

This is a repository copy of Synthesis of oxetane/azetidine containing spirocycles.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144398/

Version: Accepted Version

Article:

Hamill, R, Jones, B, Pask, CM orcid.org/0000-0002-2241-5069 et al. (1 more author) (2019) Synthesis of oxetane/azetidine containing spirocycles. Tetrahedron Letters, 60 (16). pp. 1126-1129. ISSN 0040-4039

https://doi.org/10.1016/j.tetlet.2019.03.042

Crown Copyright © 2019 Published by Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Synthesis of oxetane/azetidine containing spirocycles.

Rosalie Hamill, Benjamin Jones, Christopher M. Pask and Visuvanathar Sridharan*

Tetrahedron Letters journal homepage: www.elsevier.com

Synthesis of oxetane/azetidine containing spirocycles.

Rosalie Hamill, Benjamin Jones, Christopher M. Pask and Visuvanathar Sridharan*

School of Chemistry, University of Leeds, LS2 9JT, UK

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online Oxetane-benzopyran spirocycles were synthesised via a palladium catalysed cyclisation-cross coupling cascade reaction whilst oxetane/azetidine-pyrrolidino isoindolone spirocycles were synthesised via a silver catalysed 1,3-dipolar cycloaddition followed by a palladium catalysed carbonylation-amination process.

2009 Elsevier Ltd. All rights reserved.

Keywords: Keyword_1Palladium Keyword_2 Carbonylation Keyword_3 Spirocycles Keyword_4 1,3-Dipolar Cycloaddition

Oxetane rings in drug molecules have been found to have an influence on a multitude of different properties, including lipophilicity, aqueous solubility, metabolic stability, and conformational preference; they also greatly improve key pharmacokinetic properties when grafted onto molecular scaffolds.¹ Oxetanes also demonstrate diverse potential as bioisosteres for less desirable functional groups in drug design, such as gem-dimethyl and carbonyl groups. The potential for oxetanes to be used as gemdimethyl bioisosteres was introduced by Carreira and co-workers; ² it is common practice in drug discovery to introduce gem-dimethyl groups into metabolically labile methylene units. However, this also adds to the molecules lipophilicity, and can adversely affect its pharmacokinetic properties. Use of an oxetane instead of a gemdimethyl group, bridging the two methyl groups with an electronegative oxygen, has been shown to add the desired bulk without altering the overall lipophilicity.² Furthermore, the van der Waals volume of oxetane is almost identical to that of the gemdimethyl group, and their partial molar volumes in water are essentially identical.³

Benzopyran derivatives have been shown to have notable bioactivity, including anti-inflammatory and anti-hypertensive qualities. ⁴ Benzopyrans can be found in a multitude of divergent areas within chemistry; such as the metabolite eriodictyol, which has anti-inflammatory and antioxidant properties,⁵ and the phytoalexin xanthyletin, which is found in citrus plants⁶ (Fig. 1). Oxetane/pyrrolidine spirocycles are important structural motifs, possessing a wide range of medicinal properties including anti-viral⁷ and anti-bacterial⁸ (Fig. 1)

* Corresponding Author: V.Sridharan@leeds.ac.uk; Tel +44-113343652

Figure 1. Examples of drug molecules containing the benzopyran motif and oxetane/pyrrolidine spirocycle

In this communication we report (i) A palladium catalysed cyclisation-cross coupling cascade reaction to the synthesis of oxetane-benzopyran spirocycles (Scheme 1a) and (ii) A silver catalysed 1,3-dipolar cycloaddition followed by a palladium carbonylation catalysed amination process to afford oxetane/azetidine-pyrolidino isoindolone spirocycle (Scheme 1b, c). Palladium catalysed cyclisation-cross coupling cascade reactions were used to synthesise benzopyran spirocycles with a tethered oxetane moiety. 9 Initially we explored the palladium catalysed cyclisation-cross coupling process using 1a (1 mmol), phenyl boronic acid (2 mmol), Pd(OAc)₂ (10 mol%), dppf (10 mol%) and Cs₂CO₃ (2 mmol) in dioxane/water (15:1, 3 mL) stirred at 90 °C for 16 h which gave the cyclisation-cross coupling product 2 together with the direct capture product **3** in 85% yield (Table 1, entry 1) favouring the cyclisation-cross coupling product **2**. Cyclisation-cross coupling reactions using **1a** and p-methoxyphenyl boronic acid gave the cyclisation cross coupling product **4** together with the direct capture product **5** in 50% yield (Table 1, entry 2) whilst m-triflouromethylphenylboronic acid gave the cyclisation-cross coupling product **6** and the direct capture product **7** in 24% yield (Table 1, entry 3). Lower yields of the products **6** and **7** (Table 1, entry 3) may be partly due to the boronic acid containing electron withdrawing group undergoes protodeborylation at a faster rate.

However, when a Boc-protected azetidine was tethered to alkene **1b** only the direct capture products **8** and **9** were observed (Table 1, entries 4, 5) in moderate yield suggesting that the transmetallation step occurs faster than the carbopalladation step (Scheme 1a). This is proposed to be due to the difference in puckering angle between the azetidine (\approx 33°) and oxetane (11°) rings.¹⁰

Table 1. Palladium catalysed cyclisation-cross coupling cascades

a. 1 (1 mmol), boronic acid (2 mmol), Pd(OAC)₂ (10 mol%), dppf (10 mol%) and Cs₂CO₃ (2 mmol) in dioxane/water (15:1, 3 mL) stirred at 90 °C for 16 h; b. Isolated yield. c. Use of Pd(PPh₃)₄ also gave the direct capture product.

Next, we explored the silver catalysed 1, 3-dipolar cycloaddition followed by a palladium catalysed carbonylation amination process afford oxetane/azetidine-pyrolidino isoindolone spirocycles to (Scheme 1b). Initially we carried out the silver catalysed 1,3-dipolar cycloaddition reaction methyl-(E)-N-[(2using bromophenyl)methylene]glycinate 11 (0.5 mmol), methyl 2-(oxetan-3-ylidene)acetate 10a (0.5 mmol), Ag₂O (10 mol%) and DBU (0.5 mmol) in toluene (10 mL) at room temperature for 16 h, which gave the cycloadduct 13 in 53% yield (Table 2, entry 1). The cycloaddition was regio- and stereoselective and occurred via the endo transition state of the syn-dipole 12 (Scheme 2).¹¹ Single diastereomer was observed using tert-butyl-3-(2-methoxy-2oxoethylidene) azetidine-1-carboxylate 10b as a dipolarophile (Table 2, entry 2).

Scheme 2. Formation of the metallo dipole

Imines derived from alanine methyl ester/ leucine methyl ester also underwent the cycloaddition reaction with the dipolarophile **10a** to give cycloadducts **15** and **16** in moderate yields (Table 2, entries 3-4). We also varied the activating group in the imine. Thus, 2-pyridyl activating group on the imine resulted in good yields of cycloadducts **17** and **18** in moderate yields (Table 2, entries 5-6).

Table 2. Silver catalysed 1, 3-dipolar cycloaddition reaction^a

a. Imine (0.5 mmol), dipolarophile (0.5 mmol), DBU (0.5 mmol) and $\rm Ag_2O$ (10 mmol%), toluene, room temperature 16-20 h. b. Isolated yield.

Finally we explored the palladium catalysed carbonylation (1 atm) - amination reaction (Scheme 1c). ¹² Thus, **17** (1 mmol), Cs₂CO₃ (2 mmol), palladium acetate (10 mol%) and tris 2-furyl phosphine (20 mol%), under a carbon monoxide balloon in toluene at 100 °C for 24 h afforded the expected carbonylated product **19a** and the epimerised

carbonylated product **20a** in a 1:1 ratio (Scheme 3). The structure of **20a** was confirmed by single crystal X-ray diffraction (Fig. 3). 13

Scheme 3. Palladium catalysed carbonylation/amination reaction

Figure 2. Molecular structure of compound 20a

Epimerisation could occur before or after the carbonylation process. The reaction of cycloadduct **18** and carbon monoxide (1 atm) also afforded the expected carbonylated product **19b** and the epimerised carbonylated product **20b** in an equilibrium 1:1 ratio and in 48% yield. However, the cycloducts **13-16** containg 2-bromophenyl group were reacted with carbon monoxide (1 atm) under essentially same catalytic conditions failed to give any carbonylated products may due to the sluggish oxidative addition process.

Conclusions

In summary, we have successfully carried out palladium catalysed cyclisation cross coupling cascades to synthesise benzopyran/oxetane spirocycles together with biaryl containing oxetane/azetidine in moderate to good yields. oxetane/azetidine in yields. Oxetane/azetidine-pyrrolidino moderate to good isoindolone spirocycles were synthesised via a silver catalysed 1, 3dipolar cycloaddition followed by a palladium catalysed carbonylation-amination process in good yields.

Notes and references

- 1 J. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Muller and E. M. Carreira, Angew. Chem. Int. Ed., 2010, **49**, 9052.
- 2 G. Wuitschik, M. Rogers-Evans, K. Muller, H. Fischer, B. Wagner, F. Schuler, L. Polonchuk and E. M. Carreira, Angew. Chem. Int. Ed.,2006, 45, 7736; G. Wuitschik, E. M. Carreira, B. Wagner, H. Fisher, I. Parrilla, F. Schuler, M. Rogers-Evans and K. Muller J. Med. Chem., 2010, 53, 3227.
- 3 J. T. Edward, P. G. Farrell and P. Shahidi, J. Chem. Soc. Farady. Trans., 1977, **73**, 705.

- 4 Z. Y. You, Y. H. Wang, Z. G. Zhang, M. J. Xu, S. J. Xe, T. S. Han, L. Feng, X. G. Li and J. Xu, Marine Drugs, 2013, 11, 4035.
- 5 M. F. Rossato, G. Trevisan, C. I. B. Walker, J. Z. Klafke, A. P. de Oliveria, J. G. Villarinho, R. B. Zanon, L. F. F. Royes, M. L. Athayde, M. V. Gomez and J. Ferrerira, Biochem. Pharmacol., 2011, 81, 544.
- 6 P. Magiatis, E. Melliou, A. L. Skaltsounis, S. Mitaku, S. Leonce, P. Renard, A. Pierre and G. Atassi, J. Nat. Prod., 1998, 61, 982.
- 7 L. Chen, L. Feng, S. Feng, L. Gao, T. Guo, M. Huang, C. Liu, Y. Liu, L. Wang and J. Wong, J. C. PCT Int. Appl. WO/2013/020993.
- 8 T. Mohamed, S. Hosahalli, S. K. Panigrahi, PCT Int.Appl. WO/2013/148537A1.
- 9 R. Grigg and V. Sridharan, Pure Appl. Chem., 1998, 70, 1047; R. Grigg, V. Sridharan, J. Organomet. Chem., 1999, 576, 65; Z. Li, C. Hu, J. Guo, J. Li, Y. Cui and Y. Jia, Org. Lett., 2010, 12, 480.
- 10 S. A. Smith, K. E. Hand, M. L. Love, G. Hill and D. H. Magers, J. Comput. Chem., 2013, 34, 558; O. V. Dorofeeva, V. S. Mastryukov, L. V. Vilkov and I. Hargittai, J. Chem. Soc. Chem. Commun., 1973, 772.
- R. Grigg and V. Sridharan, Advances in Cycloaddition, 1993, 3, 161; I. Coldham and R. Hufton, Chem. Rev., 2005, **105**, 2765; C. Najera and J. M. Sansano, J. Angew. Chem. Int. Ed., 2005, **44**, 6272; G. Pandey, P. Banerjee and S. R. Gadre, Chem. Rev., 2006, **106**, 4484; J. Aldrio and J. C. Carretero, Chem. Commun., 2014, 12434; B. Jones, M. Proud and V. Sridharan, Tetrahedron Lett., 2016, **57**, 2811.
- 12 X. F. Wu, H. Neumann and M. Beller, Chem. Rev., 2013, 113, 1.
- 13 Deposition number for compound **20a** CCDC 1849751 Contains the supplementary crystallographic data for this structure. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data request/cif</u>.

4