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We provide a theoretical framework for the prediction and interpretation of momentum dependent
phonon spectra due to coherent inelastic scattering of electrons. We complete the approach with
first principles lattice dynamics using periodic density functional theory and compare to recent
electron energy loss measurements on cubic and hexagonal boron nitride performed within a scanning
transmission electron microscope (STEM). The combination of theory and experiment provides the
ability to interpret momentum dependent phonon spectra obtained at nanometer spatial resolution
in the electron microscope.

INTRODUCTION

The quantitative description of the thermal physics of
solid materials in terms of quantized lattice vibrations,
phonons, is one of the major achievements of condensed-
matter physics in the 20th century. Lattice dynamics is
central to the theories of phenomena including structural
phase transitions, superconductivity, thermal expansion,
thermal conductivity, stability of polymorphs and much
more. Laboratory techniques to measure phonon spectra
using light including infra-red and Raman spectroscopy
are powerful and widely deployed across laboratories, but
the energy-momentum relation of the photon probe re-
stricts the interaction with phonons to involve essentially
zero momentum transfer. Consequently only a subset of
phonon modes at the long-wavelength limit may be mea-
sured using optical probes.

Inelastic neutron scattering (INS), pioneered by
Bertram Brockhouse [1], was the major development
which enabled the full measurement of phonon spectra
at all phonon wavevectors - the first momentum-resolved
spectroscopy. This was followed by inelastic X-Ray scat-
tering (IXS) [2, 3, and citations therein]. Such techniques
have been the mainstay of phonon spectroscopy in crys-
talline solids for half a century. However their application
is limited by the scarcity and expense of INS and IXS
spectrometers, which must be based at reactor, acceler-
ator or synchrotron sources. The requirement to grow
single crystal specimens also limits their widespread use,
particularly in the case of neutrons where crystal sizes of
20-1000mm3 are needed. The spatial resolution of INS
is larger than 1cm, and while X-Ray spot sizes in the
micrometer range can easily be obtained, counting rates
and experimental timescales mostly preclude spatially-
resolved studies.

Electrons have been used since the 1960s in a reflection
geometry to measure the average surface response of ma-

terials [4, 5]. Recent advances in source monochromation
mean that it is now possible to measure phonon spectra in
a transmission electron microscope using electron energy-
loss spectroscopy (EELS) with a resolution of 15meV
or better [6]. This adds a complementary technique to
the methods above, with the additional advantages of
nanometer spatial resolution [6, 7] of the phonon spec-
trum, alongside atomically resolved chemical and struc-
tural analysis, all within the same instrument.

The geometrical constraints in reflection EELS mean
that the theoretical treatments used are not applicable to
transmission EELS. For the transmission geometry, two
different scattering regimes have been identified by Dwyer
et al. [7]: dipole scattering and localised vibra-tional
scattering. Dipole scattering involves small mo-mentum
transfer and Radtke et al. [8] have used density functional
theory to model EEL spectra in this regime. To interpret
momentum dependent spectra, we are inter-ested in the
localised vibrational scattering regime.

The theory of INS from phonons was developed in a
very general formalism by Leon van Hove [9], and can be
adapted to any radiative probe for which the interaction
Hamiltonian is known. In this paper we present its ex-
tension to coherent inelastic scattering of electrons from
phonons and apply it to the case of momentum-resolved
EELS experiments performed in a scanning transmission
electron microscope (STEM). This formalism enables the
prediction of scattering cross section as a function of mo-
mentum and energy transfer and makes possible a quan-
titative comparison with EELS experiments. It reveals
the fundamental physics shared between inelastic scat-
tering of electrons, neutrons and photons, and attempts
to unify the theories of EELS, INS and IXS. In contrast,
previous work has looked at specific cases [10–12], been
used to interpret the q = 0 modes in a nanocube [13, 14],
has looked at spatial the effects of beam geometry [15] or
dealt with the dipole (q ≈ 0) scattering regime [8, 16]. We
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apply this general method to predict the phonon contri-
bution to the EEL spectrum of two polymorphs of boron
nitride and make a direct comparison to their recently-
measured momentum-resolved spectra [17].

SCATTERING FACTOR FORMALISM

As the energy transfer that occurs in the scattering
process is small compared to that of the scattered par-
ticle, the double differential cross section is given by the
Born approximation as [18]

d2σ

dΩdk1
=

1

N

N0V
∑

n0,n1
Pn0

k21|〈n0,k0|Hinter|n1,k1〉|
2δ(En0

+ E0 − En1
− E1)

(2π)2h̄(j0)z
(1)

where n0 and n1 are the initial and final states of the
material with energies En0

and En1
respectively, k0 and

k1 are the initial and final states of the scattered par-
ticle with energies E0 and E1 respectively, Hinter is the
Hamiltonian for the interaction of the particle with the
material, (j0)z is the current density of the beam of par-
ticles in the z-direction, Pn0

is the probability of finding
the material in state n0 before scattering, N is the num-
ber of scatterers in the material, N0 is the number of
electrons in state k0 and V is the volume of the unit
cell. The scattered particles could be photons, neutrons
or fast electrons. For the different particles, the form of
the interaction Hamiltonian and expressions for the cur-
rent density are different. A fast electron will interact
with both the electrons and nuclei in the sample and the

interaction Hamiltonian can be written as

Hinter(r) =
−e

4πǫ0

∫

ρtot(r
′)

|r− r′|
dr′ (2)

where r is the fast electron position, r′ is the material co-
ordinate, e is the magnitude of charge of an electron and
ρtot is the total charge density containing both the nu-
clear and electronic contributions. Here we have assumed
a material with no spin density in the ground state. Re-
tardation effects have also been neglected. Before and
after the scattering event, the fast electron and mate-
rial do not interact, so we can write |n0,k0〉 = |n0〉|k0〉
and |n1,k1〉 = |n1〉|k1〉. By including the full interac-
tion Hamiltonian in equation 1, defining the momen-
tum transfer from the fast electron to the sample as
q = k0 − k1, approximating the fast electron as a plane
wave, writing the energy transfer as h̄ω and writing (j0)z
as N0

V
h̄k0

m , equation 1 becomes

d2σ

dΩdE1
=

m2e2

h̄4q4ǫ204π
2

k1
k0

1

N

∑

n0,n1

Pn0
|〈n0|

∫

dr′e−2πiq.r′ρtot(r
′)|n1〉|

2δ(En0
− En1

+ h̄ω) (3)

Following Van Hove [9], the double differential cross sec-
tion can be written in terms of a scattering function,
S(q, ω)

d2σ

dΩdE1
=

m2e2

h̄4q4ǫ204π
2

k1
k0

1

N
S(q, ω) (4)

To determine S(q, ω) we follow the general approach
of Sinha [19] and Burkel [20] who considered X-Ray scat-

tering from phonon vibrations. We first assume that the
total charge density can be expressed as a sum of atomic
charge densities. This is clearly a major simplification,
and we return to this approximation later. We also as-
sume harmonic lattice dynamics in a crystal and can
hence express the lattice vibrations expressed as phonon
eigenvectors. By neglecting processes involving multiple
phonons, we obtain an expression for S(q, ω) for the cre-
ation of phonons by a fast electron:

S(q, ω) =
∣

∣

∣

∑

i

F (q, Zi)e
−Wi(q)[q.ei(q0, j)]M

−1/2
i eiq.ri

∣

∣

∣

2 1

ωq0j
δ(ω − ωq0j) (5)

where there are i atoms per unit cell at positions ri, Mi and Zi are the mass and atomic number of atom
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i, ei(q0, j) is the phonon eigenvector with wavevector
q0 (defined in the first Brillouin Zone) and polarisation
branch j at atom i and e−2Wi(q) is the Debye-Waller fac-
tor. F (q, Zi) is given by

F (q, Zi) = fatom,i(q) + Zie (6)

where fatom,i(q) is the atomic form factor.
Equation 5 contains a term, q.ei(q0, j), which is the dot

product between the momentum transfer and the phonon
eigenvector. This term means that only modes with
motion in the same direction as the momentum transfer
will appear in the spectra. Rez [10] obtained an expression
for the differential cross-section in the case of a fast
electron interacting with a stretch vibration in a diatomic
molecule and there are clear similarities be-tween his
equation for that specific case and our gen-eral equation.
Rez commented on the implications of the q.e(q0, j) term
and also pointed out the connection between the cross
section and the loss function (the imag-inary part of
−1/ǫ(E, q) where ǫ(E, q) is the energy and wavevector-
dependent dielectric function); more details of the
relationship can be found in reference [18].
The scattering function formalism developed above en-

ables us to go beyond simply comparing momentum-
dependent EEL spectra to phonon bandstructures and

understand the relative contributions of the different
modes to the spectra. It has been developed to under-
stand scattering in which there is finite momentum trans-
fer, a regime known as the localised vibrational scattering
regime [7]; a correct treatment of the q = 0 term should
also include dipole scattering [7, 8, 16] rather than solely
impact scattering.

Comparison with the scattering factor formalism for

X-Rays and neutrons

The single-phonon scattering factor obtained for the
interaction of electrons with phonons is very similar to
those obtained for X-Rays and neutrons, highlighting the
complementary nature of the techniques. For X-Rays, the
double differential cross section for energy loss can be
written as [19, 20]

d2σ

dΩdE1
=

e4

m2c4
k1
k0

∗

0|ǫ .ǫ1|2S(q, ω) (7)

where ǫ0 and ǫ1 are the polarisation vectors of the in-
coming and outgoing photons. The scattering function,
S(q, ω) is given by

S(q, ω) =
∣

∣

∣

∑

i

fi(q)e
−Wi(q)[q.ei(q0, j)]M−1/2

i

∣

∣

∣eiq.r 
2 < nq0j + 1 >

ωq0j
δ(ω − ωq0j ) (8)

To obtain the neutron scattering function, the atomic 
form factor is replaced by the Fermi scattering length, 
b [20, 21]. In all three cases, X-Rays and neutrons and 
electrons, there is a q.ei(q0, j) term, showing that the 
same bands contribute to the spectra produced by the 
scattering of fast electrons, X-Rays and neutrons.
The double differential cross section for neutrons varies

as q2. For X-Rays the q2 dependence is counteracted by 
the atomic form factor, which also has a q dependence.
Consequently there is an optimal range of q vectors for
which the cross-section will be greatest. The range will be
material dependent but is generally well outside the first
Brillouin Zone. Equation 5 appears to have a q2 

dependence which, when combined with the q−4 term in 
equation 4, results in a q−2 dependence. However, F (q, 
Zi) is also q-dependent and the overall variation depends
on the degree of ionicity in the crystal [10]. In addition, for
the q = 0 case to be described correctly, an additional
dipole term ought to be included. In contrast, the cross
section for neutrons has a q2 dependence and for X-Rays 
there is an optimal range of q-values for data collection.
From a practical point of view, this means that
experimental data using these techniques is rarely

collected from the first Brillouin Zone as large values of q 
will give a greater signal. When using electrons, the signal 
will be strongest within the first Brillouin Zone.
As mentioned in the Introduction, the spatial resolu-

tion achievable with fast electrons is much greater than
that of either X-Rays or neutrons. The energy and mo-
mentum resolution, however, are not as good. In the
experiments carried out here, the energy resolution was
18-40meV (increasing with increasing q) and the momen-

tum resolution was ±0.5˚A−1. This compares with typi-
cal energy and momentum resolutions of 0.6-6meV and
0.01−0.1˚A−1 for X-Rays [2, 22]. For neutrons, the 
energy and momentum resolution depends on the
application and specific instrument and it can be defined
using a 3D resolution ellipsoid [23]. Some reactor-based
sources can achieve µeV resolution [24]. High-resolution
instrument MAPS [25] can achieve an energy resolution of
0.4meV for neutrons with incident energies of 25meV , but
this increases to 30meV for incident energies of 2000meV .
Infra-red and Raman spectroscopies are both powerful
and widely-used methods for measuring phonons but,
rather than measuring phonon dispersions, they are es-
sentially limited to probing q = 0 and so provide comple-
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mentary ways of exploring q = 0 transitions.

APPLICATION TO CUBIC AND HEXAGONAL

BORON NITRIDE

Experimental details

Based on earlier experimental procedures for acquiring 
momentum resolved core and valance EEL spectra in the 
(scanning) transmission electron microscope ((S)TEM)
(see e.g. Refs. [26, 27] and references therein), we use the 
electromagnetic scan coils of the STEM to accurately 
control the range, magnitude and direction of momen-tum 
transfers accepted by the circular spectrometer en-trance 
aperture. Thus our momentum resolved spectra are 
acquired serially [27], rather than in parallel [26]. By 
carefully balancing the simultaneously achievable spatial 
and momentum resolutions, we probed phonon disper-
sions along high symmetry directions of the first Brillouin 
zones of cubic and hexagonal BN, using a ∼ 1nm elec-tron 
probe, a momentum resolution ∆q = ±0.5˚A−1 and an 
energy resolution ∆E = 18-40meV (increasing with 
increasing q) [17].
All experimental work was carried out on a Nion Ul-

traSTEM100MC dedicated STEM [28], equipped with a 
Gatan Enfinium EEL ERS spectrometer (optimised with 
high stability electronics). The microscope was operated 
at an acceleration voltage of 60kV , in order to minimise 
electron beam induced irradiation damage. No post-
acquisition de-noising or deconvolution routines were 
used for any experimental spectrum. In each spec-trum 
shown in Figure 1 (and in the Figures in the Sup-
plemental material), the zero loss peak (ZLP) tail con-
tribution was subtracted by fitting a power law function 
over an energy loss window preceding the lowest energy 
loss peak. In addition, the intensity of the experimental 
spectrum for each q vector has been normalised.
In inelastic neutron spectroscopy, it is necessary to de-

termine the full resolution ellipsoid, expressing energy and 
momentum resolutions in terms of energy loss and 
momentum transfer [23]. In our case, the momentum 
resolution (∆q = ±0.5˚A−1) is limited by beam conver-
gence and spectrometer acceptance angles (both with a 
half-angle of 3mrad), while the energy resolution (∆E) is 
approximately constant as a function of momentum 
transfer. Experimentally, ∆E is measured as the full 
width at half maximum (FWHM) of the quasi elastic 
ZLP. Due primarily to instrumental instabilities, along 
with electron-atom Compton scattering [29], the mea-
sured ZLP FWHM effectively increases from 18−20meV 
(near the optical limit) to 30 − 40meV for larger mo-
mentum transfers. The ZLP broadening due to instru-

mental instabilities increases with q due to the signifi-
cantly longer exposure times required at higher q (from 
0.1s near the Γ point up to 90s at the Brillouin zone 
boundaries). In light of the above mentioned factors, the 
more involved procedure for determining the full reso-
lution ellipsoid [23] was not deemed appropriate. For a 
more detailed discussion of the experimental procedure 
and associated parameters, see reference [17].

Details of First-Principles calculations

The phonon eigenvalues and dispersions for cubic boron 
nitride (cBN) and hexagonal boron nitride (hBN) have 
been calculated with density functional theory code 
CASTEP [30] using norm-conserving pseudopotentials 
and the PBE exchange-correlation functional. A geom-
etry optimisation was first carried out on both crystal 
structures using a cut-off energy of 850eV , a k-point sam-

pling of 2π × 0.03˚A−1 and the structures were optimised 
until the forces on each atom did not exceed 0.001eV/˚A. 
Phonon dispersions were then calculated using density 
functional perturbation theory (DFPT) with Fourier in-
terpolation used to calculate the dynamical matrices on a 
finer grid [31]. The DFPT calculations used a cut-off 
energy of 850eV , a k-point spacing of 2π × 0.03˚A−1, a 
phonon k-point spacing of 2π × 0.07˚A−1 and a fine 
phonon k-point path spacing of at most 2π × 0.05˚A−1. 
The numerical parameters were all carefully checked so 
that their value did not influence the final phonon dis-
persions.

Interpretation of the experimental spectra using the

scattering factor formalism

Momentum resolved phonon EEL spectra from both
cBN and hBN are shown in Figure 1. These spectra can
be understood using the scattering factor obtained above
for the interaction of a fast electron with the vibrational
modes of the material. The effects of charge transfer are
significant in BN polymorphs, and as an initial approach
to incorporating these effects we replace F (q, Zi) in Eq. 6
with

F (q, Zi) =
fatom,i(q)(Zi − Z∗

i )

Zi
+ Zie (9)

where Z∗

i is the Mulliken charge computed for atom i.
Details of the effect of this approximation on the simu-
lated EEL spectra are given in [12].

The quantity that has been calculated for comparison
with experiment is
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FIG. 1. Experimental (black) and simulated (blue) phonon EEL spectra for (a) the Γ − X direction in cubic BN and (b) the
Γ − K direction in hexagonal BN. Each spectrum is labelled by the corresponding q vector in units of Å−1, given to one decimal
place.

J =
1

q4

∣

∣

∣

∑

i

(fatom,i(q)(Zi − Z∗

i )

Zie
+ Zi

)

e−Wi(q)[q.ei(q0, j)]M
−1/2
i eiq.ri

∣

∣

∣

2 1

ωq0j
(10)

where the phonon eigenvectors and frequencies, Debye-
Waller factors and Mulliken charges are computed us-
ing DFT, and atomic-form factors are taken from the
literature. J can be thought of as a relative intensity
and it tells us which of the different modes contribute
towards the spectrum and by how much compared to
the other modes. The calculated EEL spectrum is con-
structed by combining Gaussians centred on each of the
phonon energies, scaled by J . The FWHM for the Gaus-
sians was 20meV , similar to the experimental resolution.
For modes which have an eigenvector orthogonal to q, J
will be zero and they will not contribute to the spectrum.

Simulated spectra for cBN are included in Figure 1a
and a further comparison between spectra in the Γ − K
direction is included in [12]. For comparison with ex-
periment, the simulated loss function has been scaled to
match the maximum in the experimental data. As the
q = 0 term is not well defined, a spectrum has been
simulated for q = 0.01 for comparison with the experi-
mental data. The q = 0 experimental spectrum will have
a dipole term, which has not been included here, as well
as contributions from small values of momentum trans-
fer as a result of the experimental geometry . Figure 2
shows the corresponding part of the phonon dispersion
with the colour of the modes corresponding to how much
the modes contribute to the spectrum. Due to the large

variation in intensity across the Brillouin zone, it has
been plotted on a log10 scale. As can be seen from the
figure, only two of the six phonon modes predicted by
DFT for cBN contribute to the spectra, one of these is
an optical branch and the other an acoustic branch. For
the other modes, the atomic motion is perpendicular to q.
Figure 3 shows the different relative contributions of the
two bands for the different scattering particles (electrons,
X-Rays and neutrons). The variation in intensity is much
greater in the case of fast electron scattering. Four modes
contribute in the Γ − K direction [12]. In that case, a
lower energy mode dominates at higher values of q and
the spectrum appears to shift as |q| increases.

There is some discrepancy between the experimental 
and simulated spectra in Figure 1. There are two approx-
imations in the simulations which are likely to account for 
this. The first is that the simulations have been carried 
out for a single q-value whereas the momentum resolu-
tion of our experimental data is ±0.5˚A−1. The second is 
the simple model that has been used for charge transfer.

Experimental and simulated data for the Γ − K direc-
tion in hBN are shown in Figure 1b. The corresponding
part of the Brillouin zone showing the contribution of
the different modes is shown in Figure 2. In this case,
four of the twelve DFT-predicted modes contribute to
the spectra. Previous work by Serrano et al. [32] has
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FIG. 2. Comparison of experimental and computed dispersion relations for cBN (left) and hBN (right). Upper panel: Calculated
phonon dispersion spectra. The bands are coloured according to their intensity on a log10 scale. Inactive bands are shown in
black. Middle Panel: Experimental intensity, normalised by the value of the intensity in the upper branch. The momenta at
which the data was recorded is shown by dash vertical lines and the plot is generated by interpolating between the datapoints.
The computed DFT band structure is shown in green. Lower panel: Computed intensity, normalised by the value of the
intensity in the upper branch.

shown good agreement between DFT phonon bandstruc-
tures and IXS data from hBN as well as with published
reflection EELS data from [33]. Our DFT phonon band-
structures are very similar to those reported by Serrano
et al. [32] but the agreement between our simulated and
experimental data for hBN is not as good in the cBN
case and this is likely to be due partly to our treatment
of the so-called LO-TO splitting. In an infinite crystal,
the longitudinal optical (LO) mode is blue-shifted by the
interaction between macroscopic electric fields generated
by displaced ions as q → 0 and the ionic charges. In
a crystal of finite thickness, joint electromagnetic cav-
ity and phonon modes known as phonon polaritons ap-
pear with energies intermediate between the LO and TO
values. These modes display strong dependence when
thickness is comparable to the optical wavelength. Our
calculations have included the LO-TO splitting expected
for an infinite crystal whilst the experimental data was
collected from a crystal of a thickness where the phonon

polaritons are expected to show significant thickness de-
pendence [16, 17]. Michel and Verberck [34] calculated
the phonon dispersion of hBN multilayers. Their work
shows this effect will only affect the upper two branches
that contribute towards the spectrum. Near the Γ-point
the two branches are further apart in the case of an infi-
nite crystal and the difference between a multilayer and
3D crystal decreases as q → K. Theoretically, the upper-
most branch dominates near the Γ-point and so the sim-
ulations will over-estimate the peak position. For the
other values of q, the lower branch dominates and so the
simulations will be less affected. This is what we see in
Figure 1b.

Another factor contributing to the discrepancy be-
tween simulation and experiment is the experimental ge-
ometry. The experimental momentum resolution results
in data being collected over a small range of q vectors;
this is currently not included in our calculations. In addi-
tion our calculations include in-plane contributions only
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FIG. 3. Calculated phonon spectra for the Γ − X direction in cBN (a) and the relative intensities for the contributing bands
in the case of scattering of fast electrons (b), X-Rays (c) and neutrons (d). Note: in the case of scattering of electrons the
contributions of the bands is shown on a log10 scale

whilst the curvature of the Ewald Sphere will mean that
the contribution of modes with an out-of-plane q com-
ponent will increase as q increases. This is seen in our
data where, for larger values of q, the match between
experiment and theory is less good. The experimental
peak positions are close to phonon energies in the disper-
sion, but not ones that would be expected to contribute
towards the spectrum due to the q.e(q0, j) term. The
finite size of the probe may also have an effect on the
spectrum with local inhomogeneities, such as defects, re-
sulting in breaking of symmetry making the q.e(q0, j)
term becomes non-zero. Data showing the Γ − M direc-
tion shows similar trends (see [12]).

CONCLUSION

The scattering function formalism developed here
highlights the fundamental similarities between the scat-
tering of electrons, neutrons and X-Ray, as well as the
differences resulting from the Coulombic interaction. In
addition to this, the experimental set up used to col-
lect EELS data means that finite momentum and spatial
resolution will also possibly need to be considered when
interpreting experimental data.

In this paper we have formulated a general expression
for the interaction of a fast electron with phonon vibra-
tions inside a STEM. We have applied this approach to
understand the differences in momentum resolved EEL
spectra from different polymorphs of BN. The simulated
spectra match well with the experimental data and al-

low us to understand which modes are contributing to
the spectra. This is a general approach and will allow
interpretation of experimental data from a large variety
of materials.
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