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RNA aptamers are synthetic single stranded RNA oligonucleotides that function

analogously to antibodies. Recently, they have shown promise for use in treating

inflammatory skin disease as, unlike antibody-based biologics, they are able to enter

the skin following topical administration. However, it is important to understand the

inflammatory milieu into which aptamers are delivered, as numerous immune-modulating

mediators will be present at abnormal levels. LL-37 is an important immune-modifying

protein upregulated in several inflammatory skin conditions, including psoriasis, rosacea

and eczema. This inflammatory antimicrobial peptide is known to complex nucleic

acids and induce both inflammatory and interferon responses from keratinocytes. Given

the attractive notion of using RNA aptamers in topical medication and the prevalence

of LL-37 in these inflammatory skin conditions, we examined the effect of LL-37

on the efficacy and safety of the anti-IL-17A RNA aptamer, Apt 21-2. LL-37 was

demonstrated to complex with the RNA aptamer by electrophoretic mobility shift and

filter binding assays. In contrast to free Apt 21-2, LL-37-complexed Apt 21-2 was

observed to efficiently enter both keratinocytes and fibroblasts by confocal microscopy.

Despite internalization of LL-37-complexed aptamers, measurement of inflammatory

mediators and interferon stimulated genes showed LL-37-complexed Apt 21-2 remained

immunologically inert in keratinocytes, fibroblasts, and peripheral blood mononuclear

cells including infiltrating dendritic cells and monocytes. The findings of this study

suggest RNA aptamers delivered into an inflammatory milieu rich in LL-37 may become

complexed and subsequently internalized by surrounding cells in the skin. Whilst the

results of this study indicate delivery of RNA aptamers into tissue rich in LL-37 should not

cause an unwarranted inflammatory of interferon response, these results have significant

implications for the efficacy of aptamers with regards to extracellular vs. intracellular

targets that should be taken into consideration when developing treatment strategies

utilizing RNA aptamers in inflamed tissue.
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INTRODUCTION

RNA aptamers are synthetic single stranded RNA
oligonucleotides that bind targets with high specificity and
affinity. Whilst they function like antibodies, there are several
advantages presented by these molecules over their protein-
based counterparts, boasting improved thermostability, reduced
immunogenicity, and cheaper, more tractable production
by chemical synthesis (1, 2). RNA aptamers are becoming
an increasingly attractive immune-modulating tool for the
treatment of disease. In particular, they have great potential for
use in topical treatment of inflammatory skin conditions as they
are small in size and therefore may effectively penetrate the skin,
allowing direct treatment of diseased tissue without delivering
a systemic dose of antibody-based biologics. This has been
illustrated recently by delivering an anti-IL-23 RNA aptamer
into epidermal compartments of porcine and ex vivo skin (3).
However, when treating diseased tissue, it becomes important to
consider the altered inflammatory milieu into which the drug
is delivered.

In pathologically inflamed tissue, the upregulation of
immune-modifying cytokines and proteins may impact on
the efficacy of delivered RNA aptamers. One such protein is
the anti-microbial peptide cathelicidin (LL-37) (4–8). LL-37
is derived from the precursor hCAP18, which is proteolysed
to generate a biologically active C-terminal peptide of 37
amino acids, of which the first two are leucines (9). LL-37 is
produced in the skin primarily by keratinocytes in response to
invading micro-organisms and, once proteolytically activated,
functions as a microbicidal peptide. This cationic peptide (with
an α-helical structure) can bind the membranes of bacteria
and enveloped viruses, polymerise on membrane surfaces and
cause membrane disruption, killing invading organisms (10). In
recent years, it has become evident LL-37 possesses numerous
functions aside from its anti-microbial activity; many of which
are immunomodulatory. Interestingly with regards to RNA
aptamers, LL-37 has a high affinity for single and double
stranded nucleic acids and is capable of enhancing inflammation
through promoting toll-like receptor (TLR) activation (11–13).
Furthermore, LL-37 has been shown to shuttle complexed nucleic
acids across cell membranes (12, 14), primarily via receptor-
mediated endocytosis. However, in keratinocytes, uptake seems
to occur by mechanisms that do not require activation of specific
receptors (15, 16), promoting inflammatory and interferon
responses via both TLR and cytosolic nucleic acid sensors
such as the cGAS-STING and RIG-I Like Receptor (RLR)
pathways (17, 18).

LL-37 is found over-expressed in many of the most common
inflammatory skin conditions, including psoriasis, rosacea, and
eczema (5, 6, 19). These conditions together account for
a significant percentage of patients treated for skin-related
illnesses, with∼3%, 10–20%, and 10% of the population suffering
from psoriasis, rosacea and eczema, respectively. Recently, the
advent of biologic medicine has facilitated highly effective
treatment strategies for these conditions, yet the expense and
difficulties found in effective delivery limits biologic treatment
to the most severe of cases. Topically applied aptamer-based

treatments provide a cheaper and arguably more effective
alternative to protein-based biologics that would open the field
of biologic medicine to a much larger percentage of patients. IL-
17A is a pro-inflammatory protein that plays a central role in
initiating and perpetuating inflammation in psoriasis, and has
been targeted with great success using antibody-based biologic
treatments (20–22). Expressed by infiltrating immune cells in
the skin, IL-17 cytokines act on surrounding keratinocytes and
fibroblasts to induce expression of angiogenic and inflammatory
mediators crucial in the development of psoriatic lesions (23).
The anti-IL-17A RNA aptamer Apt 21-2 has also been shown
to effectively bind IL-17A, and we and others have previously
illustrated that Apt 21-2 may be suitable for use in treating
psoriatic plaques (24, 25). Given the attractive notion of using
RNA aptamers in topical medication and the prevalence of LL-37
in these inflammatory skin conditions, it is of great importance
to examine the effect of LL-37 on RNA aptamer efficacy and
safety. This work investigates the interaction between Apt 21-2
and LL-37, and the consequent effects on aptamer uptake and
immune activation.

METHODS

Reagents
RNA Aptamer Apt 21-2 (25) was synthesized to order
by Dharmacon GE Healthcare as 33 nucleotides (5′ GGU
CUAGCCGGAGGAGUCAGUAAUCGGUAGACC 3′) with 2′

fluoro-modified cytosine and uracil. A fluorescently tagged
Apt 21-2 was also synthesized by addition of a single
Cy3 molecule on the 5′ end of the aptamer (Apt 21-2
Cy3) (24). Fluorochrome-conjugated antibodies were obtained
from Miltenyi Biotech (HLA-DR-FITC, CD11c-VioBlue, CD14-
VioBlue, CD19-VioBlue, IFNα-APC) or BioLegend (CD303-PE-
Cy7, CD123-BV711). For analysis of intracellular cytokines by
flow cytometry, cytokine secretion was inhibited by GolgiPlug
(BD Biosciences).

Primary Cell Isolation, Cell Culture, and
Ethics
Primary keratinocytes and fibroblasts from healthy donors
were purchased from PromoCell or isolated from healthy
volunteers respectively and were cultured as described previously
(26). The participants’ samples used for this study were
collected under ethical approval, REC 10/H1306/88, National
Research Ethics Committee Yorkshire and Humber-Leeds East.
All experiments were performed in accordance with relevant
guidelines and regulations.

PBMC Isolation
Whole blood anti-coagulated in heparin was collected from
healthy volunteers and PBMCs were isolated by density gradient,
followed by centrifugation using Greiner Leuco-Sep tubes (Sigma
Aldrich, Gillingham, UK). Isolated PBMCs were washed in
MACS buffer (D-PBS, 2mM EDTA, 0.5% BSA) followed by
1x wash in PBS. Cells were resuspended in RPMI 1640 (10%
FCS, 1% penicillin/streptomycin), plated in 24 well plates, and
immediately stimulated.
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Flow Cytometry
PBMCs were stimulated as detailed in the results in the presence
of GolgiPlug. Following stimulation, cells were washed in
PBS and resuspended in blocking buffer (10% mouse serum
and 1% IgG) for 15min at 4◦C. Cells were then stained
for surface antigens (HLA-DR, CD11c, CD14, CD19, CD303,
CD123) for 30min at 4◦C. Cells were washed and fixed and
permeabilized using IntraPrep kit (Beckman Coulter) according
to the manufacturer’s instructions. Cells were then washed and
stained for intracellular IFNα for 30min at 4◦C. Finally, cells
were washed, resuspended in PBS and analyzed by a BD LRSII
flow cytometer (BD Biosciences). Plasmacytoid dendritic cells
(pDCs) were identified as a HLA-DRhigh, CD11clow, CD14low,
CD19low, CD303high, CD123high population (gating strategy
outlined in Figure S1).

Confocal Microscopy
Cells were grown on poly-D-lycine coated coverslips to the
desired confluency prior to stimulation as detailed in the
results. Following stimulation, cells were subject to an acid
wash (200mM acetic acid, 150mM NaCl), were fixed in 4%
paraformaldehyde, and permeabilized with 0.3% saponin BSA
PBST before mounting on glass slides in mountant containing
DAPI. Cells were then imaged with a LSM880 confocal
microscope. Images were processed in Zen software.

Quantitative PCR
Quantitative real-time PCR was carried out by a QuantStudio
5 Real Time PCR System (ThermoFischer) and a 11CT-
analysis formed from the generation of standard curves for
the housekeeping genes and genes of interest. RNA isolation
was carried out using the Direct-zol RNA MiniPrep kit
(Zymo Research). cDNA was generated by SuperScript II
reverse transcriptase (Thermo Fischer Scientific) according to
the manufacturer’s protocol. Qiagen QuantiFast SYBR green
PCR was used to carry out the qRT-PCR according to the
manufacturer’s protocol.

ELISA
Nunc-ImmunoTM MicroWellTM 96 well plates (SIGMA) were
coated with capture antibody and ELISA proceeded as detailed
in manufacturer instructions using IL-8 ELISA MAX Standard
ELISA kit (BioLegend, Hatfield, UK), IFNα ELISA using
MT1/3/5 capture antibody and MT2/4/6 detection antibody
(Mabtech), and CXCL10 ELISA DuoSet (R&D Systems).

5′ 32P Labeling of Apt 21-2
Unlabeled Apt 21-2 (1 µg) synthesized by Dharmacon was
incubated at 37◦C for 30min in a reaction containing 2 µl of
T4 Poly nucleotide kinase (PNK) (NEB), 2 µl PNK buffer and
∼30 µCi of 32p UTP in a total reaction size of 20 µl. Following
incubation, the reaction was terminated by heating to 65◦C for
10min and purified by ethanol precipitation and resuspension in
nuclease free water.

Electrophoretic Mobility Shift Assay
32P labeled aptamer and LL-37 were mixed at the concentrations
stated and incubated for 1 h on ice. Native polyacrylamide gel

(7%) was prepared in TBE buffer and electrophoresis was carried
out in TBE buffer. Samples were loaded with 60mM KCl, 10mM
TRIS (pH 7.6), 40% glycerol and 0.01% bromophenol blue.
Following completion of the separation, the gels were fixed in
12% methanol and 10% acetic acid in dH2O, before drying in a
vacuum pumped gel dryer (Biorad) and imaged by exposure to a
phosphoscreen.

Filter Binding Assay
32P labeled aptamer and LL-37 were mixed at the concentrations
stated and incubated for 1 h on ice. Samples were drawn through
stacked nitrocellulose and nylon membranes using a slot-blot
device (Biorad). Filters were dried and imaged by exposure to a
phosphoscreen.

RNA Urea Gels
Urea gels (7% polyacrylamide, 7M urea) were prepared in TBE
buffer for analysis of RNA stability. Samples were prepared by
addition of equal volume 2x Novex R© TBE-Urea Sample Buffer
(ThermoFischer), incubated at 85◦C, then cooled on ice prior to
loading on the urea gels. Gels were stained with 0.2% methylene
blue (0.4M sodium acetate, 0.4M acetic acid) for visualization
of RNA.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7
software. Data were analyzed by one-way ANOVA to determine
overall differences, and a Tukey post hoc test to determine
statistical significance between groups.

RESULTS

LL-37 Interacts With RNA Aptamer Apt
21-2
LL-37 has been shown to interact with nucleic acids including
single and double stranded RNA, and this interaction is thought
to be mediated via positively charged residues on LL-37 (11,
13, 27). It therefore seems plausible for LL-37 to interact and
complex with RNA aptamers. To explore whether this is the
case, we incubated Apt 21-2 5’ end labeled with 32P UTP
(100 nM) with increasing concentrations of LL-37 and separated
samples by electrophoretic mobility shift assay (EMSA). A
large observable shift in 32P-labeled aptamer occurs as the
concentration of LL-37 is increased, indicative of a higher order
protein and aptamer complex (Figure 1A). This interaction was
also observed when conducting a filter binding assay with the
same samples (Figure 1C). There is evidence of protein:RNA
complex formation at approximately the same concentration
as the observed shift in EMSA. Densitometry analysis of band
density in both EMSA and the filter binding assay show
a 50% reduction in free aptamer at ∼2µM, indicating an
interaction between Apt 21-2 and LL-37 with an apparent KD of
2µM (Figures 1B,D).

LL-37-complexed RNA has been reported in the literature
to be less susceptible to degradation. We questioned whether
this would also be true of LL-37-complexed Apt 21-2. We
therefore incubated Apt 21-2 in the presence or absence of
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FIGURE 1 | Samples of Apt 21-2 (100 nM) combined with LL-37 (0 to 100µM as indicated above lanes) were incubated for 1 h on ice. Samples were then separated

on a 7% native polyacrylamide gel (A) or by filter binding assay (C). Images are representative of 2 independent experiments. Densitometry was measured by ImageJ

software and plotted in GraphPad Prism as percentage density of control RNA band with no added LL-37 to estimate KD. Data shown are mean ± SD (n = 2) (B,D).

Apt 21-2 (1 µg) incubated with fetal calf serum at 37◦C in the presence or absence of LL-37 (10 µg) for 5 h. Samples taken at indicated time points, separated on a

7% polyacrylamide urea gel and visualized using methylene blue stain. Image representative of 3 independent experiments (E). Densitometry calculated by ImageJ

software and normalized to t = 0 band density as control. Band density plotted and half-life calculated in GraphPad Prism. Data shown are mean ± SD (n = 3) (F).

LL-37 in fetal calf serum for 5 h at 37◦C and analyzed aptamer
degradation by separation of the samples on denaturing
(urea) gels. Within the 1st h Apt 21-2 alone had significantly
degraded. However, addition of LL-37 reduced the extent
of degradation (Figure 1E). Indeed, half-life of aptamer
alone was calculated as 11.5 ± 5.65min, whilst LL-37-
complexed aptamer was calculated to have a half-life of
202.4± 82.95min (Figure 1F).

LL-37 Facilitates Internalization of Apt 21-2
in Keratinocytes and Fibroblasts
LL-37 is known to cross plasma membranes through a variety of
mechanisms, and in doing so can facilitate internalization of its
binding partners. This has been shown to occur with poly(I:C)
in keratinocytes and both viral dsRNA and self-RNA released
from dying cells, as well as with other non-nucleic acid binding
partners such as LPS (28). Once LL-37 was identified to associate
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with Apt 21-2, we next examined whether this interaction (in
the presence of primary keratinocytes and fibroblasts) might
promote internalization of the RNA aptamer.

Primary keratinocytes and fibroblasts were treated with Cy3-
labeled Apt 21-2 (Apt 21-2 Cy3) and FITC-labeled poly(I:C) in
the presence or absence of LL-37 before analysis by confocal
microscopy. As previously reported, evidence of uptake (to a
low level) by keratinocytes was observable when Apt 21-2 Cy3
was added to cells alone (Figure 2A). Conversely, no uptake
was observed by the fibroblasts (Figure 2B). However, with the
addition of 2.5µM LL-37 internalization of Apt 21-2 Cy3 was
greatly enhanced in both keratinocytes and fibroblasts, with
evidence of punctate aggregation and diffuse cytosolic staining
closely resembling that observed upon addition of both LL-
37 and FITC-poly(I:C). Indeed, whilst uptake of aptamer alone
was not observed in fibroblasts, significant internalization was
observed when added with LL-37 (Figure 2).

Given the hydrophobic nature of cyanine dyes and the
propensity of LL-37 to interact with various molecular partners,
it is important to confirm the observed interaction between LL-
37 and Apt 21-2 Cy3 is due to interaction with the aptamer RNA
rather than the cyanine label. To this end, reactions of FITC-LL-
37 and Apt 21-2 Cy3 were spiked with increasing concentrations
of unlabeled Apt 21-2 to compete for binding with LL-37 before
addition to cells (Figures 3B,C). As shown in Figure 3A, Apt
21-2 Cy3 appears to co-localize with the aggregated FITC-LL-
37, both in extracellular and intracellular aggregates. However,
a decrease in Cy3 fluorescence was observed corresponding with
increase in concentration of unlabeled Apt 21-2, suggesting the
uptake observed in Figures 2A,B is due to interaction between
LL-37 and RNA rather than LL-37 and Cy3. Furthermore,
addition of LL-37-FITC suggests co-localization of LL-37 andApt
21-2 (Figure 3A), corroborating the results observed by EMSA
and the filter binding assay (Figure 1).

Apt 21-2 Does Not Induce an Inflammatory
or Interferon Response When Combined
With LL-37
Once associated with LL-37, dsRNA/LL-37 complexes can
facilitate an inflammatory and interferon response by enhancing
activation of TLRs after internalization of complexed RNA. This
has been illustrated for co-stimulation of LL-37 with poly(I:C),
self-RNA and DNA (29). Although small RNA aptamers are
known to be immunologically inert, the possibility of their
interaction with LL-37 allowing an immunological responsemust
be considered. We therefore stimulated primary keratinocytes
and fibroblasts with either Apt 21-2 or poly(I:C) in the presence
or absence of LL-37 and measured both IL-8 secretion and
mRNA expression of skin-relevant interferon stimulated genes
(ISGs) MxA, CXCL10, GBP-1, and the tissue-derived IFNλ

(in keratinocytes), which has a significant role in tissue-based
antiviral activity (30, 31).

As has been previously reported, treatment with poly(I:C)
alone induced a strong response from primary keratinocytes,
eliciting both IL-8 secretion and ISG expression (Figures 4A,C).
Whilst addition of LL-37 alone had little effect on either IL-8

secretion or ISG expression, an additive effect was observed in
ISG expression when added in combination with poly(I:C) to
keratinocytes, and a synergistic increase in both ISG expression
and IL-8 secretion by fibroblasts. Primary keratinocytes, however,
appeared to secrete less IL-8 when challenged with both LL-37
and poly(I:C) (Figure 4). Whilst this does not seem to fit the
trend of our other results, this inhibition of poly(I:C)-induced
IL-8 secretion by LL-37 in keratinocytes has been previously
reported in the literature (13). Contrary to poly(I:C), stimulation
with Apt 21-2 did not induce IL-8 secretion or up-regulation of
measured ISGs. Furthermore, the addition of LL-37 and Apt 21-2
in combination had no significant effect on IL-8 secretion or ISG
expression in either keratinocytes or fibroblasts (Figure 4).

In addition to keratinocytes and fibroblasts, immune cells also
infiltrate into the dermis and epidermis, and are often found in
increased numbers during inflammation. Of these, plasmacytoid
dendritic cells (pDCs) and monocytes/macrophages are known
as significant producers of type 1 interferon and are known to
respond to LL-37-complexed nucleic acids (7, 11, 18, 27). We
therefore examined the response of pDCs to LL-37-complexed
Apt 21-2. Human PBMCs were stimulated with either Apt
21-2 or the TLR9 agonist CpG oligodeoxynucleotide (ODN)
in the presence or absence of LL-37 for 12 h, and pDC
intracellular IFNα production was assessed by flow cytometry.
Additionally, PBMCs were treated with either Apt 21-2 or
the TLR3 agonist poly(I:C) in the presence or absence of LL-
37 for 24 h, and secreted IFNα and the interferon stimulated
chemokine CXCL10 were measured by ELISA (Figures 5C,D).
As shown in Figure 5A, whilst stimulation with CpG ODN
induced a modest increase in the percentage of IFNα+ pDCs,
no response was measured following Apt 21-2 stimulation.
When stimulated with both LL-37 and CpG ODN, a significant
increase in the percentage of IFNα+ pDCs was observed
over CpG ODN stimulation alone, as has been previously
reported (7) (Figure 5B). In contrast, no IFNα+ pDCs were
identifiable following stimulation with LL-37 and Apt 21-2 in
combination (Figure 5A). In agreement with these findings,
PBMCs treated with poly(I:C) secreted significant amounts of
both IFNα and CXCL10, and these levels increased when treated
in combination with LL-37. However, treatment with Apt 21-
2 did not cause an elevation in secretion of IFNα or CXCL10
above that of non-stimulated cells, and the addition of LL-
37 in combination with Apt 21-2 had no significant effect
on the secretion of either IFNα or CXCL10 (Figures 5C,D).
These results suggest that despite the interaction between
Apt 21-2 and LL-37 and the increase in internalization of
the complexes, Apt 21-2 remains immunologically inert when
present with LL-37, unable to elicit an interferon or inflammatory
response. This remains true for both skin resident and infiltrating
immune cells.

DISCUSSION

In this study, we initially sought to determine whether LL-
37, a pro-inflammatory protein well documented to interact
with nucleic acid, can also complex with a single stranded
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FIGURE 2 | Healthy primary keratinocytes (A) and fibroblasts (B) were treated with Apt-21-2 Cy3 (100 nM; red) or FITC-conjugated poly(I:C) (1µg/ml; green) in the

presence or absence of LL-37 (2.5µM) for 24 h. Cells were washed with acid to remove extracellular RNA and imaged by confocal microscopy to assess uptake of

Apt 21-2 and poly(I:C). Nuclei were visualized with 4′-6-diamidion-2-phenylidole (DAPI) (bars = 20µm). Images are representative of three independent experiments.

RNA aptamer. We tested this by electrophoretic mobility shift
assay, filter binding assay, and confocal microscopy, all of which
provided evidence of interaction. Analysis by EMSA and filter
binding established that, in a controlled reaction, LL-37 interacts
with Apt 21-2 with an apparent KD of ∼2µM, and when added
to cells in combination we observed strong co-localization of the
aptamer and protein. This observation is perhaps not surprising
as LL-37 is well documented to complex with both single and
double stranded self-RNA and exogenous RNA, in addition to
DNA (11, 13, 27). Indeed, Ganguly et al. postulated that LL-
37 may preferentially bind structured RNA containing double
stranded regions and stem loops. However, by illustrating the
ability of LL-37 to complex small chemically modified RNA
aptamers we bring to light the possibility that any RNA aptamers

delivered into an environment rich in LL-37 may become
complexed and potentially sequestered by the antimicrobial
peptide. Keratinocytes have been shown to significantly increase
production of LL-37 in response to cytokines associated with
psoriasis (32). Whilst exact concentrations of LL-37 in the skin
is unclear, it has been observed that psoriatic lesions contain
a median of 304µM LL-37 (5). Delivering an aptamer into
such high concentrations, in this case ∼150 times higher than
the apparent KD, it seems likely that a proportion of the
delivered aptamer will become complexed. Whilst this study
was conducted in the context of skin-based inflammation, LL-37
expression is found over-expressed in several diseases and tissues,
including inflammatory bowel disease and rheumatoid arthritis,
and has been measured up to ∼6µM in bronchoalveolar lavage
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FIGURE 3 | Healthy primary keratinocytes were treated with Apt-21-2 Cy3 (100 nM; red) and FITC-labeled LL-37 (2.5µM; green) with either 0µM (A), 1µM (B), or

5µM (C) unlabeled Apt 21-2 to compete with Apt 21-2 Cy3 for binding with LL-37. Cells were washed with acid to remove extracellular RNA and imaged by confocal

microscopy to assess uptake of aptamer. Nuclei were visualized with DAPI (bars = 20µm). Images are representative of 2 independent experiments.

fluid extracted from infants suffering systemic inflammation,
and so should be considered when treating any inflamed
area (33–35). Even in healthy human sweat, LL-37 can
be found at a concentration of ∼1µM, which may have
considerable implications when using a topically administered
RNA aptamer (36).

A significant finding of the work conducted in this study
is the observation that LL-37-complexed aptamer is efficiently
internalized by both keratinocytes and fibroblasts. Whilst
keratinocytes are known to actively take up extracellular
components quite readily by macropinocytosis, fibroblasts
are not known to do so. Indeed, our previous work has
demonstrated that when added to keratinocytes and fibroblasts
alone, keratinocytes take up RNA aptamers, but the fibroblasts
do not (24). However, as demonstrated here, when complexed
with LL-37, the aptamer is internalized by both fibroblasts
and keratinocytes, with confocal microscopy exhibiting striking
intracellular staining in both keratinocytes and fibroblasts with
a slight punctate appearance in keratinocytes. Internalization
of LL-37-complexed nucleic acid has been previously reported
in the context of keratinocytes and dendritic cells, however,
to our knowledge this is the first time it has been described
in fibroblasts (11, 17, 27). Indeed, these novel observations
have significant implications when considered in the context
of using RNA aptamers to treat inflammatory skin conditions

and may influence how and where RNA aptamers might be
delivered for treatment of extracellular or intracellular targets.
As the results presented in this work show both keratinocytes
and fibroblasts will internalize RNA aptamers complexed by LL-
37, an extracellular target in either the dermis or epidermis
may prove difficult to treat in this manner in inflamed skin
tissue. Conversely, as internalization appears to be so effective
in the presence of LL-37, it may be possible to utilize this
mechanism as a method of targeting intracellular pathways and
molecules. Considering these observations, it seems natural to
suggest when using RNA aptamers to treat inflammatory skin
conditions where LL-37 is strongly expressed that intracellular
targets may be more desirable than extracellular. We have
previously reported that free RNA aptamers taken up by cells
enter the endosomal/lysosomal pathway, however whether these
aptamers escaped the endosomal network is unclear (37). It
is also unclear as to the effect that LL-37 complexing might
have on intracellular trafficking of internalized complexes,
and whether complexed aptamers might be able to access
cytosolic targets. These possibilities should be further explored
by delineating the mechanism by which LL-37 facilitates entry
of complexed aptamers to facilitate identification of the fate of
internalized complexes.

LL-37 has been reported to increase stability of complexed
RNA, inhibiting RNase-mediated degradation (27). By
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FIGURE 4 | Healthy primary keratinocytes (A,C) and fibroblasts (B,D) were grown to 80% confluence in 24 well plates and treated with LL-37 (5µM), Apt 21-2

(100 nM, 1µM), LL-37 + Apt 21-2 (5µM + 100 nM and 1µM, respectively), poly(I:C) (1µg/ml), poly(I:C) + LL-37 (1µg/ml + 5µM), or left untreated (NS). To assess

(Continued)
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FIGURE 4 | inflammatory response supernatants were harvested 24 h post-stimulation and IL-8 measured by ELISA (A,B). Data shown are mean ± SD from

independent experiments. n = 3, ANOVA, ****p < 0.0001 (A) n = 2 (B). To assess interferon response RNA was harvested at 6 h post stimulation and mRNA

expression of the interferon-stimulated genes CXCL10, GBP-1, MxA, and IFNλ was measured by qPCR normalized to U6 housekeeping gene presented as 11Cq.

ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data shown are mean ± SEM with individual data points of independent experiments, n = 3 (C,D).

FIGURE 5 | PBMCs were isolated from whole blood and treated with LL-37 (2.5µM), Apt 21-2 (100 nM; 21-2), CpG ODN (2.5µM; CpG), LL-37 + Apt 21-2 (2.5µM

+ 100 nM), LL-37 + CpG ODN (2.5µM each), or left untreated (NS) for 12 h at 37◦C 5% CO2. The isotype control was treated with CpG (2.5µM). After 1 h of

stimulation, GolgiPlug was added to all cells (1 µl per ml of media). Following stimulation, the percentage of IFNα+ pDCs was determined by flow cytometry. pDCs

were identified using the gating strategy outlined in Figure S1. A representative set of dot plots for one donor is shown (A) with a graph plotting mean fluorescence

intensity (MFI) of IFNα for each donor (B). Data shown are mean ± SEM with individual data points of independent donors, n = 3, ANOVA, **p < 0.01, ***p < 0.001.

C- PBMCs were stimulated as in A but substituting CpG ODN with poly(I:C) (100µg/ml) and without addition of GolgiPlug. Cells were incubated for 24 h at 37◦C 5%

CO2. Supernatants were harvested and tested for IFNα (C) and CXCL10 (D) by ELISA. Data shown are mean ± SEM with individual points of independent donors.

n = 3 *p < 0.05, ***p < 0.001, ****p < 0.0001.

incubating LL-37-complexed and free Apt 21-2 with fetal
calf serum we have illustrated this is also true for LL-37-
complexed RNA aptamers. This may have implications for
the efficacy of RNA aptamers in inflammatory milieu as they
may persist for longer in a LL-37 rich environment if provided
protection by complexing. Indeed, this may prove beneficial if
complexed aptamers remain functional, however, this is currently
unknown. As LL-37-nucleic acid complexes have been observed
to dissociate once internalized into acidic endosomes, it seems
plausible that complexed and internalized aptamers may also be
released and so available to bind targets (38). It may, therefore,
be interesting to examine the kinetics of binding between LL-37

and RNA aptamers under various physiological conditions as
this may provide key information on the availability of RNA
aptamers when present in LL-37-rich tissue.

An important consideration which comes to light from
demonstrating that RNA aptamers are both complexed and
internalized with LL-37 is the effect this has on immune
activation. RNA aptamers are considered immunologically inert,
however, with LL-37 known to be an immunomodulatory protein
that can significantly enhance the inflammatory properties
of nucleic acids through mechanisms that are not entirely
characterized, it is important to explore whether LL-37-
complexed RNA aptamers become immunologically stimulatory.
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Previous work has shown that LL-37 complexed with ssRNA
can initiate inflammatory signaling through TLR7 and TLR8 in
pDCs once delivered into endosomal compartments, however,
the results obtained in our study show that whilst LL-37-
complexed aptamers were delivered intracellularly, no activation
of cells was observed following treatment of either healthy
pDCs, PBMCs, keratinocytes or fibroblasts with complexed
aptamer (27). Whilst expression of TLR7 and TLR8 in healthy
keratinocytes is not clearly defined, with contradictory evidence
published in the literature, fibroblasts reportedly express both,
and the pDC response to LL-37-complexed ssRNA has been
previously described (27, 39). In addition to pDCs, monocytes
are also known to infiltrate into the epidermis in inflamed tissue
and can also contribute to IFN production in response to LL-37-
complexed nucleic acids (18). Whilst pDCs effectively respond
to ssRNA, they are poor expressers of TLR3 and therefore
do not respond well to dsRNA (40). Monocytes/macrophages,
however, express high levels of TLR3 and generate IFN in
response to dsRNA (41). Despite this, neither pDCs nor
isolated PBMCs (containing pDCs, conventional DCs and
monocytes/macrophages) generated an IFN response to LL-37-
complexed aptamer. These results therefore suggest aptamer 21-
2:LL-37 complexes are unable to activate TLR7/8 or TLR3. LL-37
is thought to enhance activation of TLR3 through complexing
dsRNA and producing crystalline structures that more effectively
initiate TLR3 by engaging several receptors, inducing receptor
clustering and immune amplification (42). The efficacy of these
crystalline structures was found to depend on the length of
dsRNA present in the crystals, so it is possible that Apt 21-2
does not contain long enough dsRNA tracts to form the correct
crystal structure with LL-37 and so does not activate TLR3 in
this manner. However, larger RNA aptamers may contain longer
stretches of duplexed RNA, therefore further research to examine
the effect of aptamer length on TLR activation may be necessary.

In conclusion, this work has illustrated the importance of
understanding the environment into which an RNA aptamer
is being delivered when treating inflammatory disease. In

particular, it has shown that RNA aptamers delivered into
inflamed tissue rich in the anti-microbial peptide LL-37 will
become complexed and internalized by surrounding cells.
Despite evidence of complexing and internalization, we did
not observe any inflammatory or interferon response from
keratinocytes, fibroblasts, or PBMCs, suggesting RNA aptamers
should be safe for use when delivered into inflamed skin.
However, the observation that LL-37-complexed aptamers
are internalized by surrounding cells should be taken into
consideration when developing an RNA aptamer-based
treatment for an extracellular target in inflamed tissue with high
levels of LL-37, as cells may sequester complexed aptamers away
from their targets.
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