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Abstract
The ascent of a moist thermal is used to test a recently developed essentially

Lagrangian model for simulating moist convection. In this Moist-Parcel-In-Cell

(MPIC) model, a number of parcels are used to represent the flow in each grid cell.

This has the advantage that the parcels provide an efficient and explicit represen-

tation of subgrid-scale flow. The model is compared against Eulerian large-eddy

simulations with a version of the Met Office NERC Cloud model (MONC) which

solves the same equations in a more traditional Eulerian scheme. Both models

perform the same idealized simulation of the effects of latent heat release and

evaporation, rather than a specific atmospheric regime.

Dynamical features evolve similarly throughout the development of the thermal

using the two approaches. Subgrid-scale properties of small-scale eddies captured by

the MPIC model can be explicitly reconstructed on a finer grid. MPIC simulations

thus resolve smaller features when using the same grid spacing as MONC, which is

useful for detailed studies of turbulence in clouds.

The convergence of bulk properties is also used to compare the two models. Most

of these properties converge rapidly, though the probability distribution function of

liquid water converges only slowly with grid resolution in MPIC. This may imply

that the current implementation of the parcel mixing mechanism underestimates

small-scale mixing.

Finally, it is shown how Lagrangian parcels can be used to study the origin of cloud

air in a consistent manner in MPIC.

K E Y W O R D S
clouds, convection, numerical method, thermals

1 INTRODUCTION

Detailed studies of moist convection continue to play an
important role in the development of weather and cli-
mate models. Such studies were initially performed using
two-dimensional slab-symmetric or axisymmetric models of

clouds (e.g. Ogura, 1963). However, over the past 40 years it
has become possible to run three-dimensional large-eddy sim-
ulation (LES) models, which resolve the internal dynamics of
clouds and the boundary layer, on increasingly large domains.

LES studies form a bedrock of atmospheric research:
they have been used to investigate the fine-scale dynamics
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of mixing between clouds and their environment (e.g.
Grabowski and Clark, 1993, Heus et al., 2008), but also
to aid the development of convective parametrizations (e.g.
Siebesma and Cuijpers 1995) and investigate shortcom-
ings of convection-permitting models (Hohenegger et al.,
2015; Panosetti et al., 2016). Nevertheless, questions around
fine-scale mixing remain hard to tackle because of uncer-
tainty about its representation even in LES. Moreover,
some research questions ask for a Lagrangian perspective:
Lagrangian particles can be used in an LES model, but the
representation of mixing in the model core is not fully consis-
tent with the way in which particles are treated.

Existing LES models and convection-permitting models
use a grid-based dynamical core, in which advection can be
performed using either Eulerian or semi-Lagrangian meth-
ods. In Eulerian dynamical cores, the governing equations
are discretized onto an underlying mesh, and advection is
performed using the discretized equations on this mesh.
Semi-Lagrangian methods, on the other hand, use so-called
departure points to perform advection. Within each time
step, the flow from these departure points is tracked, and
interpolation is used to construct the field after advection.
These methods permit the use of larger time steps at the
same grid resolution, but tend to violate conservation and
poorly preserve correlations between tracers (Lauritzen and
Thuburn, 2012). Recent work on semi-Lagrangian methods
has focussed on addressing conservation issues and main-
taining tracer correlations (e.g. Zerroukat et al., 2002; Kaas,
2008; Aranami et al., 2015).

Both types of grid-based approach introduce a degree of
numerical mixing: Eulerian methods because of truncation of
the equations and because of the finite size of each grid box,
and semi-Lagrangian methods because of the truncation and
the interpolation that is performed each time step. Numerical
mixing is particularly relevant for moist convection for two
reasons:

1. The equation of state of moist air contains a disconti-
nuity between the saturated and the unsaturated regime,
which makes the problem highly nonlinear. Surprisingly,
a mixture of a dry and a moist parcel can become denser
than either of the two constituent parcels after its pressure
adjusts to the environment (Paluch, 1979). The reason
for this is the occurrence of evaporation. Numerical mix-
ing and poor correlation between tracers are a cause for
concern when representing such phase transitions.

2. Formation of precipitation is also highly dependent on the
highest values of liquid water that occur, again in a non-
linear way. These values in turn depend on the degree of
mixing in the interior of the cloud (Twomey, 1966; Blyth
et al., 2005; Cooper et al., 2013).

LESs of both cumulus (Matheou, 2011; Pressel et al.,
2015) and stratocumulus (Stevens and Bretherton, 1999;

Stevens et al., 2005; Pressel et al., 2015) clouds show sub-
stantial sensitivities to resolution and numerical method. Both
types of moist convection represent a particular challenge: for
stratocumulus convection, the sharp interface at the top of the
cloud layer needs to be well represented. For cumulus convec-
tion, it is important to capture regions with high liquid water
content where rain formation takes place, which can have a
scale well below 100 m (Blyth et al., 2005), as well as the
dynamics of turbulent eddies and entrainment.

The aim of the current work is to test the performance of a
recently developed Lagrangian model for detailed studies of
moist convection. This Moist Parcel-In-Cell (MPIC) model
is designed to provide a higher effective resolution in studies
where convection is marginally resolved, as well as to pro-
vide a more reliable, physically based approach to mixing. It
differs from approaches commonly used in atmospheric mod-
elling in that it represents the atmosphere through a set of
parcels, rather than through a mesh-based approach. A com-
panion paper (Dritschel et al. 2018, hereafter D18) introduced
MPIC and tested its internal consistency. Parcel-based models
like MPIC have previously been used for various fluid dynam-
ical problems (see the introduction of D18). MPIC also differs
from most of these parcel-based approaches as it accounts for
parcel buoyancy and has an explicit description of stretching
of parcels at small scales.

As we expect the MPIC approach to have major benefits
both in terms of computational cost and in accurately repre-
senting the physics of moist convection, we perform a more
detailed comparison with an LES model here. As a reference
model, we use the Met Office NERC Cloud (MONC) model
(Brown et al., 2015). For both models, a range of simula-
tions with different resolutions is considered, including those
where convection is marginally resolved, as well as simula-
tions which include fine-scale turbulence deep into the inertial
range.

For moist convection, a reliable description of stratifica-
tion and the mixing of heat and moisture is important. D18
describe the way in which buoyancy and mixing are repre-
sented in the MPIC framework. We argue that this approach
has advantages for modelling cumulus convection, although
further improvements may be possible. Both the development
of mean properties of the cloud as well as those of turbulence
and dilution on small scales are considered. The conver-
gence of these properties across a range of resolutions is
also tested.

The paper is outlined as follows. Section 2 describes our
methodology and includes a short description of both MPIC
and the LES model used, MONC. Section 3 contains our main
results. In this section, both the volume-integrated (bulk)
properties of the flow, as well as its detailed turbulent evolu-
tion, are compared to MONC. Section 4 discusses the advan-
tage of Lagrangian diagnostics, and Section 5 summarizes our
findings.
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2 METHODOLOGY

The test case consists of an idealized single cloud with a
simplified approach to evaporation and condensation. D18
describe this case in detail. Below, we mention some key
properties of the code and the test problem set-up considered.

2.1 Governing equations
We use a simplified set of governing equations introduced
in D18. The governing equations for velocity u, liquid water
buoyancy 𝑏𝑙 and specific humidity 𝑞 are

Du
D𝑡

= −𝜵𝑝

𝜌0
+ 𝑏ê𝑧, (1)

D𝑏𝑙
D𝑡

= 0, (2)

D𝑞

D𝑡
= 0, (3)

𝜵 ⋅ u = 0, (4)

where D∕D𝑡 = 𝜕∕𝜕𝑡 + u ⋅ 𝜵 represents a material derivative.
In Equation 1 the total buoyancy 𝑏 (including the effects of
latent heating) is approximated by

𝑏 = 𝑏𝑙 +
𝑔𝐿

𝑐𝑝𝜃𝑙0
𝑞𝑙 , (5)

where

𝑞𝑙 = max
(
0, 𝑞 − 𝑞0e−𝜆𝑧

)
(6)

is the liquid water content. The pressure 𝑝 in Equation 1
excludes the part due to the hydrostatic background state
of constant density 𝜌0. The other symbols appearing in
Equations 1–6 are the vertical unit vector ê𝑧, the gravitational
acceleration 𝑔, the latent heat of condensation 𝐿, the specific
heat at constant pressure 𝑐𝑝, the surface saturation humidity
𝑞0, and the inverse condensation scale height 𝜆. The liquid
water buoyancy is defined by 𝑏𝑙 = 𝑔(𝜃𝑙 − 𝜃𝑙0)∕𝜃𝑙0, where 𝜃𝑙
is the liquid water potential temperature and 𝜃𝑙0 is a constant
reference value.

2.2 Parcel-based model
As discussed in D18, the parcels in the MPIC model carry
liquid water buoyancy 𝑏𝑙, specific humidity 𝑞, parcel volume
𝑉 and vorticity 𝝎. The prognostic equation for vorticity reads

D𝝎

D𝑡
= 𝝎 ⋅ 𝜵u +

(
𝑏𝑦,−𝑏𝑥, 0

)
, (7)

where subscripts on 𝑏 denote spatial partial differentiation.
The velocity field is needed both to evolve the positions of
the parcels as well as to calculate the right-hand side of the

vorticity equation. D18 discuss the use of tri-linear interpo-
lation on a grid to obtain a Poisson equation for the gridded
velocity field given the gridded vorticity field. The different
scale of the advecting velocity field compared to the particle
size resembles a similar effective distinction made in layer-
wise two-dimensional contour advection methods (Dritschel
and Ambaum, 1997; Fontane and Dritschel, 2009).

Particle-mesh methods typically treat fluid elements as
indivisible. This is not a suitable approach for the simula-
tion of clouds, as mixing is needed on longer time-scales
in order to represent the eventual evaporation of the cloud,
which occurs at the end of the process of turbulent mixing.
MPIC contains an explicit representation of the stretching
and eventual mixing of parcels, detailed in D18. The amount
of stretching that a parcel has experienced is prognostically
calculated, and when this exceeds a critical threshold, a par-
cel is split. The choice of threshold value is also related to
the assumed distance between parcels after splitting (D18).
When this splitting leads to the parcel becoming smaller
than a critical volume (here 1∕216 of the grid box volume),
the parcel properties are merged with those of surrounding
parcels through operations on the grid, using the conservative
method developed in D18. D18 considered the sensitivity to
the threshold; they found limited sensitivity over a wide range
of values.

Another key numerical advantage of our approach is that
buoyancy in Equation 5 is calculated at the level of each indi-
vidual parcel, before it is summed to grid-based values. The
order of these operations implies that nonlinearities in the
thermodynamics are retained (Tsang and Vallis, 2018).

2.3 Non-dimensionalization
As discussed in D18, the equations are non-dimensionalized
by setting the length-scale 1∕𝜆 = 1 in Equation 5. The char-
acteristic squared buoyancy frequency 𝑔𝜆Δ𝜃𝑙0∕𝜃𝑙0 = 1 is
used to non-dimensionalize time. Here, Δ𝜃𝑙0∕𝜃𝑙0 = 0.01 is a
characteristic fractional variation of the liquid water potential
temperature. This gives a dimensionless gravity of 𝑔 = 100.
The specific humidity 𝑞 is scaled by its saturation value 𝑞0 at
ground level (i.e. we use 𝑞 = 𝑞∕𝑞0 in what follows). We obtain
the following dimensionless expression for the buoyancy 𝑏:

𝑏 = 𝑏𝑙 + 𝑏m max
(
0, 𝑞 − e−𝑧

)
, (8)

where

𝑏m = 𝑔𝐿𝑞0

𝑐𝑝𝜃𝑙0
. (9)

We use 𝐿∕𝑐𝑝 = 2, 500 K, 𝑞0 = 0.015 and 𝜃𝑙0 = 300 K,
which gives 𝑏m = 12.5. Both MONC and MPIC are run using
the same dimensionless set of equations, which make the
incompressible Boussinesq approximation. MONC can also
be used with a reference density which varies with height,
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that is, an anelastic formulation; this option is not used in the
present work. A rough estimate of the length-scale 𝜆 in the
atmosphere is that it is of the order 2 km, which would make
the domain 12 km high and the grid spacing in the 2563 simu-
lation about 50 m. In this case, some of the other assumptions
we have made such as a lack of precipitation and a Boussi-
nesq approach are not valid. The boundary layer would also
be much deeper than is typical for an atmospheric case.

Alternatively, we can think of our simulation as a more
shallow cloud, but with stronger saturation specific humidity
dependence on temperature than in the atmospheric case. This
means convection will be more vigorous than in atmospheric
shallow convection.

Possibly, scaling all heights that define the case by a fac-
tor of about 1∕3 to 1∕2 with respect to 𝜆 would have been a good
choice, as this would make them characteristic of shallow con-
vection over land. The main reason we chose the parameters
in the way we have done is that these allow us to test the
dynamics with a strong nonlinearity across a range of resolu-
tions. In summary, the set-up can be thought of as a thermal
which releases a substantial amount of latent heat, rather than
a realistic cloud in a particular atmospheric regime.

2.4 Case description
The different models are compared using a moist buoyant
thermal which is initially at rest and located near the sur-
face. The thermal first rises through a neutrally stable lower
atmospheric layer before encountering a layer with a constant
stratification aloft. In order to prevent the flow from being
overly symmetric, the buoyancy field in the spherical interior
of the thermal is initialized as:

𝑏𝑙 = 𝑏𝑙th

(
1 + 𝑒1𝑥

′𝑦′ + 𝑒2𝑥
′𝑧′ + 𝑒3𝑦

′𝑧′

𝑅2

)
. (10)

Here, 𝑏𝑙th is the mean thermal liquid water buoyancy, and
𝑥′, 𝑦′ and 𝑧′ denote the position with respect to the ther-
mal centre and 𝑅 the thermal radius, while 𝑒1, 𝑒2 and 𝑒3 are
dimensionless parameters. These parameters are chosen as
𝑅 = 0.8, 𝑒1 = 0.3, 𝑒2 = −0.4 and 𝑒3 = 0.5. The top of
the neutrally stratified layer is located at 𝑧 ≈ 2.38 and the
dimensionless Brunt–Väisälä frequency above is 𝑁 ≈ 0.97.
The environment relative humidity is set to 80% at all levels
in the stratified layer, and the specific humidity is constant
in the neutrally stratified layer, with a value chosen such that
there is no discontinuity at the top of this layer. This value is
also 90% of the specific humidity in the thermal.

A full overview of the procedure and parameters used to
construct the parcel properties is given in D18. In MONC, the
same procedure is used, but the specific humidity and buoy-
ancy are initialized at the relevant locations on the (staggered)
grid, rather than on parcels.

The reason for using a warm and moist thermal is that the
detailed flow evolution can be compared across models and
resolutions not only on a statistical basis, but also directly.
Recently, we have made a number of changes to the solver
which enable us to use a non-zero buoyancy gradient at the
boundary. This will help us to implement boundary condi-
tions that are suitable for real-case atmospheric simulations
in future work.

The moist thermal has a sharp edge, that is, there is a dis-
continuity of buoyancy at the edge. This has the drawback that
it is less realistic and leads to vorticity values which depend
on resolution. In general, our results are likely to be more sen-
sitive to resolution than simulations with a smoother initial
thermal edge. However, the advantages of this approach are
that it makes it easier to track the parcels that are defined as
the initial thermal, and it accelerates the transition from rest
to a fully turbulent flow.

2.5 MONC simulations
MONC is a LES model that has been developed for research
on atmospheric boundary layers and clouds. The model for-
mulation of MONC follows that of its predecessor, the Met
Office Large-Eddy Model, which has been used for many
years for atmospheric process studies and LES intercompar-
ison studies (e.g. Petch and Gray, 2001; Abel and Shipway,
2007). However, the code has been completely rewritten for
use on modern parallel computing architectures (Brown et al.,
2015).

In the MONC simulations, the same idealized thermo-
dynamics are used as in the MPIC simulations and we
have adapted the model formulation and set-up (domain
size and thermodynamics) to match that of MPIC. The
model integrates prognostic equations for the different com-
ponents of the momentum equation and the scalars 𝑏𝑙 and
𝑞 on a grid with Arakawa C-staggering. For scalars, it
uses the positivity-preserving ULTIMATE advection scheme
(Leonard et al., 1993). For the advection of momentum
and the subfilter-scale fluxes, we consider two different
approaches in this work.

1. MONC-Smagorinsky: Velocity components are advected
using a second-order kinetic energy conserving scheme
(Piacsek and Williams, 1970). Hence there is a need
for subgrid-scale dissipation: subfilter-scale fluxes of
scalar quantities and momentum are determined using the
Smagorinsky approach (Smagorinsky, 1963). Effects of
stratification are taken into account in the determination
of the eddy viscosity, as they are in the default version of
MONC.

The Richardson number is used in calculating the eddy
viscosity, as described in Mason and Brown (1999). For
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unsaturated air, we define the Richardson number as 𝑅𝑖 =
(𝜕𝑏𝑙∕𝜕𝑧)∕𝑆. Here,𝑆 is the modulus of the rate of strain tensor.
For saturated air, a correction is made for latent heat release:
𝑅𝑖 = (𝜕𝑏𝑙∕𝜕𝑧 + 𝑏me−𝑧) ∕𝑆.

2. MONC-Implicit: velocity components are advected using
the ULTIMATE advection scheme, and no explicit
subgrid-scale model is used. This approach is referred to
as implicit LES.

The pressure is determined diagnostically using a Poisson
equation, which is solved using Fast Fourier Transforms in
the horizontal and a tridiagonal solver in the vertical. MONC
was run with a constant time step Δ𝑡, proportional to the grid
spacing Δ𝑥, namely Δ𝑡 = 0.2Δ𝑥∕𝜋. We have used a constant
time step in MONC as this was the easiest way to obtain output
at (or near) the exact time when it was required with MONC’s
IO-server.

We take the grid spacing to be the same in 𝑥, 𝑦 and
𝑧. Horizontal boundary conditions are doubly periodic.
Free-slip boundary conditions are used at both domain bot-
tom and domain top for horizontal momentum, whereas
for temperature and moisture, the flux at the boundaries is
set to zero.

2.6 Use of subgrid-scale diagnostics for
MPIC
For MPIC, we mostly show results that have been obtained
by post-processing the particle information using a finer grid.
MPIC uses a large number of parcels per grid box (typically
10–200), each of which occupies only a small fraction of the
grid box volume. This means that gridded quantities fail to
show the actual variability below grid scale that is present in
the model. In order to visualize this subgrid variability, a pro-
jection algorithm is employed that works with a representative
radius for each parcel. A full description of the projection
algorithm can be found in Appendix A.

For computing statistics of the liquid water field in MPIC,
we make use of the direct statistics of parcels. Appendix B
discusses how the probability distribution function of liquid
water depends on the method used to compute it.

2.7 Computational cost
In the following, the number of grid points is mentioned
in comparisons between MPIC and MONC. However, a
like-for-like comparison is not easy to infer, since MPIC
exploits the existence of many parcels within each grid box.
Although the computational cost of the solver is largely deter-
mined by the number of grid points, the total computational
cost is harder to compare.

MPIC was run using shared-memory parallelism
(OpenMP) for this study. This is the reason that the maximum

number of grid points used was limited to 3843, whereas for
MONC, which uses MPI parallelism, 10243 points could be
used. In the meantime, a project to produce a hybrid parallel
(OpenMP+MPI) version of MPIC in collaboration with the
Edinburgh Parallel Computing Centre, which uses MONC’s
infrastructure, is close to being finished.

The number of parcels plays an important role in the
cost of MPIC simulations, even though parcel operations are
relatively straightforward. Parcel operations (including inter-
polation of values to and from the grid) are responsible for
the bulk of the cost of the MPIC simulations (79% for par-
cel operations and 9% for parcel time stepping in a 1283 grid
points simulation). The FFT operations are responsible for
about 10% of the computational cost.

The simulation with 2563 grid points took approximately
99 core hours (the number of hours spent multiplied by the
number of computational units involved) on ARCHER for
MONC and 751 core hours on a local machine for MPIC
using 24 cores. The OpenMP-only parallelism does not scale
perfectly: as an example, for a 1283 grid point simulation on
eight cores the speed-up was a factor 5.35 compared to a sin-
gle core, whereas using 24 cores only resulted in a speed-up
of a factor 8.17. Early results from the hybrid parallel ver-
sion on ARCHER show a total runtime of 453 core hours on
128 cores, with 17% of this time spent on FFT operations.
The latter is a greater fraction of computational cost, but the
total time spent on FFTs is similar to that in the version with
shared-memory parallelism only. We aim to further optimize
the relative cost of parcel and grid operations in future work.

The number of time steps for the computation with 2563

grid points is 1667 for MPIC and 6400 for MONC. However,
MPIC uses an RK4 time-integration scheme, whereas MONC
uses a leap-frog approach with an Asselin filter. In MPIC,
the solver is called four times per time step, so effectively the
number of calls to the solver is similar. We have followed a
relatively conservative approach in choosing the time step for
both models. The time step length in MPIC mainly changes
during the initial phase, and the smallest time step of 0.0039
time units occurs at 𝑡 = 5.92.

3 RESULTS

3.1 Evolution of the flow at high resolution
Figure 1 shows the evolution of the liquid water specific
humidity field 𝑞𝑙 in the MONC and MPIC simulations at
the highest resolutions at which we have run the models.
The number of grid points used in the simulations is 10243

for MONC and 3843 for MPIC (due to the limitations of
shared-memory parallelism). The number of grid points is
different as these simulations serve as both a benchmark for
the lower-resolution simulations and as a test that both mod-
els give similar results as resolution increases. However, it is
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F I G U R E 1 Cross-sections of dimensionless liquid water specific humidity 𝑞𝑙, for (a, b, c) MPIC, and for MONC with (d, e, f) a Smagorinsky

and (g, h, i) an implicit subgrid formulation after (a, d, g) 4, (b, e, h) 6 and (c, f, i) 8 time units

important to keep in mind that, for producing Figure 1 and the
detailed cross-sections shown in Figure 2, the MONC simula-
tions had a much higher total computational cost. The number
of parcels in the MPIC simulation is larger than the number
of grid points by a factor of 8 at the start of the simulation,
which increases to a factor of 16 at the end. The MPIC results
are rendered using the algorithm described in Appendix A.

The large-scale evolution of the thermal is similar between
the models, and even some of the smaller-scale features that
arise due to the initial asymmetry are comparable at 𝑡 = 8.
Closer inspection also shows that, at 𝑡 = 6, the thermal in
MPIC has ascended further than the one in MONC.

MPIC shows a very large amount of fine-scale structure at
the reference resolution, whereas the liquid water field looks
relatively smooth in MONC, particularly for the Smagorinsky
model. This is even more evident in the detailed cross-sections
shown in Figure 2. In this figure, the MPIC results are also
shown averaged to the coarse grid used in the dynamics. Some
of the detail in the liquid water field (left column) is lost when
only the grid-scale properties are used for visualization.

Larger differences between the reference simulations
occur in the vorticity and velocity fields. The magnitude of
the vorticity vector is shown in Figure 2b,e,h,k. MPIC shows a
sharply confined region of high vorticity with a large amount
of structure (in particular, it includes long swirling features),
whereas in MONC the filaments are broken into multiple seg-
ments and are less confined. We will address the extent to
which this depends on resolution below.

In MPIC, vorticity is a dynamical variable carried by
the parcels, and we can therefore make use of the detailed
projection algorithm for visualization. The magnitude of
vorticity is larger at the subgrid scale, as partial cancellation
between parcels with different orientations of the vorticity
vector occurs on the grid scale. For MONC, the vorticity is
calculated from the gradients in the grid-scale velocity fields.
Conversely, in MONC the velocity fields evolve prognosti-
cally at the grid scale, whereas in MPIC these only exist at
the scale of the interpolation grid. In principle, more detailed
velocity fields can be constructed from the parcel vorticity
by using a finer interpolation grid in the solver as compared
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

ql

F I G U R E 2 Detailed zoom into (a, d, g, j) the liquid water specific humidity 𝑞𝑙, (b, e, h, k) vorticity and (c, f, i, l) vertical velocity fields in the

most active part of convection at 𝑡 = 6. For MPIC, both results using (a, b, c) the method in Appendix A and (d, e, f) at the scale of the grid are

shown. MONC uses either (g, h, i) the Smagorinsky subgrid scheme or (j, k, l) an implicit LES formulation

to the vorticity tendency equations, but this is currently not
done (as parcels are advected with the gridded velocity fields
in any case).

The vertical velocity shown in Figure 2f,i,l shows less
structure in the MPIC fields than in the MONC ones. This is
to be expected as this variable only exists on the grid, which
is three times coarser for MPIC than for MONC.

In conclusion, the large-scale evolution of the thermal
is similar in the two reference simulations. MPIC contains
more small-scale features in the liquid water and vorticity
fields, though the velocity field at the grid scale shows more

fine-scale structure in MONC, which uses a larger number of
grid points.

3.2 Resolution sensitivity of the flow
evolution
The flow evolution in MONC and MPIC across a range of
resolutions is compared next. The stage when convection
is at its most active (𝑡 = 6) is considered first. The liq-
uid water and buoyancy fields at this stage are shown in
Figures 3 and 4, respectively. These figures show results
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F I G U R E 3 Cross-sections of liquid water specific humidity at 𝑡 = 6 using (a, b, c) 163 to (j, k, l) 1283 grid points, for (a, d, g, j) MPIC, and for

MONC with (b, e, h, k) Smagorinsky and (c, f, i, l) implicit subgrid formulation

with the same grid spacing; admittedly, the computational
cost at this grid spacing is currently higher for MPIC than
for MONC.

Two differences between the MONC and MPIC simu-
lations are clear. First, the coarsest MONC simulations are
overly diffusive as compared to the high-resolution reference
simulations. Intermediate MONC simulations preserve the
maxima in the liquid water field better. MPIC, on the other
hand, may be underdiffusive when the flow is marginally
resolved, as can be seen by comparing the buoyancy
fields in a low- and an intermediate-resolution simulation

(Figure 4); a significant local maximum in buoyancy occurs
in the vortex ring in the low-resolution MPIC simulations,
whereas this maximum is much less pronounced at higher
resolutions.

The differences between MPIC and MONC are more read-
ily apparent at later times, when diffusive effects accumulate
in MONC. This is shown in Figure 5, for the condensed por-
tion of the specific humidity (comparing times 𝑡 = 4 with
𝑡 = 8). The MPIC model exhibits many more fine-scale fea-
tures reminiscent of actual cumulus clouds than MONC does.
By 𝑡 = 8, the cloud spreads laterally as it has lost buoyancy
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F I G U R E 4 Cross-sections of buoyancy after 6 time units for simulations using (a, b, c) 323 and (d, e, f) 1283 grid points. Columns are as in

Figure 3

F I G U R E 5 Time evolution of liquid water specific humidity in the simulations using 643 grid points after (a, b, c) 4 time units and (d, e, f) 8

time units. Columns are as in Figure 3

and gradually evaporates. Turbulent motions are better repre-

sented in the MPIC model than in MONC, and are sustained

in time.

Both models capture the same intermediate and large-scale

features when used across a range of resolutions. However, the

small-scale features differ, and vary strongly with resolution.

This is expected since the vorticity is generated by gradients

in buoyancy, and so the finer the resolution used, the higher

the gradients become and the more intense and localized the

vorticity generation becomes.
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F I G U R E 6 Resolution sensitivity of bulk flow properties at 𝑡 = 6: (a–c) root-mean-square velocity, (d–f) root-mean-square vorticity and (g–i)

liquid water specific humidity. (j–l) show the difference in total specific humidity between the start and end of the simulations. Columns are as in

Figure 3. Colours represent the number of grid points (323 pink, 643 red, 1283 light blue and 2563 dark blue). The 2563 MPIC simulation is

represented as a black dotted line in the MONC plots

As expected, small-scale features can be resolved by MPIC
simulations with a grid spacing that is about double that of
the corresponding MONC simulations, but it is good to be
cautious about the implications this has for mixing, as we shall
see below.

In conclusion, the new MPIC model can simulate convec-
tion purely in terms of parcels. MPIC and MONC agree on
large-scale flow features, although MONC tends to diffuse
smaller-scale features at a low resolution. A major result is
that the MPIC simulations show substantially more detail in
the dynamical fields comparison. This is further quantified in
Section 3.4.

3.3 Resolution sensitivity of bulk flow
properties
In order to quantitatively test convergence, the vertical pro-

files of a number of bulk measures of the flow properties are

considered. Such bulk measures have previously been used

in meteorology, where specific realisations of the flow are

chaotic (Langhans et al. 2012).

A number of such bulk measures are plotted in Figure 6. In

all the panels, the highest resolution MPIC results are shown

for reference (dotted black curve in the MONC results). Here,

the root-mean-square velocity profile (𝑢rms; Figure 6a–c)
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F I G U R E 7 Liquid water specific humidity probability distribution function at 𝑡 = 6 in (a) MPIC and (b) MONC using the Smagorinsky

scheme, for various resolutions (colours are as in Figure 6, with an additional black curve indicating higher-resolution results)

gives a measure of the total amount of turbulent energy in
the simulations, rather than a measure of error, and is there-
fore expected to converge across resolutions. This quantity
is shown at 𝑡 = 6, which is during the most active phase of
the updraught. For MPIC, results based on gridded velocities
are shown. As compared to MONC, the maximum in 𝑢rms is
higher and more localized in the MPIC simulations with the
same grid resolution. The MPIC results also converge more
rapidly.

For the root-mean-square vorticity (𝜔rms; Figure 6d–f),
values on the grid used for advection are used here rather
than values on the finer grid. In both models, this quan-
tity increases significantly each time the number of grid
points is doubled. The rms vorticity measures gradients of
velocity, which is much more sensitive to resolution as ever
more small-scale gradients are resolved. (These small-scale
gradients do not substantially change the magnitude of the
velocity field, only its derivative at small scales.) D18 found
𝜔rms at early times in the simulation to roughly double each
time the resolution was doubled. Its value is higher for MPIC
simulations with the same number of grid points, which indi-
cates that more small-scale structures are present in MPIC,
as expected.

The vertical profile of horizontal mean liquid water spe-
cific humidity at 𝑡 = 6 is shown in Figure 6g–i. The over-
all agreement between MPIC and MONC is good for this
quantity, in particular at high resolution, although the cloud
reaches somewhat higher levels in MPIC. In some regions,
the results are sensitive to resolution; for MPIC this sensitiv-
ity is strongest near cloud base. This is because the inflow in
the high-resolution simulations forms narrow structures that
do not contribute a large amount of liquid water to the mean
profile (Figure 3).

Figure 6j–l shows the total specific humidity change at 𝑡 =
10 with respect to the initial profile. This serves as a bulk
measure for the moisture transport by convection over time.
Again, the overall agreement is good, though MPIC produces
slightly deeper convection.

Figure 7 shows the probability density functions of the
liquid water content. Regions of high liquid water content
in MPIC (Figure 7a) are retained throughout the simula-
tion as compared to MONC with the Smagorinsky scheme
(Figure 7b). At all resolutions, higher values of liquid water
specific humidity are retained in MPIC (also Figure B1).
However, the coarser MPIC simulations underestimate the
amount of dilution: the PDF of liquid water broadens signif-
icantly for MPIC simulations as the resolution increases. A
larger number of weakly diluted parcels lead to reduced evap-
oration, and hence a higher cloud buoyancy. This is consistent
with the higher centre of mass of thermals in MPIC.

The sharp peak in the liquid water probability density
function in MPIC appears clearly only when probability
density functions are determined directly from the parcel
diagnostics. Appendix B describes how the use of par-
cel diagnostics allows us to accurately evaluate the rate of
dilution in MPIC.

Figure 8 shows the probability distribution function of
absolute vorticity in MPIC. The amount of vorticity in the
simulation increases rapidly with resolution, consistent with
our previous analysis of the root-mean-square vorticity. The
amount of vorticity and therefore the stretching rate is very
sensitive to resolution. This explains why the mixing rate is
also sensitive to resolution.

F I G U R E 8 Probability distribution function of the absolute

value of the vorticity in MPIC, for various resolutions at 𝑡 = 6 (colours

are as in Figure 7a)
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3.4 Measures of the representation of
small-scale motions
A further measure of the representation of small-scale
motions is given by the kinetic energy spectrum (𝑘), which
is described in more detail in D18. These are calculated
using gridded fields from both models. Results for 𝑡 = 6
are shown in Figure 9a,b. The MPIC spectra generally retain
more energy at small scales than MONC at the same resolu-
tion, but are also characterized by a sharp cut-off, which is
due to a spectral filter used to prevent aliasing. We have per-
formed sensitivity experiments that show a similar spectrum,
but with a longer tail, can be obtained by applying this fil-
ter only for vorticity tendencies, and not in the solver (not
shown). Both the faster convergence of the rms velocity and
the spectra indicate that the velocity field is more detailed in
MPIC when the same number of grid points is used, which
suggests that small-scale eddies at the cloud edge can be bet-
ter resolved. This may seem to contradict the slower reduction
in liquid water content in low-resolution MPIC simulations as
compared to MONC simulations with the same grid spacing
shown in Figure 7. In MPIC, we explicitly represent the dilu-
tion process beyond the scale of resolved motion, whereas in
MONC it is handled by the numerics or subgrid parametriza-
tion. However, we are currently only representing the effect
of resolved dynamics on both entrainment and further mix-
ing in MPIC. The mixing by turbulence on scales that are
represented by neither model is therefore underestimated in
MPIC.

Implicit MONC simulations also retain more energy on
small scales than MONC simulations using the Smagorinsky
scheme.

A second measure of small-scale motions can be obtained
from the spectrum of the variance of total specific humidity
(𝑘). This is calculated in the same manner as the kinetic
energy spectrum. However, to isolate the cloud dynamics
from the overall stratification, the mean vertical profile of
total humidity has been subtracted before processing the
fields.

For MPIC, we use the projection algorithm described in
Appendix A to first construct results on a fine grid. Figure 9c
shows results for simulations with 643, 1283 and 2563 grid
points. Figure 9d shows spectra for the reference simula-
tions, which have 10243 grid points for MONC and 3843 for
MPIC.

The humidity spectra of the MPIC simulations again show
more variance at the intermediate and small scales, and in
this case there is no clear cut-off. Compared to MONC, the
MPIC spectra show a slope that is constant over a range
that extends out to much smaller scales. This shows how
additional detail below the grid scale is captured in MPIC
simulations as compared to MONC due to the subgrid parcel
representation.

4 THE ORIGIN OF IN-CLOUD AIR

In this section we illustrate how MPIC can be used to tackle
Lagrangian questions which are challenging to address in
a Eulerian model. A tracer was added to track the level of
origin of parcels. This tracer is treated in the same way
as liquid water buoyancy and humidity when splitting and
redistribution occurs.1

Figure 10 shows the vertical displacement of parcels from
their altitude at 𝑡 = 0 for an MPIC simulation with 2563 grid
points. This exhibits various noteworthy features. At 𝑡 = 4, a
region of in-cloud air originating from lower layers is shown
in red between 𝑧 = 0.5 and 𝑧 = 0.7. This region has a sharp
edge, beyond which there is an environment where subsidence
has occurred. The effect of subsidence appears strongest at a
level below the rising updraught. The cloud has entrained air
at the centre of the updraught, which has ascended less than
the air in the vortex ring. A column of rising air is found here,
which is consistent with observational and modelling studies
of cumulus convection (Blyth et al., 2005). The region above
the updraught has also ascended.

At 𝑡 = 6, there is additional entrainment of air that has
come down at the side of the cloud and is rising again. Pockets
of this entrained air appear to have mixed into the cloud at 𝑡 =
8. Though these pockets have descended, they have done so
by a relatively small amount, which is consistent with earlier
work on convection in moist environments (Blyth et al., 1988;
Heus et al., 2008; Böing et al., 2014). At this time, the air
above the updraught has experienced a net descent and gravity
waves become evident. A region of net descent appears below
the cloud at 𝑧∕𝐿𝑧 ≈ 0.3. This region separates the cloud from
another region of net ascent in the neutally stratified boundary
layer below.

5 CONCLUSIONS

The development of a warm, moist thermal was simulated in
a novel essentially Lagrangian model, MPIC, as well as in
the Met Office NERC Cloud model, MONC. The simulation
was designed to capture the effects of latent heat release and
evaporation, but is not aiming to address a particular type of
atmospheric situation.

The overall development of the cloud is in good agree-
ment between the MPIC and MONC simulations, as shown
both in visual comparisons of the flow structure as well
as in quantitative bulk measures of flow properties. The

1For studies that trace the origin of parcels over a longer duration, it could

be argued that when redistribution occurs, it would be fairer to randomly

choose a value of level of origin from the constituent parcels with

appropriate weights, so that two parcels from a low and a high level do not

produce a parcel that seems to originate from a level in between. Such an

approach would not be possible in a conventional model.
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F I G U R E 9 Kinetic energy spectra at 𝑡 = 6 for (a) simulations with 643 (red), 1283 (blue) and 2563 (black/grey) grid points, and (b) for the

reference simulations with 3843 (MPIC) and 10243 (MONC) grid points. (c, d) show the corresponding total specific humidity variance spectra.

Here, the MPIC spectra are based on detailed fields derived using the algorithm in Appendix A

F I G U R E 10 Detailed visualization of the vertical displacement of parcels since the beginning of the simulation normalized by the domain

height for an MPIC simulation with 2563 grid points after (a) 4 , (b) 6 and (c) 8 time units

MPIC simulations capture a large amount of detail in the
subgrid-scale flow when compared to MONC at the same
grid resolution due to the presence of multiple parcels in
each grid box. This has been shown in comparisons of
cross-sections and in corresponding spectra across model
resolutions.

Subgrid-scale mixing is weaker in all the MPIC sim-
ulations than in MONC. Whereas low-resolution MONC
simulations tend not to represent the cloud structure as well as
low-resolution MPIC simulations, the latter have insufficient

small-scale mixing compared to the high-resolution reference
studies. The slow dilution of thermodynamic properties when
MPIC is used at low resolution may be due to the absence
of a representation of the velocity field on the parcel scale,
that is, at subgrid scales. The consequence of weak mixing is
that regions of high liquid water content remain present that
are absent in higher-resolution simulations. This behaviour at
low resolution sharply contrasts that of MONC, where regions
with high liquid water content are eroded (diffused) quickly
at the lowest resolution.
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Even the highest resolution MONC and MPIC simulations
are not fully in agreement when it comes to the probabil-
ity density function of liquid water. At these resolutions, the
MPIC results appear to converge, so this may indicate that
the models disagree to some extent. However, the MPIC
results also change if they are not calculated on parcels but
by projection onto a grid (the projection smooths the field).
In this case, they resemble MONC results to a greater extent
(Appendix B).

A relatively slow convergence of the properties of the liq-
uid water field is not unique to our study. It has also been
found in previous work that tried to represent subgrid-scale
mixing explicitly, e.g. Jarecka et al. (2009). Apart from
this single issue, the models show a remarkable extent of
agreement.

When used at sufficiently high resolution, MPIC may
provide new perspectives on the role of entrainment and in
particular vorticity dynamics in cloud formation (e.g. the role
of vorticity extrema in mixing and the presence and dynam-
ics of vortex rings). Previous work has shown the usefulness
of Lagrangian analysis for understanding cloud processes and
turbulence (e.g. Lasher-Trapp et al., 2005; Cooper et al., 2013;
Böing et al., 2014). MPIC takes this approach a step further
by allowing for a Lagrangian analysis which is fully consistent
with the model dynamics. A first example of such an analysis
was given in Section 4. Further benefits in terms of computa-
tional cost can be expected in situations where a large number
of tracers is carried by the parcels.

Developing a version of MPIC which uses the same ther-
modynamical formulation as the standard version of MONC,
and testing this on more representative scenarios driven by
surface fluxes, is one of our priorities for further development
of MPIC. Furthermore, we want to improve the convergence
of the liquid water probability density function with resolution
in MPIC. The aim is first to attempt to implement methods
that improve resolved and explicitly represented dynamics, for
example the use of a finer grid in parts of the dynamical core
(in particular for the inversion procedure) and a more phys-
ical model of parcel stretch (McKiver and Dritschel, 2003)
and splitting. Kaas et al. (2013) also present an approach
that looks at explicit deformation of parcels; in terms of
mixing, a grid is used here as well, and it shares some prop-
erties with the approach currently used in MPIC. A second
strategy would be to exploit subgrid information carried by
parcels. Particle–particle particle-mesh (PPPM; e.g. Walther
and Morgenthal 2002) methods use this strategy, but these
are very expensive as many parcel–parcel interactions need
to be represented. A stochastic approach based on methods
used in dispersion modelling (Thomson, 1987; Weil et al.,
2004) could be more suitable, or alternatively a fractal rep-
resentation of unresolved turbulence (e.g. Basu et al. 2004)
could be explored. We believe a mostly parcel-based approach
to mixing will be valuable for studies that use Lagrangian

diagnostics. As a last resort, it would be possible to use a
gridded approach only to subgrid-scale mixing.
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APPENDICES

A: AN ALGORITHM FOR RECONSTRUCTING
PARCEL PROPERTIES ON THE FINE GRID

In some of our analysis, parcel properties are interpolated to a
grid with a grid spacing that is six times finer than that of the
grid used in the vorticity inversion. This approach is useful,
for example, for producing two-dimensional cross-sections
with a detailed representation of the flow field. While the
tri-linear interpolation algorithm used in the vorticity solver
aims to find mean parcel properties on a grid (where the
spacing is coarser than the parcel radius), the fine grid recon-
struction algorithm aims to represent the parcel properties at
a scale similar to the smallest parcels. This requires a different
approach, because parcel spacing and size vary.

The interpolation algorithm is used to calculate a represen-
tative value of a field at a location x̄ in the domain, where the
overline denotes interpolated values. As an example, we con-
sider the interpolated humidity field 𝑞(x̄), which results from
taking a weighted sum over the parcels in the domain:

𝑞(x̄) =
∑

𝑖∈ 𝜇(x̄, x𝑖, 𝑉𝑖) 𝑞𝑖∑
𝑖∈ 𝜇(x̄, x𝑖, 𝑉𝑖)

. (A1)

Here, 𝑉𝑖 is the parcel volume and 𝜇 a weighting function.
For each parcel, an equivalent radius is defined as

𝑟𝑖 =
(

3𝑉𝑖

4𝜋

)1∕3

. (A2)

The weights are chosen to meet following conditions:

1. The weights are isotropic, that is, they depend only on the
Euclidean distance 𝑟 ≡ ‖x̄ − x𝑖‖.

2. There is a maximum radius of influence 𝑟m, which is the
same for each parcel. Outside this radius of influence,
𝜇(x̄, x𝑖, 𝑉𝑖) = 0. On the other hand, at each point in space,
there must be at least one parcel which contributes to 𝑞(x̄).
As each grid box is guaranteed to contain at least one
parcel, we can choose

𝑟m = (1 + 𝜀)
√

Δ2
𝑥 + Δ2

𝑦 + Δ2
𝑧. (A3)

Here, 𝜀 is a small number (e.g. 0.02; this merely serves
to avoid division by small numbers) and Δ𝑥∕𝑦∕𝑧 denotes
the grid spacing of the (vorticity) inversion grid, so that
𝑟m is marginally bigger than the maximum distance within
an inversion grid box.

3. The total contribution of a parcel to the three-dimensional
projection domain (here the entire domain) is equal to its

volume, that is,

∫ 𝜇(x̄, x𝑖, 𝑉𝑖) d𝑿 = 𝑉𝑖. (A4)

This condition holds for parcels for which the projec-
tion does not extend beyond the domain top or bottom,
otherwise the contribution of a parcel is equal to the con-
tribution it gives on the interior of the domain using our
method.

4. The contribution of a parcel decreases rapidly when
𝑟 > 𝑟𝑖.

In order to meet these conditions, 𝜇(𝑟) is chosen as:

𝜇(𝑟) = 𝑉𝑖𝑓 (𝑟)∕𝑁. (A5)

Here, 𝑓 (𝑟) specifies a radial dependence and 𝑁 is a normal-
ization factor, chosen such that

𝑁 = ∫ 𝑓 (𝑟) d𝑿. (A6)

We employ a Gaussian dependence on radius here:

𝑓 (𝑟) =
{

e−(𝑟∕𝑟𝑖)
2− e−(𝑟m∕𝑟𝑖)2 𝑟 < 𝑟m,

0 𝑟 ≥ 𝑟m.
(A7)

This implies

𝑁 = ∫
𝑟m

𝑟=0
4𝜋𝑟2

(
e−(𝑟∕𝑟𝑖)

2 − e−(𝑟m∕𝑟𝑖)2
)

d𝑟

= 𝜋𝑟2
𝑖

(
𝑟𝑖
√
𝜋 erf(𝑟m∕𝑟𝑖) − 2𝑟me(−𝑟

2
m∕𝑟

2
𝑖
)
)

− 4𝜋
3
𝑟3

me−(𝑟m∕𝑟𝑖)2 . (A8)

Other choices of 𝑓 (𝑟) can be made for 𝑟 < 𝑟m that also lend
themselves to analytical integration; in particular the second
power within the exponential function can easily be replaced
by the third or fourth power. The choice of function impacts on
the character of high-frequency modes in the projected field.

B: RECONSTRUCTING THE LIQUID WATER
FIELD FROM PARCEL DATA

In Section 3.3, we used the parcel properties to derive the
statistics of the liquid water field. In practice, we might need
to reconstruct the liquid water field on the grid in order to cou-
ple the dynamics to other processes (e.g. a radiative transfer
scheme).

Several approaches are considered here, and it is shown
that the choice of approach significantly changes the probabil-
ity density function of the liquid water field. As an example,
we consider the impact of different approaches on the proba-
bility density function at 𝑡 = 6 in Figure B1. The probability



BÖING ET AL. 17

q
l

F I G U R E B1 Liquid water specific humidity pdf at 𝑡 = 6 in the

3843 MPIC simulation, as diagnosed using different methods

distribution function from a 5123 MONC simulation with the
Smagorinsky closure is given as a reference.

a. If only the probability distribution function itself needs to
be calculated, this can be done directly from the parcels.
However, when the spatial distribution is also important,
a different approach is needed.

b. One might simply derive the mean liquid water content of
each grid box using the algorithm described in D18. This
approach conserves the total liquid water content but has
two drawbacks. First of all, some grid boxes are partially
cloudy but are now simply seen as containing liquid water,
so the cloud fraction increases. In addition, the extremes
in the liquid water distribution are no longer present in the
gridded field.

c. The detailed projection scheme described in Appendix A
can be used. Here, 𝑞 is calculated on the fine grid
using the algorithm in the Appendix and 𝑞𝑙 is calcu-
lated from the field of 𝑞. This approach is much more
computationally costly, but it gives a better probability
distribution than the coarse grid approaches and retains
small-scale features. This approach is useful mainly for
detailed analysis of a limited number of snapshots from
MPIC.

d. A fourth approach would be to partition each grid box
into a cloudy and a non-cloudy part (as is often done
in radiative transfer), and to separately determine the
mean value in the cloudy and the non-cloudy parts. This
results in the correct cloud fraction and total liquid water
content, but both high and low values of liquid water
content are under-represented. This is an example of
how MPIC’s subgrid-scale information (the cloud frac-
tion) can be used. It is possible to extend this, and for
example to consider the variance of liquid water within
the cloudy part of each grid box, fit an assumed probabil-
ity distribution function, and use this in radiative transfer
calculations.

e. For some purposes, it is possible to randomly select a
parcel in each grid box, with odds proportional to parcel
volume. This preserves the probability density function as
well as some spatial information, and is similar to meth-
ods in radiative transfer where a randomly selected subset
of model columns is used (Pincus et al., 2003).


