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1 Introduction

Robert S Laramee:

Evaluation, solved and unsolved problems, and future directions are popular themes

pervading the visualization community over the last decade. The top unsolved prob-

lems in both scientific and information visualization was the subject of an IEEE

Visualization Conference panel in 2004 [10]. The future of graphics hardware was

another important topic of discussion the same year [6]. The subject of how to eval-

uate visualization returned a few years later [3, 12]. Chris Johnson published a list of

top problems in scientific visualization research [4]. This was followed up by report

of both past achievements and future challenges in visualization research as well as

financial support recommendations to the National Science Foundation (NSF) and

National Institute of Health (NIH) [5]. C. Chen recently published the first list of

top unsolved information visualization problems [1]. Future research directions of

topology-based visualization was also a major theme of a workshop on topology-

based methods [2, 11]. Laramee and Kosara published a list of top future challenges

in human-centered visualization [7].

These pervasive themes coincide roughly with the 20th anniversary of what is

often recognized as the start of visualization in computing as a distinct field of re-

search [8]. Consensus is growing that some fundamental problems have been solved

and a re-alignment including new directions is sought. In accordance to this redirec-

tion, we present a list of top unsolved problems and future challenges in multi-field

visualization. Our list draws upon discussions at the Dagstuhl Workshop in Scien-

tific Visualization 2011 as well as our own first hand experiences.
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2 Challenges

Hamish Carr on Topology:

While scalar and vector topology have received a lot of attention, multifield topol-

ogy and visualisation techniques based on it have not. Moreover, where a large body

of literature existed on topological analysis of scalar or vector data, the same is not

true for multi-field topology. For example, Morse-Smale complexes are based on

gradient lines, but in multifield data, the gradient is replaced by the Jacobian, a ten-

sor quantity, and it is far from clear what the equivalent of a gradient line might be.

Even were there to be an equivalent, the mapping to features in the underlying phe-

nomena is not clear - where the Morse-Smale complex can be understood in terms

of drainage patterns, such metaphors are not immediately obvious for multifields.

As a result, the challenges related to multifield topology are manifold, including

developing the underlying mathematics, insight and metaphors, as well as the usual

topological feature descriptions, algorithms, data structures, visualization methods,

and interfaces.

Min Chen on Standard Protocols:

One of the most fundamental challenges in multi-field visualization is to establish a

set of intuitive and effective protocols for using visual channels. Given a multi-field

data set, a “brute-force” visual design would be to juxtapose the visualizations of

individual fields. However, such a visual design cannot support many comparative

or combinational tasks effectively because of the difficulties in visual search for

spatially corresponding positions across many images. An alternative approach is

to depict information in the multi-fields in a comparative or combinational manner.

However, as existing visual representations have largely been developed for single

field visualization, combining such visual representations into a single visualization

will inevitable cause conflicts in using visual channels. For instance, if the color

channels are being used for one field, the other fields may have to make use of less

desirable channels. Furthermore, there is no commonly agreeable means to depict

the effect of constructive operations on different fields. For example, if one has used

the texture channel to depict the similarity and difference between two scalar fields,

perhaps one should not use such a channel for depicting the addition or union of

these two fields in the same application. Hence, we may challenge ourselves with

the following questions. Should there be some standard (or de facto standard) vi-

sual designs or visual metaphors for depicting different constructive operators (e.g.,

addition, subtraction, mean, OR, AND, etc.)? Should there be some standard (or

de facto standard) protocols for visualizing some common configurations of multi-

fields, such as two or a few scalar fields, on scalar field and one vector field, and so

on? Can we evolve such protocols from some ad hoc visual effects, to commonly

adopted visual metaphors, and eventually to standardized visual languages?
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Helwig Hauser on Multi-dimensional, Scientific Visualization:

One common notion of scientific data is to consider it as a mapping of independent

variables – usually space and/or time in scientific visualization – to a set of depen-

dent values, very often resembling some measurements or computational simula-

tion results that represent different aspects of a natural or man made phenomenon.

Traditionally, neither the spatio-temporal domain nor the dependent variables are

of higher dimensionality. A larger number of dependent values, however, leading

to multi-variate data (as a special case of multi-field data), however, has recently

lead to interesting visualization research. Highly interesting and very challenging,

also, the emergence of higher-dimensional scientific data (in the sense of a higher-

dimensional domain) leads to new visualization questions. Multi-run/ensemble sim-

ulation data, for example, includes parameters as additional independent variables.

New approaches are needed to deal with this situation, especially in the context of

scientific visualization, where generally a stronger and more immediate relation is

present between the domain of the data and the visualization space (and to estab-

lish this relation in an effective way becomes more challenging, obviously, the more

dimensions the data domain has). The integration of descriptive statistics, for ex-

ample, is one opportunity that allows to perform a linked interactive visual analysis

both on aggregation level as well as on the original multi-run data. It seems clear,

however, that more research is needed to more thoroughly discuss, what the best

possible approaches are.

Robert S Laramee on Spatial Integration:

Another major challenge of multi-field visualization is the integration (or coupling)

of two or more data fields into the same spatial domain from which they originate. A

common example is from computational fluid dynamics (CFD) [9]. CFD simulation

data generally contains many attributes, e.g., flow velocity, pressure, temperature,

kinetic energy, etc. And each multi-attribute data sample is associated with the same

spatial domain. It is tempting to separate each attribute into its own visualization

space, either abstract or scientific. However, integration of the data attributes into

the same spatial domain from which they stem offers distinct advantages. However,

how can such an integration be done in a meaningful and helpful way without over-

crowding the visualization space?

Lars Linsen on Intuitive Visual Exploration of Multi-variate Features:

Features may have a complicated geometrical structure in the multi-dimensional

attribute space. Extracting those features interactively is often tedious, if not im-

possible. Automatic components can help to compute such features. However, an

intuitive visual exploration of such features is crucial to the user’s understanding.

What is the object space representation and, more importantly, what attribute values
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correspond to such a feature? Are their other features that are related, which pos-

sibly should have been merged by the automatic component? How homogeneous

is a feature? Are their sub-regions within a feature that allow for further splitting

of the feature? Such questions shall a user be able to answer when exploring the

multi-field data. Intuitive visual encodings in object- and attribute-space as well as

intuitive interaction mechanisms need to be provided.

Klaus Mueller on Channel Fusion:

The term “channel” is often used in the context of color images, comprised of a reg-

ular array of RGB color pixels. By mapping these 3D vector data to the three display

primaries, channel fusion can occur directly in the viewers visual system, engaging

the tristimulus processes of color perception. However, once the number of chan-

nels exceeds three, the fusion must be externalized via some analysis and subsequent

transformation to RGB color for display. In essence, one may regard this fusion as

a mapping from H to L where H is the original and L the reduced number of chan-

nels, with the latter being three in this case. These types of reductive mappings are

often encountered in low-dimensional embeddings of high-dimensional data. Such

embeddings are ill-defined once the number of significant principal components in

H is greater than L, which is most often the case. Hence, when applying such tech-

niques for channel fusion, one must make certain trade-offs which are also deter-

mined by the type of dimension reduction technique used. There are a great many

of these, some linear (PCA, LDA, and others) and some non-linear (MDS, LLE,

and others). The former require some kind of component thresholding for channel

reduction, while the latter suffer from distortion problems. Since in our specific case,

both thresholding and distortion will affect the color composition of the display – as

opposed to the spatial layout – the effects are possibly more noticeable. This leaves

much room for further study. For example, it will be interesting to examine to what

extent feature analysis and user-defined or learned constraints can be used to allevi-

ate or control the adverse effects of dimension reduction in color display. A targeted

and intuitive user interface might be needed to determine the appropriate fusion

mapping. Finally, since gradients and higher-order derivatives are often employed

in the graphics rendering of the data, it will be beneficial to study how the tensor

resulting from high-dimensional derivative calculus can be interpreted for shading

and other gradient-enhancements in 3D.

Vijay Natarajan on Categorizing Relationships between Fields:

Scientists try to understand physical phenomena by studying the relationship be-

tween multiple quantities measured over a region of interest. A characterization of

the relationship between the measured/computed quantities will greatly enable the

design of effective techniques for multifield visualization. For example, the depen-

dence between fields could be linear or non-linear, the fields could be statistically
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correlated, or the relationship can be inferred using information theoretic measures.

A challenging problem in this context is the categorization of different types of re-

lationships and the design of measures that quantify the relationship in each case.

Harald Obermaier on Field Prioritization:

Modern simulation and measurement techniques can generate large numbers of

fields spanning a wide range of types. While some of these fields may be crucial

for the understanding and analysis of the behavior of the system, others may be

used to enhance or extend the insights gained by multi-field visualization, while fur-

ther others are largely irrelevant from an application or visualization point-of-view.

Such a static prioritization of fields in a multi-field setting limits the potential of

in-depth visual analysis especially in the area of application-driven data analysis,

where the focus of interest can change during exploration. Future research in (inter-

active) multi-field visualization has to develop and integrate techniques that allow

for a dynamically changing focus or field prioritization. Especially for inhomoge-

neous field types the question remains, how and whether multi-field visualization

can incorporate such dynamic changes in an intuitive and expressive way.

Ronald Peikert on Feature-based Visualization:

The challenges of multi-field visualization also extend to the area of feature-based

visualization. Many useful techniques have been developed for finding inherent fea-

tures in scientific data. They typically operate on one or at most two scalar, vector

or tensor fields. In most cases, such feature detectors are not based on concepts that

easily generalize to larger multi-fields containing additional variables. A feature can

in the simplest case be represented by scalar field indicating the presence or absence

of the feature or, alternatively, a probability for the feature to be present at a given

location. But even with this simple notion of a feature, it is not clear how to combine

a large number of them in a single visualization. To visualize their statistics, e.g.,

using uncertainty visualization techniques, can be a solution, but only if the features

are based on the same physical quantities and can therefore be directly compared.

New approaches are needed if the underlying multi-field represents a multitude of

physical quantities, in which case features having different meanings are to be com-

bined in one visualization. Extending other feature concepts, such as geometric or

topological ones, to multi-fields will be an additional challenge.

Eugene Zhang on Tensor Fields and their Derived Fields:

Given a tensor field of some order, it is possible to derive a number of tensor fields

from it. Examples of this includes the spatial gradient, the Laplacian, and the diver-

gence. The derived fields contain rich information and provide great insight to the
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original field. However, the derived fields often are of a different order. This leads

to the need of simultaneous analysis and visualization of multiple tensor fields of

different types. Most existing work on multi-field analysis focuses on fields of the

same type, and there has not been much research on higher-order tensor fields due

to the mathematical and physics background it often requires.
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