CH ₀ H CO O ₂ H ₁ O Temp	Case c	1100 1050 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000				

209

210

Fig.5. Comparison of modeling and experimental results for major species concentration of methanol (Signal represents experiments data, and line represents methanol reduced model predictions).

211 3.3 Build reduced mechanism for TRF

Based on the semi-detailed mechanism of TRF created by Andrae et al.[13], same methods are used to reduce it like methanol mechanism reduced process. But there is difference between the simplified process of methanol and TRF mechanism, because sensitivity analysis is no longer used to determine important components in reaction process. The reactions that sensitivity coefficient greater than thresholds are screened out directly, since the mechanism of TRF has many components and is more complicated than that of methanol. Then the reaction rate analysis is used to find out its overall reaction pathway to develop a new TRF reduced mechanism.

219 According to the experiments of Andrae [13], there are 7 different blends ratio of TRF, and it can be seen 220 in Table 6. In the case 6 and 7, fuels are blended according to liquid volume ratio, and others are mole volume 221 ratio. Giving different sensitivity thresholds can generate simplified mechanisms with different scales. The 222 higher the threshold is, the more species will be deleted, thereby giving rise to greater error. However, 223 fluctuation also occurs during the reduction process that can be seen when equivalence ratio is 0.5, because the coupling strength among the species is different in mechanism, and the number of reactions and 224 225 components are discontinuous functions with the threshold changing. Four reduced TRF mechanisms and its maximum errors are listed in Table 6, and each of them for 7 cases is validated by simulating ignition delay 226 227 time in shock tube model.

228

Table 6. Four reduced TRF skeleton mechanisms at various thresholds

Threshold	Species	Reactions	Maximum error/%
0.001	125	452	33.6
0.01	107	324	33.8
0.05	98	247	24.9
0.1	91	196	30.4

229 Considering accuracy and degree of simplify, the reduced mechanism that has 98 species and 247 230 reactions was regarded as the sub-mechanism of TRF. The most sensitivity coefficients of the top 10 reactions 231 is shown in Fig.6, at which the threshold is set as 0.05, T=1023K, p=3.04Mpa and $\varphi=1$.

234 It can be seen from Fig.6 that reaction $R335:H_2O_2 + M = OH + OH + M$ has greatest impact on 235 combustion temperature, since H₂O₂ decomposes producing lots of OH radicals that will rapidly react with other free radicals. Therefore, this reaction promotes system temperature rapidly. In addition, $R743:JC_8H_{16} =$ 236 237 $IC_4H_8 + CH_2CHCH_2 + CH_3$ and $R462:C_2H_4 + OH = C_2H_3 + H_2O$ also have high temperature sensitivity. On 238 the other hand, $R327:H + O_2 + N_2 = HO_2 + N_2$ and $R81:C_6H_5O + H = C_6H_5OH$ are endothermic reactions, so 239 increasing their reaction rate can decrease the system temperature. Reaction R332: $OH + HO_2 = H_2O + O_2$ 240 and R89:C₆H₅OH + OH = C₆H₅O + H₂O compete with other species to consume HO₂ and OH, suppressing 241 TRF consumption and making heat release slows down.

The TRF reduced mechanism includes the following parts: toluene mechanism, hydrocarbon small molecule mechanism, n-heptane skeleton mechanism, isooctane skeleton mechanism. Part of reactions that have been removed by the sensitivity analysis in the PRF are listed in Table 7, and are added in the final reduced mechanism.

No. Reactions Α Е n R705 6.000E+13 0.0 $C_7H_{16}+O_2 <=> C_7H_{15}-1+HO_2$ 52820 R718 0.0 $C_7H_{14}O_2H+O_2 <=>O_2C_7H_{14}O_2H$ 5.600E+12 0.0 17010 R719 $O_2C_7H_{14}O_2H \le HO_2C_7H_{13}O_2H$ 2.000E+11 0.0 R720 1.000E+09 0.0 7500 $HO_2C_7H_{13}O_2H \le OC_7H_{13}O_2H + OH$ R722 OC7H13O<=>CH2O+C5H11+CO 2.000E+13 0.0 15000 R725 $C_5H_{11} \le C_2H_4 + I^*C_3H_7$ 7.972E+17 -1.4429876 R730 $I*C_3H_7+H \le C_2H_5+CH_3$ 5.00E+13 0.0 0.0 R731 $PC_4H_9(+M) \ll C_2H_5 + C_2H_4(+M)$ 1.06E+13 0.0 27828 R732 $PC_4H_9 <=> C_2H_5 + C_2H_4$ 2.50E+13 0.0 28800 R734 AC8H17+O2<=>AC8H17OO 1.00E+12 0.0 0.0 R735 $AC_8H_{17}OO \le AC_8H_{16}OOH-B$ 1.14E+110.0 22400 43000 R739 $OC_8H_{15}OOH \le OC_8H_{15}O + OH$ 3.98E+15 0.0

 $E/R^{o}T$)

248	Furthermore, toluene is different from n-heptane and iso-octane, due to its unique benzene ring structure.
249	The ring should be relieved in reaction process, and it is quiet complicated. The conventional reduced process
250	may neglect some toluene-specific reaction pathways. Therefore, the rate of production of some species
251	related to toluene is analyzed when T=500K, p=2atm, and φ =0.5. In Fig.7, toluene (C ₆ H ₅ CH ₃) is mainly
252	consumed by R4: $C_6H_5CH_3 + OH = C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$, then $C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$, then $C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$, then $C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$, then $C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$, then $C_6H_5CH_2 + H_2$ and R9: $C_6H_5CH_3 + O = OC_6H_4CH_3 + H$.

- 253 reacts with HO₂ and O₂ formed C₆H₅CHO and C₆H₅CH₂OO via reactions R27: C₆H₅CH₂ + HO₂ = C₆H₅CH₂O
- + OH and R33: $C_6H_5CH_2 + O_2 = C_6H_5CH_2OO$. The intermediate species benzene (C_6H_6) is mainly formed
- by the decomposition of $OC_6H_4CH_3$ in the reaction R60: $OC_6H_4CH_3 = C6H6 + CO + H$, and it is consumed
- 256 to phenyl (C₆H₅) and C₆H₅O by reaction R68: C₆H₆ + OH = C₆H₅+H₂O and R66: C₆H₆ + O = C₆H₅O + H
- 257 respectively.

Fig.7. Reaction rate of some major intermediates in TRF final reduced mechanism.

The TRF reduced mechanism, combining simplified toluene sub-mechanism, the PRF skeleton mechanism and the hydrocarbon small molecule mechanism, can be obtained after sensitivity analysis and reaction rate analysis, including 98 species and 264 elementary reactions.

268 3.4 Validate TRF reduced mechanism

The ignition delay time verification for TRF under 7 different fuel blends cases[20] is performed, and it can be seen in Table 8. In case 6 and 7, fuels are blended as liquid volume ratio, while others are mole volume ratio. Fig.8-10 present the comparison of predicted ignition delay times and experimental data[33,34,35] in shock tube accordingly.

273

Table 8. The initial conditions of shock tube experiments for TRF fuel.

Situation	arphi	C_7H_{16} /%	C_8H_{18} /%	C ₆ H ₅ CH ₃ /%	<i>p</i> /Mpa
1	1.0	100	0	0	4.0
2	1.0	0	100	0	4.0
3	1.0	20	80	0	4.0
4	1.0	0	0	100	3.04
5	1.0	0	0	100	5.07
6	1.0	17	63	20	3.04
7	1.0	17	63	20	5.07

In Fig.8, the ignition delay times show clearly negative temperature coefficient (NTC) behavior for case 1, 2 and 3, and the predictions are well agreed with experimental value[33]. It can also explain the low temperature response characteristics of TRF when temperature ranges from 850K to 1200K. As temperature is above 1000 K, there is no significant difference of ignition delay time among these mixtures. Besides, it is easy to see that the ignition delay time is advanced as octane number decreasing of a stoichiometric fuel/air mixture. The n-heptane octane number is 0 and the isooctane is 100. Overall, the dependence of ignition delay time on octane is excellently consistent with the shock tube presentation.

Fig.8. Ignition delay time of TRF for situation 1-3 (Signal represents experiments data[33], and line represents predictions).

Fig.9 indicates that the TRF reduced mechanism can capture the tendency of ignition delay time with temperature at 3.04 MPa and 5.07Mpa operating conditions[34]. It also can be found that the ignition delay time predictions agree well with experimental data[35] in Fig.10. Besides, the ignition delay time decreases with increasing pressure.

Fig.9. Ignition delay time of TRF for situation 4 and 5. (Signal represents experiments data[34], and

289 290

288

293

Fig.10 Ignition delay time of TRF for situation 6 and 7. (Signal represents experiments data[35], and

line represents predictions)

TRF is adopted in engines widely, so internal cylinder pressure can be used to vilify the accuracy of TRF reduced mechanism in HCCI by using the zero-dimensional single-zone engine module in Chemkin-Pro. Assuming that the combustion process is adiabatic, ignoring gas loss from the intake and exhaust. Moreover, n-heptane / isooctane / toluene liquid volume ratio is 17/69/14, and engine speed is 1200rpm, and compression ratio is 14.04, as shown in Table 9.

Table 9. Operating conditions in HCCI engine ^[36]

Situation	φ	<i>p</i> /Mpa	T/K	<i>n</i> /rpm
1	0.25	0.1	523	1200

|--|

Fig.11 shows the comparison of cylinder pressure between the simulation of TRF reduced and detailed mechanism at Andrae et al. experimental conditions [36]. In Fig.11, the predictions of peak pressure for both mechanisms show great agreement, presenting great prediction of ignition process in HCCI for TRF reduced mechanism.

307

308 3.5 Validate methanol blending with TRF fuel reduced mechanism

Coupling methanol and TRF reduced mechanisms that have been validated in above section, a new reduced of mechanism for methanol blending with TRF fuel can be proposed that including 100 species and 290 elementary reactions. After that extensive validation should be performed, so ignition delay time for methanol and TRF are supposed to be validated separately by comparing the simulation of the methanol and TRF blends reduced mechanism with experiments data, and the methanol shock tube experimental conditions can be found in Table 4.

It can be seen from the Fig.12 that the ignition delay time of methanol is advanced with the increase of temperature when equivalence ratio from 0.375 to 1.5. Although the prediction is slightly lower than experimental value [14], it still can be regarded that the constructed mixed reduced kinetic model can well predict methanol ignition delay time at the range of 1500-2100K.

Fig.12. Comparison of the predicted ignition delay times between the mixed reduced mechanism and
 experiments data at various equivalence ratio[14].

Initial simulation conditions of mixed reduced mechanism in shock tube can be found in Table 8. In 323 324 Figure 13, the comparison of M+TRF reduced mechanism and TRF detailed mechanism is presented at the condition of 30atm and stoichiometric. A great agreement shows that reduced model can as good as detailed 325 326 mechanism predict ignition delay time at wide conditions. It can also be seen from the Fig.14 that ignition 327 delay times of the mixed reduced mechanism are in good agreement with experimental value [33,34,35]. Besides, the Fig.15 shows a comparison between the results of methanol-TRF reduced mechanism 328 329 calculations and the experimental results of the shock tube measurements for toluene by Davidson et al. [30]. 330 Clearly, there is good agreement between the experimental data and the calculated data under the pressure of 3.04 MPa and 5.07 MPa, especially under relatively high temperature conditions. Overall, the mixed reduced 331 mechanism not only well captures the ignition characteristics at all pressure and temperature ranges, but also 332 can demonstrate the phenomenon that ignition delay time is advanced as the octane number decreases of a 333 334 stoichiometric fuel/air mixture.

Fig.13. Comparison of the predicted ignition delay times between the detailed and reduced mechanism.

-

343

Fig.15. Comparison of the predicted ignition delay times between the methanol-TRF reduced mechanism and experiments data at different pressures[30].

Then, those important species in mixed reduced mechanism should be validated by comparing the simulation of methanol and TRF blends reduced mechanism with experiments data[16,32,15]. Conditions for the flow reactor simulation are shown in Table 5. Fig.16 shows that species concentration profile and temperature profile of the mixed reduced mechanism are generally consistent with measurements in flow reactor. When equivalence ratio ranges from 0.375 to 1.5, the predicted peak value of CH₃OH, CO, O₂ and H₂O are close to experimental data. Therefore, the methanol and TRF blends reduced chemical kinetic model can be used to predict concentration variation of some important species in combustion process.

352

Fig.16. Comparison of modeling and experimental results for species concentration (Signal represents 353 experiments data[16,32,15], and line represents methanol and TRF reduced model predictions).

4. The effect of methanol on TRF performance 355

In order to study the effect of methanol on TRF combustion and emission performance, we blend 356 357 different ratio of methanol in TRF. The liquid volume ratio of the methanol in blends fuel is shown in Table 10. 358

359 Fig.17 shows the heat release rate for different volume fractions of methanol in TRF fuel. The simulated HCCI engine conditions are shown in Table 9. Start timing of exothermic is advanced with the blending ratio 360 of methanol fuel increasing, because methanol is a high-octane fuel and contains oxygen atom that can 361 promote combustion complete. In addition, combustion duration decreases, while the peak of exothermic rate 362 363 and total heat release increase gradually, since the addition of methanol inhibits the secondary oxidation 364 reaction of other fuel components.

Table 10 The liquid volume ratio of methanol in blends fuel

Number	C8H18	C7H16	C ₆ H ₅ CH ₃	CH ₃ OH
M0	0.420	0.150	0.430	0
M10	0.387	0.135	0.378	0.1
M20	0.344	0.120	0.336	0.2
M30	0.301	0.105	0.294	0.3
M40	0.258	0.090	0.252	0.4

Fig.17. The heat release rate comparison for different volume fractions of methanol in TRF fuel.

Fig.18. The effect of methanol volume fraction on CH₂O emissions.

Figure 18 shows the effect of methanol volume fraction on CH₂O emissions with T=1400 K, p=5.07 MPa, and φ =1.0. It can be seen from Fig. 16 that as the proportion of methanol increases, the CH₂O mole fraction gradually goes up accordingly. When blending 20% methanol in TRF, the emission of formaldehyde is doubled compared to the TRF. This is a good explanation why methanol blending ratio in gasoline is generally 5%, 10% and 15%, as its purpose is to control the emission deterioration of formaldehyde.

375 **5. Conclusions**

(1) A new reduced chemical kinetics mechanism for the four components alternative fuel (methanol, n-heptane, isooctane and toluene) including 100 species and 290 reactions was developed based on the SA and reaction pathway analysis methods, which was verified by shock tube, flow reactor and HCCI engine. The results show great agreement with experimental data and present the dependence of ignition delays on octane value.

(2) The main intermediates of methanol oxidation were determined by sensitivity analysis method, and
 then the reaction kinetics analysis method was used to understand and select key consumption pathways of

important intermediates. A reduced methanol mechanism was constructed, consisting 24 species and 57
 reactions, and it was verified by shock tube and flow reactor model.

(3) Using the temperature sensitivity analysis, four preliminary simplified kinetic models of TRF with different components and reactions was obtained. The simplified mechanism was selected when the threshold is 0.05, including 98 components and 247 reactions. Then, using the reaction rate analysis to integrate the whole mechanism, the final vision of TRF reduced mechanism was built, including 98 components and 264 reactions, and it is successfully verified via shock tube and HCCI engine model.

(4) The methanol simplification mechanism was added to the TRF simplification mechanism, and a
 four-component mixed simplification kinetic mechanism consisting of 100 components and 290 elementary
 reactions was constructed

(5) The effects of different methanol blending ratios on TRF combustion characteristics and emissions were investigated using a simplified four-component mixing mechanism. The results show that methanol inhibits the secondary oxidation process of TRF components. As the methanol volume fraction increasing, the exothermic start time is advanced, and the exothermic rate peak and total heat release increase. However, the burning duration is reduced. Therefore, exothermic peak and ignition timing can be controlled by changing the ratio of fuel components.

(6)The molar fraction of CH₂O increases with the increase of methanol concentration. When the concentration of methanol in TRF reaches 20%, formaldehyde emission is doubled compared with original toluene reference fuel.

402 References

 Han D, Ickes A M, Bohac S V, et al. Premixed low-temperature combustion of blends of diesel and gasoline in a high speed compression ignition engine[J]. Proceedings of the Combustion Institutes, 2009, 33(2):3039-3046.

[2] Dec, John E. "Advanced compression-ignition engines—understanding the in-cylinder processes." Proceedings of the combustion institute 32.2 (2009): 2727-2742.

 [3] Bendu, Harisankar, and S. Murugan. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines." Renewable and Sustainable Energy Reviews 38 (2014): 732-746.

[4] Lawler, Benjamin, et al. "Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility." Applied energy 189 (2017): 122-132.

[5] Lu, Xingcai, Dong Han, and Zhen Huang. "Fuel design and management for the control of advanced compression-ignition combustion modes." Progress in Energy and Combustion Science 37.6 (2011): 741-783.

[6] Yap D, Megaritis A, Wyszynski ML. "An investigation into bioethanol homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping," Energy & Fuels 2004;18(5):1315–23.

[7] Noguchi M, Tanaka Y, Tanaka T, Takeuchi Y. "A study on gasoline engine combustion by observation of intermediate reactive products during combustion," SAE Technical Paper Series No. 790840; 1979
[8] M. Bahattin Çelik, Bülent Özdalyan, Faruk Alkan. The use of pure methanol as fuel at high

compression ratio in a single cylinder gasoline engine[J]. Fuel, 2011, 90(4):1591-1598.

[9] Turner J W G, Pearson R J, Dekker E, et al. Extending the role of alcohols as transport fuels using isostoichiometric ternary blends of gasoline, ethanol and methanol[J]. Applied Energy, 2013, 102(2):72-86.

[10] Mehl M., Pitz W. J., Westbrook C. K., et al. Kinetic modeling of gasoline surrogate components and

mixtures under engine conditions [J]. Proceedings of the Combustion Institutes, 2011, 33(1): 193-200.

[11] American Society for Testing and Materials, Annual Book of ASTM Standards. Test methods for rating motor, diesel and aviation fuels (05.04), 1993.

[12] Mittal G., Sung C. J. Autoignition of toluene and benzene at elevated pressures in a rapid compression machine [J]. Combustion and Flame, 2007, 150(4): 355-368.

[13] Andrae J C G, Brinck T, Kalghatgi G T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model[J]. Combustion & Flame, 2008, 155(4):696-712.

[14] Bowman C T. A shock-tube investigation of the high-temperature oxidation of methanol[J]. Combustion and Flame, 1975, 25: 343-354.

[15] Held T J, Dryer F L. A comprehensive mechanism for methanol oxidation [J]. International Journal of Chemical Kdnetics, 1998, 30 (11): 805-830.

[16] Aronowitz D, Santoro R J, Dryer F L, et al. Kinetics of the oxidation of methanol: Experimental results semi-global modeling and mechanistic concepts[C]//Symposium (International) on Combustion. Elsevier, 1979, 17(1): 633-644.

[17] Westbrook C K, Dryer F L. Comprehensive mechanism for methanol oxidation[J]. Combustion Science and Technology, 1979, 20(3-4): 125-140.

[18] Thomas S. Norton, Frederick L. Dryer. Some New Observations on Methanol Oxidation Chemistry[J]. Combustion Science and Technology, 1989, 63(1-3):107-129.

[19] Tsang W. Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol[J]. Journal of Physical and Chemical Reference Data, 1987, 16(3):471-508.

[20] Li J, Zhao Z, Kazakov A, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109-136.

[21] Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 3.0[J]. URL: http://www. me. berkeley. edu/gri mech, 1999, 51: 55.

[22] Zhang F, Shuai S, Wang Z, et al. A detailed oxidation mechanism for the prediction of formaldehyde emission from methanol-gasoline SI engines[J]. Proceedings of the Combustion Institute, 2011, 33(2):3151-3158. [23] Burke U, Metcalfe W K, Burke S M, et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame, 2016, 165(5):125-136.

[24] Qingfeng Zhang, Zhaolei Zheng, Zuwei He. Reduced chemical kinetic model of toluene reference fuels for HCCI combustion[J]. Acta Phys.-Chim. Sinica, 2009, 27(3): 530-538.

[25] Heghes C., Morgan N., Riedel U., et al. Development and validation of a gasoline surrogate fuel kinetic mechanism [C]. SAE Paper 2009-01-0934, 2009.

[26] Mehl M., Chen J. Y., Pitz W. J., et al. An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling [J]. Energy & Fules, 2011, 25(11): 5215-5223.

[27] Andrae J. C. G., Bjornbom P., Cracknell R. F., et al. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics [J]. Combustion and Flame, 2007, 149(1-2): 2-24.

[28] Sakai Y., Miyoshi A., Koshi M., et al. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics [J].Proceedings of the Combustion Institute, 2009, 32(1): 411-418.

[29] Ra Y., Reitz R. D. A combustion model for IC engine combustion simulations with multi-component fuels [J]. Combustion and Flame, 2011, 158(1): 69-90.

[30] S. H. Lam. Reduced Chemistry Modeling and Sensitivity Analysis [J]. Lecture Notes for Aerothermochemistry for Hypersonic Technology (April 24–28, 1995), pp. 1994-1995

[31] R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, C. L. McLellan, O. Adigun, W. G. Houf, C. P. Chou, S. F. Miller, P. Ho, P. D. Young, D. J. Young, D. W. Hodgson, M. V. Petrova, and K. V. Puduppakkam, CHEMKIN Release 4.1, Reaction Design, San Diego, CA (2006).

[32] T.S. Norton, F.L. Dryer, et al. Some new observations on methanol oxidation chemistry[J].Combust. Sci. Technol. 63 (1989) 107.

[33] K. Fieweger, R. Blumenthal, G. Adomeit, et al. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure[J].Combust. Flame 109 (1997) 599–619.

[34] D.F. Davidson, B.M. Gauthier, R.K. Hanson, et al. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures[J].Proc. Combust. Inst. 30 (2005) 1175–1182.

[35] B.M. Gauthier, D.F. Davidson, R.K. Hanson, et al. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures[J].Combust. Flame 139 (2004) 300–311.

[36] J C G Andrae, R A Head. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model[J].Combustion and Flame,2009, 156(4): 842-851.